

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ IBN-KHALDOUN DE TIARET
FACULTÉ DES SCIENCES APPLIQUEES
DÉPARTEMENT DE GENIE ELECTRIQUE

Support de cours

Techniques de L’intelligence Artificielle

Domaine : Sciences et Technologie

Filière : Électrotechnique

Spécialité: Commandes électriques

Manuscript prepared according to the provided program

approved and confirmed by the CPNDST

Prepared by: Mr MIHOUB Youcef MCA

Experts: Mr Maasacri Mustapaa MCA

 Mr Bensattalah Aissa MCA

2025 2026

Table of contents

Table of contents

OUTLINE 3

1.1. Introduction 5

1.2. Definition of Artificial Intelligence 6

1.3. Approaches to Artificial Intelligence 6

1.4. Historical Foundations of Artificial Intelligence 7

1.5. References 14

2.1. Introduction 15

2.2. Tip Calculation Formulas 15

2.3. Fuzzy Approach 18

2.4. References 20

3.1. Introduction 21

3.2. History 21

3.3. Fuzzy Set Theory 22

3.3.1. Fuzzy set 23

3.3.2. Degree of membership and membership functions 23

3.3.3. Operations 24

3.3.4. Linguistic variable 25

3.4. Definition of a Fuzzy System 27

3.3.1 Constitution 28

3.5. Application: Fuzzy Logic toolbox 29

3.6. Example of fuzzy Application Mamdani type 32

3.7. Example of fuzzy Application Takagi-Sugeno type 36

3.8. References 39

4.1. Introduction 40

4.2. Fuzzy modeling 40

Table of contents

4.3. Fuzzy Controller 41

4.4. Conventional fuzzy controller example 42

4.5. Adaptive fuzzy controller example 45

4.6. Advantages and disadvantages of fuzzy logic control 52

4.7. References 53

5 1. Introduction 54

5 2. . Historical of Artificial Neural Networks 55

5 3. . Biological Neuron 57

5 4. . Formal (Artificial) Neuron 58

5 5. . Activation Function 60

5 6. Neural Network Architecture 61

5 7. Learning 62

5 8. Neural Networks in System Identification and Control 63

5 9. Advantages and Limitations 65

5 10. Conclusion 65

5 11. References 70

6 1. Introduction 71

6 2. Neuro-Fuzzy Systems 71

6 3. Parallel Neural and Fuzzy Systems 71

6 4. Cooperative Neuro-Fuzzy Models 71

6 5. Hybrid Neuro-Fuzzy Models 71

6 6. ANFIS (Adaptive Network Fuzzy Inference System) 72

6 7. Advantages of ANFIS 73

6 8. ANFIS (Adaptive Network Fuzzy Inference System) in Matlab 74

6 9. References 79

7 1. Genetic Algorithms definition 80

Table of contents

7 2. Genetic Algorithms Vocabulary 80

7 3. Genetic Algorithms Main steps 81

7 4. Evolutionary Process and Convergence 83

7 5. Analogy with Natural Evolution 83

7 6. Using Genetic Algorithms in MATLAB 84

7 7. References 93

8 1. Introduction to Particle Swarm Optimization 94

8 2. Optimizations Problem Formulation 94

8 3. Biological Inspiration and Swarm Intelligence 95

8 4. Particle Representation and Swarm Structure 95

8 5. . PSO Algorithm (Step-by-Step) 96

8 6. Applications of PSO in Engineering 97

8 7. Advantages and Limitations 98

8 1. References 102

ANNEX 103

Citations 106

List of Figures and Tables

Figure I. 1 Classification of general intelligence. 5

Figure I. 2 Etapes importantes de l’intelligence artificielle. 7

Figure II. 1 Fixed tip = 15% of price 15

Figure II. 2 Tip and the quality of service 16

Figure II. 3 Tip and the quality of service and food 16

Figure II. 4 Tip and the quality of service and food 17

Figure II. 5 Propose rules for Tip and the quality of service and food 18

Figure III. 1 Classic set and fuzzy set 23

Figure III. 2 Elements of fuzzy logic. 24

Figure III. 3 Forms of membership functions. 24

Figure III. 4 Example of sets considered in Boolean logic. 26

Figure III. 5 Example of sets considered in fuzzy logic. 26

Figure III. 6 Case of the fuzzy set "average" of the temperature variable. 27

Figure III. 7 Fuzzy processing (overall scheme). 27

Figure III. 8 General diagram of a fuzzy system. 28

Figure III. 9 Integration of Fuzzy Inference Systems in the MATLAB Environment 30

Figure III. 10 Fuzzy logic toolbox in the MATLAB environment 30

Figure III. 11 Fuzzy traffic lights inputs 34

Figure III. 12 Fuzzy traffic lights output 35

Figure III. 13 Fuzzy mobile decision inputs 37

Figure IV. 1 General diagram of a fuzzy controller. 41

Figure IV. 2 Block diagram of a fuzzy PI speed controller 42

Figure IV. 3 Linear membership function or 3 5 and 7 sets 43

Figure IV. 4 Rules following temporal analysis. 43

Figure IV. 5 Rule tables according to the inputs and output use membership functions 44

Figure IV. 6 . Input membership functions of the AFC 46

Figure IV. 7 Output membership functions of the AFC 46

Figure IV. 8 Global system Simulink Bloc diagram 48

Figure IV. 9 Mcc Simulink Bloc Diagram 48

Figure IV. 10 Internal fuzzy controller Bloc Diagram 49

Figure IV. 11 System output characteristics (to check your model) 50

List of Figures and Tables

Figure V. 1 Connections of biological neural networks 57

Figure V. 2 Simplified diagram of a biological neuron 58

Figure V. 3 Basic model of a formal neuron 59

Figure V. 4 Feedforward network 61

Figure V. 5 Feedback network 62

Figure V. 6 Diagram of direct process identification using a neural network 63

Figure V. 7 Inverse process identification scheme using a neural network. 64

Figure V. 8 Basic learning scheme of a conventional controller 64

Figure V. 9 Reverse control scheme with a neural network control. 65

Figure V. 10 Artificial neural networks homework correction 69

Figure VI. 1 ANFIS Window in MATLAB environment 74

Figure VI. 2 Training Data and generating fis with grid partition 76

Figure VI. 3 Training data and Neural network structure. 76

Figure VI. 4 Fuzzy inference system and Rule editor 77

Figure VI. 5 Rule viewer and surface viewer 77

Figure VII. 1 Genetic Algorithms organizational chart 83

Figure VII. 2 Genetic Algorithm MATLAB Toolbox 87

Figure VII. 3 Obtained function surface 90

Figure VIII. 1 Diagram explaining the calculation of particle velocity 96

Figure VIII. 2 Particle movement. 96

Table 3. 1 Applications of fuzzy logic ..22

Table 4. 1 Rule table : ...47

Table 5. 1 Functioning of the biological neuron. ...58

Table 5. 2 Activation Functions ..60

OUTLINE

OUTLINE

This course material has been prepared for Master’s students in Electrical

Control and Electrical Engineering, based on lecture notes delivered in French. It has

been updated and revised in English, incorporating additional resources. The

document is organized into four chapters:

Chapter 1 introduces the fundamentals of Artificial Intelligence, including its

definitions, history, and applications.

Chapter 2 focuses on fuzzy reasoning, providing the first steps toward

understanding fuzzy logic theory. The examples are designed to introduce fuzzy logic

in a simple and progressive manner, starting from basic formulas and gradually

moving toward more complex calculations. A practical choice is to use MATLAB,

which offers the advantage of working with either command lines or specialized

toolboxes such as the Fuzzy Logic Toolbox.

Chapter 3 presents the theory of fuzzy logic and fuzzy sets, using examples and

comparisons with classical set theory. Two examples are provided, along with their

solutions and MATLAB code.

Chapter 4 demonstrates the application of fuzzy logic in control systems, using

real-world process control examples.

Chapter 5 is concerned with the use of artificial neural networks from the

beginning to the application in control and identification, using Somme examples

with MATLAB.

OUTLINE

.

Chapter 6 is relative to the different neuro-fuzzy architectures and in particular

ANFIS with MATLAB graphical user interface and line commands

Chapter 7 demonstrates the basic notions and the used vocabulary in Genetic

algorithms. Somme examples with MATLAB were used to explain more details

relative to this part.

Chapter 8 gives an overview about Particul swarm Optimization with an

example resoloved wit MATLAB instructions

An interesting work home has been added in order to evaluate every step of this

document .

 .

Chapter 1 General Information on Artificial Intelligence

5

1.1. Introduction

The term "artificial intelligence" was first proposed at the Dartmouth conference in 1956 to

designate the field of research on a fundamental problem whose main idea is the possibility of

designing an intelligent machine. Intelligence commonly refers to the potential of an individual's,

animal or human, mental and cognitive abilities, enabling them to solve a problem or adapt to their

environment. It is often synonymous with the brain. By extension, applied to machines: this is known

as artificial intelligence. So a machine will be considered intelligent if it reproduces the behavior of

a human being in a specific or general domain. A machine will be considered intelligent if it models

the functioning of a human being.

 Figure I. 1 Classification of general intelligence.

General
Intelligence

Fluid intelligence
Logical sequential reasoning,

manipulation of ideas, and induction

Crystallized intelligence
Language comprehension and

vocabulary skills acquired

General Memory
associative memory, free recall, and

visual memory

associative memory, free recall,
and visual memory

Visualizing spatial relationships

general auditory perception
discrimination of sounds and

frequencies

General recovery creativity, fluidity of ideas and words

general cognitive speed Digital fluency

Overall processing speed reaction time processing speed

Chapter 1 General Information on Artificial Intelligence

6

1.2. Definition of Artificial Intelligence

Artificial intelligence is defined as the project of building intelligent machines—artifacts. It is

favored in fields where there are no algorithms readily available to machines, or where machines

can perform behaviors typically associated with human intelligence, such as:

• Driving a vehicle while avoiding traffic jams

• Translating a foreign language

• Holding a conversation

• Deleting spam emails from your inbox…

The four definitions can be grouped together in a table.

Définitions

th
in

k

A system that thinks like humans.

Complex

A system that thinks rationally

Limited

A
c
t

A system that acts like humans

Turing test (1950)

Theoretical

A system that acts rationally

Pragmatic

 Empirical Theoretical

1.3. Approaches to Artificial Intelligence

Artificial intelligence approaches can be classified into two distinct groups:

• Reasoning-based approaches, which generally employ rules of the form IF condition then

conclusion; fuzzy logic is one such group.

• Numerical approaches, which utilize numerical processing based on a pair (inputs, outputs)

serving as a reference model. A program is then used to minimize the discrepancy between the

model and the reference.

Chapter 1 General Information on Artificial Intelligence

7

1.4. Historical Foundations of Artificial Intelligence

The key milestones in the history of AI are as follows:

 Figure I. 2 Key milestones in artificial intelligence.

[1] . The pregnancy of AI (1943-1955)

▪ The work of Warren McCulloch and Walter Pitts, published in 1943, introduced one of the earliest

mathematical models of artificial neurons. Their model described neural activity using logical and

binary operations, laying the theoretical foundations for neural computation. Although the term

artificial intelligence had not yet been coined, their contribution is widely regarded as one of the

earliest milestones in the emergence of artificial intelligence.

▪ Subsequently, Donald Hebb proposed a learning rule describing how synaptic connections between

neurons could be modified through experience. Known as Hebbian learning, this principle states

that the connection strength between two neurons increases when they are activated simultaneously.

This concept became fundamental in neural network learning algorithms and biological learning

theories.

▪ Later, Marvin Minsky and Dean Edmonds built one of the first artificial neural network

machines, known as the SNARC (Stochastic Neural Analog Reinforcement Calculator).

This system demonstrated how networks of artificial neurons could be physically

The pregnancy of AI (1943-1955)

The Birth of AI (1956)

Growing Hopes (1952-1969)

First Disappointments (1966-1973)

Expert Systems (1969-1979)

The Return of Neural Networks (1986-present)

Modern AI (1987-present)

Chapter 1 General Information on Artificial Intelligence

8

implemented to perform learning tasks, further advancing the practical development of

neural computation.

▪ In parallel, Alan Turing published his seminal paper “Computing Machinery and

Intelligence” in 1950, in which he introduced the Turing Test as a criterion for machine

intelligence. This test evaluates a machine’s ability to exhibit intelligent behavior

indistinguishable from that of a human, and it remains a foundational concept in artificial

intelligence research.

[2] . The Birth of AI (1956)

▪ John McCarthy and Marvin Minsky, with the support of their senior colleagues Claude

Shannon and Nathaniel Rochester, secured a grant of USD 7,500 from the Rockefeller

Foundation to organize a summer research workshop at Dartmouth College in 1956. This

workshop, held over a two-month period, focused on the ambitious goal of studying

thinking machines and exploring how aspects of human intelligence could be simulated by

computational systems.

▪ The conference brought together researchers from mathematics, engineering, and cognitive

science, fostering interdisciplinary discussions that would shape the future of the field.

Most importantly, it was during this event that the term “Artificial Intelligence” was

formally adopted, marking the official birth of artificial intelligence as a distinct scientific

discipline.

▪ The Dartmouth Conference is now widely recognized as a foundational moment in the

history of artificial intelligence, as it established the conceptual framework and research

agenda that would guide AI development for decades to come.

- Growing Hopes (1952-1969)

▪ A large number of pioneering artificial intelligence programs were developed during this

period. Among the most notable was the Logic Theorist, created by Allen Newell and

Herbert A. Simon, which is considered one of the first successful AI programs. It was

designed to prove theorems from symbolic logic and demonstrated that machines could

perform tasks previously thought to require human intelligence. Another significant system

was the Geometry Theorem Prover, developed by Herbert Gelernter, which applied

heuristic search techniques to solve geometric problems.

Chapter 1 General Information on Artificial Intelligence

9

▪ The General Problem Solver (GPS), also developed by Newell and Simon, aimed to model

human problem-solving behaviour. It was capable of solving simple puzzles by applying

means–ends analysis, a reasoning strategy inspired by human cognitive processes. This

work represented an important step towards understanding and formalizing human

reasoning within computational systems.

▪ At the same time, several of Marvin Minsky’s students investigated so-called

“microworlds”, which are simplified and highly constrained problem environments. These

included analogy problems similar to those found in intelligence quotient (IQ) tests.

Research on microworlds helped researchers explore fundamental cognitive mechanisms

in a controlled setting before addressing more complex real-world problems.

▪ In parallel, John McCarthy published a highly influential paper addressing the challenge

of building programs endowed with common-sense reasoning. His work highlighted the

importance of representing everyday knowledge and reasoning about ordinary situations,

a problem that remains central to artificial intelligence research.

▪ Finally, research on artificial neural networks continued alongside symbolic AI

approaches, contributing to the development of learning models inspired by biological

neural systems and laying the groundwork for later advances in connectionist AI.

[3] . First Disappointments (1966-1973)

▪ This period is often referred to as the first “AI winter”, marked by significant setbacks and

widespread disappointment. One of the most notable failures concerned machine

translation. Despite five years of intensive research, automatic translation systems failed to

meet expectations. As a result, in 1966, the United States government withdrew all funding

for machine translation projects, following the conclusion that the technology was not

delivering practical results.

▪ These difficulties were largely due to severe limitations in memory capacity and

computational power, which constrained the complexity and scalability of early AI

systems. The gap between ambitious research goals and available hardware resources led

to growing skepticism about the feasibility of artificial intelligence.

▪ These shortcomings were formally criticized in the Lighthill Report published in 1973 in

the United Kingdom. The report was highly critical of AI research, particularly in areas

Chapter 1 General Information on Artificial Intelligence

10

such as robotics and general problem solving, and concluded that progress had been

overstated. Its publication resulted in the termination of funding for the majority of artificial

intelligence projects in Great Britain, significantly slowing the development of the field.

[4] . Expert Systems (1969-1979)

▪ The first expert system, known as DENDRAL, was developed in 1969. Designed to assist

chemists in the identification of molecular structures, DENDRAL demonstrated that

computers could effectively emulate the decision-making processes of human experts

within a well-defined domain. This system marked a significant milestone in artificial

intelligence by showing the practical value of knowledge-based reasoning.

▪ Following this success, several other expert systems were developed, among which

MYCIN became one of the most influential. MYCIN was designed to perform the

diagnosis of blood infections and to recommend appropriate antibiotic treatments. It relied

on a rule-based inference mechanism and was notable for achieving performance

comparable to that of medical specialists, despite operating under uncertainty.

▪ The development of systems such as DENDRAL and MYCIN contributed to a renewed

interest in artificial intelligence during the 1970s and 1980s, highlighting the potential of

expert systems in real-world applications and reinforcing the importance of knowledge

representation and reasoning under uncertainty.

[5] . The Return of Neural Networks (1986-present)

▪ In the mid-1980s, four groups of researchers independently discovered the

"backpropagation" learning rule (the idea had been proposed in 1969, but had received no

attention in the scientific community).

▪ - Since then, machine learning has become one of the most active areas of AI (as seen, for

example, in data mining).

[6] . Modern AI (1987-present)

▪ With the rapid development of artificial intelligence and the emergence of advanced

technologies such as machine learning and deep learning, researchers generally agree on

the distinction between three main types of artificial intelligence: general, narrow (weak)

and popular

Chapter 1 General Information on Artificial Intelligence

11

▪ General Artificial Intelligence (GAI), also referred to as strong or deep artificial

intelligence, denotes an artificial system capable of performing any cognitive task that a

human or an animal can accomplish. Such a system would exhibit general reasoning,

learning, adaptation, and problem-solving abilities across a wide range of domains, rather

than being limited to a specific task.

▪ At present, GAI remains largely theoretical and hypothetical. However, some scientists

have begun to question whether recent large-scale language models, such as GPT-4, could

represent an early or partial form of general artificial intelligence. While these models

demonstrate impressive capabilities in language understanding and reasoning, there is

ongoing debate regarding whether they truly possess general intelligence or merely

advanced pattern recognition.

▪ Nevertheless, a large proportion of AI researchers believe that humanity now possesses the

technological foundations necessary to develop GAI, particularly due to significant

advances in artificial neural networks, computational power, and data availability. These

developments have renewed interest in the long-term prospect of creating artificial systems

with human-level cognitive abilities.

▪ Narrow (Weak) Artificial Intelligence

▪ The final category in the classification of artificial intelligence is Narrow Artificial Intelligence,

also referred to as Weak AI. This type of artificial intelligence is designed to perform a single,

well-defined task with a high level of efficiency and accuracy, often approaching or

surpassing human performance, without requiring continuous human supervision.

▪ Narrow AI systems operate within a limited domain and do not possess general reasoning or

understanding beyond their specific application. Despite this limitation, they represent the

most widely used and developed form of artificial intelligence today. Such systems are

deployed to automate and optimize processes across a broad range of sectors, including

healthcare, finance, transportation, manufacturing, and information technology.

▪ Examples of narrow AI include speech recognition systems, image classification algorithms,

recommendation engines, and autonomous control systems. Although these systems do not

exhibit general intelligence, their practical impact has been significant, driving productivity

gains and enabling new technological capabilities

Chapter 1 General Information on Artificial Intelligence

12

▪ Applications of Artificial Intelligence in Medicine, Science, and Creative Domains

▪ In medicine, artificial intelligence is widely used for the diagnosis and prediction of diseases,

enabling early detection and rapid intervention. AI-based systems assist clinicians by

analyzing medical images, patient records, and biological data, thereby improving diagnostic

accuracy and supporting personalized treatment strategies. Artificial intelligence is also

extensively applied in pharmaceutical research, where it accelerates drug discovery processes,

optimizes clinical trials, and contributes to the development of more effective therapies.

▪ In scientific research, AI plays a crucial role in analyzing large-scale datasets and facilitating

discoveries in fields such as astrophysics, genomics, biology, and chemistry. By identifying

complex patterns and correlations that are difficult for humans to detect, AI accelerates

scientific progress and opens new avenues for research and innovation.

▪ Popular I-A: With the release of GPT-3.5 in November 2022, a powerful large language model

(LLM), the potential of artificial intelligence expanded significantly. AI technologies are now

increasingly used in creative domains, including text generation, image synthesis, and

audiovisual content creation. Applications such as VALL·E, Midjourney, and GEN-2

illustrate how AI is transforming creative industries by enabling new forms of expression and

production.

▪ Adobe Firefly is an artificial intelligence engine developed by Adobe that exclusively uses

royalty-free and licensed images to generate new visual content. Adobe places strong

emphasis on ethical considerations, positioning Firefly as one of the first ethically designed

AI image-generation systems, aimed at respecting intellectual property rights and creative

ownership.

▪ Bard AI is Google’s intelligent conversational chatbot. Although it has not yet been made

widely available in Europe, Google has expressed its commitment to deploying Bard within

a framework of ethical artificial intelligence, with a focus on minimising misinformation and

ensuring responsible use of AI technologies.

▪ Jasper is a software platform designed for written content creators. It enables users to produce

articles and marketing content significantly faster by offering multiple writing tones, styles,

and perspectives. Jasper illustrates how AI can enhance productivity in professional writing

and digital communication.

Chapter 1 General Information on Artificial Intelligence

13

▪ Spotify DJ represents the integration of artificial intelligence into the music streaming industry.

Through this feature, Spotify is able to generate personalized playlists based entirely on user

preferences, listening history, and interaction patterns. The recommendations dynamically

evolve as the system continuously learns from user behavior.

▪ Gamma is a highly innovative artificial intelligence tool that enables the rapid creation of visual

presentations and slide-based content. With only a few user inputs, Gamma can automatically

generate structured and visually appealing presentations, demonstrating the growing role of

AI in communication and knowledge dissemination.

Chapter 1 General Information on Artificial Intelligence

14

1.5. References

[1] . Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach (4th ed.).Prentice

Hall, 2020.

[2] . Mitchell, M.Artificial Intelligence: A Guide for Thinking Humans Farrar, Straus and

Giroux, 2019.

[3] . Thomas Dunne Books, 2013. Discusses AI risks and the potential future impact of

general intelligence. Wikipedia Kurzweil, R. The Age of Intelligent Machines.

[4] . MIT Press, 1990. A historical and philosophical exploration of AI’s development and

future.

[5] . Boden, M. Artificial Intelligence: A Very Short Introduction. Oxford University Press,

2018..

[6] . Springer chapter: A General Introduction to Artificial Intelligence, in Artificial

Intelligence Technology, Springer, 2023

Chapter 2 Fuzzy reasoning

15

2.1. Introduction

One of the fundamental principles of pedagogy is to progress from simple concepts to more

complex ones. In this context, this section presents an illustrative example commonly found in the

MATLAB Fuzzy Logic Toolbox documentation. The example addresses the definition of a rule-

based method for calculating the amount of a tip after a restaurant meal in a real-life scenario.

Depending on the individual, cultural background, and country, the method used to

determine the tip may vary. However, the most critical issue lies in how the tip value should be

defined and how one can ensure that the selected formulation is both appropriate and accurate.

In general, the perceived quality of service and the quality of the food are two key factors

influencing the decision. Human reasoning in such situations is inherently subjective and varies

according to personal experience and knowledge. Therefore, an essential task is to formalise this

reasoning process in a structured and systematic manner. Adopting a progressive approach from

the simplest to more complex representations highlight the intrinsic complexity of human

reasoning and demonstrates the relevance of fuzzy logic as an effective modelling tool

2.2. Tip Calculation Formulas

Formula 1

In the USA, tipping is generally around 15% of the meal price; therefore, we will express it as follows:

Tip = 0.15 * PRICE of the meal

So for a $100 meal, the tip would be $15

 Figure II. 1 Fixed tip = 15% of price

Chapter 2 Fuzzy reasoning

16

Formula 2

• Tip and the quality of service, which is closer to reality, we must vary this value within a range of 5% to

25%.. On the other hand, the service is rated out of 10 and must therefore vary between 0 and 10.

• Consequently, the tip amount will vary linearly between these two values, increasing in an upward

direction.

• The tangent to this line is equal to (25%-5%)/(10-0).

 Figure II. 2 Tip and the quality of service

Formula 3

• Tip depending on the quality of service and the quality of the food, with the same weighting coefficient

of 50% for each parameter: • The quality of service and the quality of the meal are rated out of 10.

• Therefore, the tip amount will vary linearly for both parameters, and the total will be expressed similarly.If

we want the quality of service to have more impact than the quality of food on a scale of 80% versus 20%.

 Figure II. 3 Tip and the quality of service and food

Chapter 2 Fuzzy reasoning

17

Formula 4

The reality we are working with is not always linear, resulting in areas where values may remain constant

throughout a given interval.

• In addition to the scores for the two parameters, taken from 0 to 10 and weighted equally, we can divide

the data into three zones:

1. From 0 to 3, where the tip will vary from 5% to 15%

2. From 3 to 7, where the tip will be constant at 15%

3. From 7 to 10, where the tip will vary from 15% to 25%

In the last case, (Formula 4) there are 9 possible ways to express this formula.

We choose one of the two parameters, for example, the service, and then for each interval, we

check the corresponding second case

 Figure II. 4 Tip and the quality of service and food

In this example, we started with the simplest formula, one without increasingly complex

mathematical relationships, while trying to get as close as possible to reality.

The last formula, in particular, highlights the complexity of the calculation algorithm, hence the

advantage of using a fuzzy logic approach

Chapter 2 Fuzzy reasoning

18

2.3. Fuzzy Approach

We consider our system to have a two-input block: the quality of service and the quality of

food. The output is the amount of the tip to be given. Using linguistic variables to express the

evaluation of the two inputs, we obtain the following statements :

Input 1

Quality of service

Input 2

Quality of Food

Output

Tip

• Bad

• Good

• Excellent

• Rancid

• Delicious

• Cheap

• Average

• Generous

We can therefore propose the following rules:

In
p

u
t

1

If service is poor Then Tip is Cheap

If service is good Then Tip is Average

If service is excellent Then Tip is Generous

In
p

u
t

2

If Food is rancid Then Tip is Cheap

If Food is Delicious Then Tip is Generous

Our system can be represented by the following diagrams:

 Figure II. 5 Propose rules for Tip and the quality of service and food

Rule 1

If service is poor and/or food is rancid

Then Tip is Cheap

Rule 2

If service is good Then Tip is

Average

Rule 3

If service is excellent and/or food is

Delicious Then Tip is Generous

Output
Amount

of Tip

∑

Input 1

Service

Input 2

Food

Chapter 2 Fuzzy reasoning

19

Many questions arise in this case:

• How can the amount of this tip be numerically evaluated?

How can these rules be combined?

• Can the proposed linguistic variables be easily

quantified?

To answer all questions in a way that closely resembles human

reasoning, we will discuss the theory of fuzzy logic.

Chapter 2 Fuzzy reasoning

20

2.4. References

[1] . MathWorks – Fuzzy Logic Toolbox Documentation.

https://www.mathworks.com/help/fuzzy/ (consulté 2025)

[2] . Ross, Timothy J.Fuzzy Logic with Engineering Applications, 4th Edition, Wiley,

2016 (et éditions ultérieures).

[3] . Zadeh, L. A., et al. (Éditeurs)Fuzzy Logic: Theory and Applications, Academic

Press, 1975

[4] . Mendel, J. M.Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New

Directions, Prentice Hall, 2001.

Chapter 3 Fuzzy Set Theory

21

3.1. Introduction

The term "fuzzy set" first appeared in 1965 when Professor Lotfi A. Zadeh of the University

of California, Berkeley, published an article entitled "Fuzzy Sets." Since then, he has made

numerous major theoretical advances in the field and has been quickly joined by many researchers

developing theoretical work. Fuzzy logic, based on fuzzy set theory, is establishing itself as an

operational technique in the field of control and command. It is one of the artificial intelligence

techniques based on the reasoning approach that has become established in several fields and has

attracted the interest of many researchers.

3.2. History

Fuzzy logic bridges the gap between numerical and linguistic modeling, enabling remarkable

industrial advancements through simple algorithms that translate symbolic knowledge into

numerical data and vice versa. Fuzzy set theory has introduced an innovative approach to handling

uncertainty. It has also influenced automatic classification techniques and contributed to the

renewal of existing decision-support methods. Before the 1940s, the early approaches of American

researchers to the concept of uncertainty laid the foundations of fuzzy logic. Zadeh contributed to

the modeling of phenomena in fuzzy form, finally resolving the limitations due to uncertainties in

classical models with differential equations. In 1974, M. Mamdani experimented with Zadeh's

nonce theory on a steam boiler, a piece of equipment known for its complexity, thus introducing

control into the regulation of an industrial process [Fu 03]. Several applications then emerged in

Europe, for sometimes very complex systems, such as the regulation of kilns, cement plants, etc.

In 1985, thanks to M. Sugeno, a Japanese researcher, fuzzy logic was introduced into industrial

applications in Japan.

Table 3.1 presents the major applications based on fuzzy logic:

Chapter 3 Fuzzy Set Theory

22

 Table 3. 1 Applications of fuzzy logic

Year Author Application

1972

1974

1980

1983

1985

1988

1991

Zadeh.

Mamdani & assilian.

Fukami et al.

Sugeno & Takagi

Togar & Watanabe.

Dubois & Prade

Barrat et al.

• Linguistic approach.

• Control of a steam engine.

• Fuzzy conditional inference.

• Derivation of fuzzy control rules.

• Fuzzy processor.

• Approximate reasoning.

• Fuzzy temperature control of an oven.

3.3. Fuzzy Set Theory

 Fuzzy set theory [Zad 65] is a mathematical framework primarily aimed at modeling the

vague and uncertain concepts inherent in natural language. The notion of strict membership

proves inadequate when dealing with uncertain or imprecise data, particularly when such data

are difficult to express verbally. Classical set theory considers collections of elements grouped

into well-defined sets, where the membership of an element in a set is unambiguous. In contrast,

real-world situations often involve ambiguity, especially in everyday language. A fuzzy set is

defined over a universe of discourse 𝑋 through a membership function 𝜇(𝑥)(𝐴).

μ(x)(A), which typically takes values between 0 and 1. This function quantifies the degree

to which each element x in 𝑋. X belongs to the set, allowing a gradual and nuanced representation

of membership rather than a strict binary classification.

In set theory, "either an element belongs to a set or it does not; the two cases are

complementary." However, fuzzy logic theory takes into account the case of gradual membership.

This degree of membership, denoted µ(x), is normalized between "0" and "1."

 In the classical set theory, the set of elements that satisfy a certain condition, and to be

represented as in set theory. Taking the case of a net set A:

So we can note: A = {x/x satisfies certain conditions}.

 Relative to the scale we have taken, the only value that each element of this set can take by

introducing the membership function is either "0" or "1".

𝜇𝐴(𝑥) = {
1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑖𝑓 𝑥 𝐴

. (3.1)

Chapter 3 Fuzzy Set Theory

23

3.3.1. Fuzzy set

A fuzzy set B is characterized by a membership function and by the fact that µB(x) takes

its values across the entire interval [0, 1], where x is called the universe of discourse.

There are two cases for this type of set:

1. Continuous: B is not in the following form:There are two cases for this type of set:

1. Continuous: B is not in the following form::

 𝐵 = ∫ 𝑈 𝜇𝐴(𝑥)/𝑥 (3.2)

2. Discrete: B is denoted in the following form:

 𝐵 = ∑ 𝑈𝜇𝐴(𝑥)/𝑥

(3.3)

The crossover point: is the point for which the degree of belonging is situated at the average

value of the scale taken between "0" and "1" equal to 0.5.

Figure III. 1 Classic set and fuzzy set

3.3.2. Degree of membership and membership functions

The diagram in Figure 3.10 shows the degree to which an element x belongs to a fuzzy set

A. Depending on the type of membership function, different types of fuzzy sets are obtained. These

include linear functions such as triangular and trapezoidal functions, and nonlinear functions such

as Gaussian functions and the singleton function, where only one point in the sample space takes

the value 1.

Chapter 3 Fuzzy Set Theory

24

Figure III. 2 Elements of fuzzy logic.

Figure III. 3 Forms of membership functions.

3.3.3. Operations

The logical operators "and," "or," and "not" can be defined using fuzzy sets, analogously to

classical set theory. Recall that these are defined respectively by intersection, union, and

complement.

If A and B are two fuzzy subsets and their membership function, we define::

• • The complement of A, by the membership function:

  (𝐴) =1- (A) (3.4)

• The subset A and B, A∩B, by the membership function:

 (AB) =min ( (A), (B)) (3.5)

• • The subset A or B, A ∪ B, by the membership function:

 (AB) =max ( (A), (B)) (3.6)

degree of

membership

Language variable

X Universe of discourse

1

0 X

A B C

Triangular Trapezoidal Gaussian Singleton

Chapter 3 Fuzzy Set Theory

25

t-norm also called fuzzy intersection:

It's a binary operation: T:[0,1]x[0,1]→ [0,1]

It respects the following requirements:

• Commutativity: x ∈ y = y ∈ x

• Associativity: x ∈ (y ∈ z) = (x ∈ y) ∈ z

• Monotonicity: if x ≤ y and w ≤ z then x ∈ w ≤ y ∈ z.

• Boundary conditions: ∑_{0=0}^{t0} = 0 and x ∈ 1 = x

t-norm or s-norm, also called fuzzy union:

It's a binary operation: S:[0,1]x[0,1]→ [0,1]

It respects the following requirements:

• Commutativity: x S y = y S x

• Associativity: x S (y S z) = (x S y) S z

• Monotonicity: if x  y w  z then x S w  y S z.

• Boundary conditions: 0 S 0 = 0 and x S 1 = x

3.3.4. Linguistic variable

• A linguistic variable is a variable whose values are words or phrases expressed in an

artificial or natural language. It is defined by the name of the linguistic variable, X is the

physical domain associated with the variable, V is also called the universe of discourse,

and the set of fuzzy characteristics of the variable.

• • For example, we define the notions of low, medium, and high temperature. We can

define the degree to which the variable "temperature" belongs to the set "low" as the

"degree of truth" of the proposition "the temperature is low."

• • In Boolean logic, the degree of membership (μ) can only take two values (0 or 1). The

temperature can be:

• low: 𝜇low(𝑇)=1, 𝜇medium(𝑇)=0, 𝜇high (𝑇)=0

• Medium: 𝜇low(𝑇)=0, 𝜇medium(𝑇)=1, 𝜇high (𝑇)=0

• High: 𝜇low(𝑇)=0, 𝜇medium(𝑇)=0, 𝜇high (𝑇)=1

It cannot take two attributes at once.

Chapter 3 Fuzzy Set Theory

26

In fuzzy logic, the degree of membership becomes a function that can take a real value between

0 and 1 inclusive.𝜇medium(𝑇) For example, it allows us to quantify whether the temperature

can be considered average.

In this case, the temperature can be considered both as low with a degree of membership of

0.2 and as medium with a degree of membership of 0.8 (Figure III.4).

𝜇Low(𝑇)=0.2, 𝜇Medium(𝑇)=0.8, 𝜇High(𝑇)=0

Low Medium High

0

1

5

25 40

1

Temperature (°C)

µ : degree of membership

 Figure III. 4 Example of sets considered in Boolean logic.

Temperatuure (°C)

Medium high Low

15 25 40

1

0

µ : degree of membership

0.8

0.2

T

Figure III. 5 Example of sets considered in fuzzy logic.

In this example, the fuzzy variable is temperature, and the universe of discourse is the set

of real numbers in the interval [0, 40]. These variables are assigned three fuzzy subsets: low,

medium, and high. Each is characterized by its degree of membership function

n:𝜇low(𝑇), 𝜇meium(𝑇) et 𝜇high(𝑇)
.

We can define the degree of membership function μ_"average" over the entire universe of discourse::

𝜇Medium(𝑥) = {

1

1+e(15-x) ;x[0,20]

1-
1

1+e(25-x) ;x[20,40]

(3.7)

µ: degré d'appartenance

Chapter 3 Fuzzy Set Theory

27

𝜇meium(𝑇)

0 T (°C)

1

15 20 25

0.5

40

 Figure III. 6 Case of the fuzzy set "average" of the temperature variable.

3.4. Definition of a Fuzzy System

A fuzzy system (FS) is a nonlinear relationship that allows taking numerical data (inputs)

and passing it through a fuzzy domain, then obtaining a scalar output (a clear output). The

general structure of this process is shown in the following figure:

Fuzzification Inference Deffuzzification

Numerical values Fuzzy domain Numerical values

Inputs Outputs

Figure III. 7 Fuzzy processing (overall scheme).

Chapter 3 Fuzzy Set Theory

28

3.3.1 Constitution

 A fuzzy system consists of four essential parts:

• The knowledge base, comprising a database and a rule base,

• The inference system,

• The fuzzification interface.

• The defuzzification interface.

real

inputs

real

outputs

Real World Fuzzy World Real World

knowledge Base

Data Base

Rule Base

Inference

Deffuzzification Fuzzification

Fuzzy

 outputs

Fuzzy

inputs

 Figure III. 8 General diagram of a fuzzy system.

▪ Inference: This allows us to calculate the fuzzy set associated with the command and

is done through fuzzy inference operations and rule aggregation. Fuzzy inference relies

on the use of a fuzzy implication operator for each rule to be analyzed. This operator

quantifies the strength of the link between the premise and the conclusion of the rule.

▪ Fuzzification: consists of transforming real quantities into linguistic variables that are

associated with a database of sets characterizing them. These terms will be used to

describe the rules. Comparative studies have shown that, with the different forms, the

results are similar in closed loops. The number is odd and is distributed around zero.

The numbers frequently used are 3, 5, or 7. The number depends on the desired

precision

Chapter 3 Fuzzy Set Theory

29

▪ The rule base: This is the collection of rules that allows us to link fuzzy input and

output variables. These rules take the form "if then" and can be written textually,

referring to inputs and outputs. They are provided by experts in a direct numerical

manner or through linguistic terms or variables via membership functions, as we will

see. Depending on the desired behavior, a set of rules can be applied. There are several

ways to express inferences, namely through linguistic description, inference matrix, or

inference table. Two inference approaches are commonly used: Mamdani implication

and Larsen implication. In the MIN MAX algorithm, the MIN operator is used for

combining premises and inferring rules, and the MAX operator for aggregating rules.

In the PROD MAX algorithm, the PROD operator is used for combining premises and

implying rules, and the MAX operator is used for aggregating rules; that is, the product

of the membership degrees obtained with each rule is used to define the membership

degree for the output. This is for a fuzzy controller of the SUGENO type. The rules

premises are also linguistic, but the conclusions are developed in polynomial form.

▪ The defuzzifier: The defuzzification step consists of transforming the fuzzy set resulting from

the aggregation of rules, as this processing of inference rules yields a fuzzy value. In the

literature, several strategies exist for performing this operation, such as the mean of maxima,

the center of areas, and the center of maxima. The centroid defuzzification method is the most

widely used in fuzzy control because it intuitively provides the most representative value. It

consists of calculating the centroid of the surface formed by the resulting membership function.

3.5. Application: Fuzzy Logic toolbox

MATLAB’s fuzzy logic toolbox includes an editor for creating fuzzy inference systems

(FIS). This toolbox generates ".fis" files, which represent fuzzy inference systems. The displayed

format is a structure that can be saved and viewed in memory within the workspace.

 These files can be created using command-line tools or, more easily, scripts. Additionally,

Simulink provides Fuzzy Controller objects, allowing these files to be accessed from memory. The

diagram in Figure 3.10 illustrates how fuzzy systems are integrated into the MATLAB

environment.

Chapter 3 Fuzzy Set Theory

30

 Figure III. 9 Integration of Fuzzy Inference Systems in the MATLAB Environment

 Figure III. 10 Fuzzy logic toolbox in the MATLAB environment

This toolkit has three editors:

Chapter 3 Fuzzy Set Theory

31

• FIS Editor: The fuzzy inference system editor, which is the main editor for defining

the number of inputs and outputs, their names, and their type: Mamdani or Sugeno.

• Membership Function Editor: The membership function editor, which allows you

to insert, delete, and configure membership functions. This is also where you can

define the discourse universe.

• Rule Editor: The rule and membership function editor, which allows you to enter all

the rules linking the inputs and outputs of the FIS. You can add, delete, and modify

a rule, change the connector, and/or modify the weight.

• Rule viewer and surface viewer: Graphical interfaces that allow you to visualize

inferences directly on the rule base, as well as control surfaces. In the Rule viewer

window, you can verify the system's operation by applying net inputs (numerical

values to observe the system's operation and obtain the net output).

Chapter 3 Fuzzy Set Theory

32

3.6. Example of fuzzy Application Mamdani type

 The aim of this example is to verify the application of fuzzy logic theory and compare it to

human reasoning based on the rules of form: If condition then conclusion

If the light is red If my speed is high If the fire is nearby So I …………………..

If the light is red If my speed is low If the fire is far away So I …………………..

If the light is orange If my speed is Medium If the fire is far away So I ………………….

If the light is green If my speed is low If the fire is nearby So I …………………….

When stopped at a red light, the following actions

must be taken:

Brake hard,

brake gently,

accelerate,

maintain speed

The table shows the action that corresponds to each

situation

1. Define the inputs and outputs of this system.

2. Define the discourse universes and membership functions of each variable.

3. The standards used for these traffic lights:

a. Duration of the 3 lights: 60 seconds;

b. Maximum speed: 50 km/h;

c. Maximum distance: 20 m;

d. Acceleration speeds: ±50 km/h.

4. Write a MATLAB program (script) that creates this system,

Chapter 3 Fuzzy Set Theory

33

If the light is red If my speed is high If the fire is nearby So I Brake hard

If the light is red If my speed is low If the fire is far away So I maintain speed.

If the light is orange If my speed is Medium If the fire is far away So I brake gently.

If the light is green If my speed is low If the fire is nearby So I accelerate.

Inputs: Traffic Light, Speed, Position

Output: Acceleration

Variable names with the same meaning are acceptable.

For the output, some propose two options: accelerate or brake; this is correct.

Speed is the derivative of distance. Acceleration is the instantaneous rate of change of

speed. Positive acceleration indicates increasing speed, zero acceleration indicates constant

speed, and negative acceleration indicates decreasing speed, which corresponds to braking.

The discourse universes are defined according to the standards used in urban traffic lights,

namely

Traffic lights 60 s [0 60]

Speed less than 50 km/h [0 50]

Distance less than 20 m [0 20]

Acceleration -50 km/h to +50 km/h [-50 50]

For the membership functions, we choose linear trapezoidal and triangular shapes

distributed symmetrically, which best correspond to the system's behavior in reality.

Chapter 3 Fuzzy Set Theory

34

 Figure III. 11 Fuzzy traffic lights inputs

Chapter 3 Fuzzy Set Theory

35

Figure III. 12 Fuzzy traffic lights output

1. a=newfis(‘Traffic ')

2. a=addvar(a,'input','Traffic Light ',[0 60]);

3. a=addmf(a,'input',1,'red','trapmf',[0 0 27 28]);

4. a=addmf(a,'input',1,'orange','trapmf',[27 28 32 33]);

5. a=addmf(a,'input',1,'green','trapmf',[32 33 60 60]);

6. a=addvar(a,'input','speed',[0 50]);

7. a=addmf(a,'input',2,'low','trapmf',[0 0 15 25]);

8. a=addmf(a,'input',2,'medium','trimf',[15 25 35]);

9. a=addmf(a,'input',2,'hign','trapmf',[25 35 60 60]);

10. a=addvar(a,'input','position',[0 20]);

11. a=addmf(a,'input',3,'near','trapmf',[0 0 8 12]);

12. a=addmf(a,'input',3,'far','trapmf',[8 12 20 20]);

13. a=addvar(a,'output','aceleration',[-50 50]);

14. a=addmf(a,'output',1,' Brake hard ','trapmf',[-50 -50 -30 -20]);

15. a=addmf(a,'output',1,'rae gently','trapmf',[-30 -20 -5 0]);

16. a=addmf(a,'output',1,' maintain speed ','trimf',[-5 0 5]);

17. a=addmf(a,'output',1,'accelerate','trapmf',[0 5 50 50]);

Chapter 3 Fuzzy Set Theory

36

3.7. Example of fuzzy Application Takagi-Sugeno type

/We want to control the production quality of Samsung mobile phones according to their

weight P and width L using a fuzzy Takagi-Sugeno type system.

Decision
Weight

Width

Reparation = 0 Sale Sale rejection

Sale =+1 Sale Sale rejection

rejection = -1 Reparation Reparation rejection

1. Complete the table.

2. Propose a universe of discourse, linguistic variables, and membership functions for the

system inputs.

3. Write a script (MATLAB file) that generates this fuzzy controller.

Weight: 100g, 150g, 250g

Width: 2cm, 4cm, 6cm

For weight: [0, 300] Light, Medium, Heavy

For width: [0, 10] Small, Medium, Large

Discourse universes are defined according to the values indicated in the table.

For membership functions, the linear, trapezoidal, and triangular shapes, distributed symmetrically and

corresponding best to the system in reality, are chosen.

Chapter 3 Fuzzy Set Theory

37

Figure III. 13 Fuzzy mobile decision inputs

Chapter 3 Fuzzy Set Theory

38

1. a=newfis('mobile','sugeno')

2. a=addvar(a,'input',weight,[0 300]);

3. a=addmf(a,'input',1,'light','trapmf',[0 0 170 190]);

4. a=addmf(a,'input',1,'Medium','trapmf',[170 190 210 230]);

5. a=addmf(a,'input',1,'Heavy','trapmf',[230 240 300 300]);

6. a=addvar(a,'input','widthr',[0 10]);

7. a=addmf(a,'input',2,'smal','trapmf',[0 0 2 3]);

8. a=addmf(a,'input',2,'medium','trapmf',[2 3 5 6]);

9. a=addmf(a,'input',2,'Large','trapmf',[5 6 10 10]);

10. a=addvar(a,'output','decision',[-50 50]);

11. a=addmf(a,'output',1,'reparation','constant',[0]);

12. a=addmf(a,'output',1,'sale','constant',[1]);

13. a=addmf(a,'output',1,'rejectiont','constant',[-1]);

14. ruleList=[...

15. 1 1 2 1 1

16. 1 2 2 1 1

17. 1 3 1 1 1

18. 2 1 2 1 1

19. 2 2 2 1 1

20. 2 3 1 1 1

21. 3 2 1 1 1

22. 3 3 3 1 1]

23. a=addrule(a,ruleList);;

Chapter 3 Fuzzy Set Theory

39

3.8. References

[1] . Zadeh, L. A.Fuzzy Sets, Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[2] . Zadeh, L. A.Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and

[3] . Zadeh, L. A., Kacprzyk, J. (Eds.) Computing with Words in Information/Intelligent

Systems: Foundations, Methodologies, and Applications, Springer, 1999.

[4] . Klir, G. J. & Yuan, B.Fuzzy Sets and Fuzzy Logic: Theory and Applications,

Prentice Hall, 1995.

[5] . Dubois, D. & Prade, H.Fuzzy Sets and Systems: Theory and Applications,

Academic Press, 1980.

[6] . MathWorks – Fuzzy Logic Toolbox Documentation.

https://www.mathworks.com/help/fuzzy/ (consulté 2025)

[7] . Ross, Timothy J.Fuzzy Logic with Engineering Applications, 4th Edition, Wiley, 2016 (et

éditions ultérieures

Chapter 4 Fuzzy Control

40

4.1. Introduction

In the field of research, new techniques continually emerge, either to complement existing

methods or to completely replace them. Fuzzy logic initially appeared in a relatively simple

form. Today, many researchers are turning to this powerful approach because it enables the

integration of various types of qualitative knowledge. This provides significant advantages,

particularly due to the fact that fuzzy logic is:

Close to human language, allowing intuitive knowledge representation,

Easy to understand thanks to its mathematical simplicity,

Flexible and adaptable to different problem domains,

Capable of handling imprecise, vague, or uncertain data,

It also enables the formalization and simulation of human expertise,

For control engineers, fuzzy logic is widely known under the name fuzzy control, where it

is used to model human reasoning and decision-making processes in control systems.

4.2. Fuzzy modeling

 The mathematical model that describes the interaction between inputs, outputs, and

disturbances acting on a process enables the synthesis of appropriate control structures. Handling

information that is both imprecise and expressed in natural language becomes more

straightforward. Such manipulation of linguistic data is efficiently achieved using fuzzy set

theory, which facilitates the formulation of rules to describe the behavior of the process.

The simplest approach consists of extracting knowledge from a human operator, where

experts directly express control rules based on their experience. This knowledge is commonly

represented in the form of rules such as:

“If <Premise (antecedent)> then <Conclusion (consequence)>.”

One of the most significant contributions of fuzzy logic lies in its ability to represent

imprecision when both premises and conclusions are expressed using natural language terms. In

fuzzy logic, a simple rule can be formally expressed in this manner.

Two main classes of fuzzy models can be distinguished:

Fuzzy models with functional conclusions, known as Takagi–Sugeno models,

Chapter 4 Fuzzy Control

41

Fuzzy models with symbolic (linguistic) conclusions, known as linguistic models or

Mamdani models.

Both model types are based on a collection of if–then rules, in which the premises are

expressed symbolically, allowing an intuitive and flexible representation of complex system

behavior.

4.3. Fuzzy Controller

• A fuzzy controller is essentially a fuzzy system designed to control a process. Its general structure

is typically represented by the block diagram shown in Figure (4.1).

• A fuzzy controller generally operates through the following steps:

• Selection of the fuzzification strategy,

• Construction of the rule base,

• Selection of the inference method,

• Selection of the defuzzification strategy.

 Figure IV. 1 General diagram of a fuzzy controller.

Command Action

(not fuzzy) Process

Knowledge base

Inference

Defuzzification Fuzzification

Fuzzy controller

Instructions

Chapter 4 Fuzzy Control

42

4.4. Conventional fuzzy controller example

 We will present a speed controller within a vector control of the asynchronous machine.

The basic diagram of the controller is represented by figure (4.2), it is based on the structure of

a classic PI controller

 Figure IV. 2 Block diagram of a fuzzy PI speed controller

 As in classical control tuning, the error between the reference speed and the measured speed

is used as the first input. The variation of the error is then introduced as a second input in order to

determine the direction of change.

 Normalization gains are applied to scale the input and output variables, allowing the fuzzy

controller to operate correctly within its effective range.

 The fuzzy sets of the input variables (En, dEn) and the output variable (dUn) are defined by

triangular, piecewise-linear membership functions. These functions typically consist of 7, 5, or 3

fuzzy sets (Figure 4.3). The different fuzzy sets are characterized by standard linguistic labels.:

• Negative Large (NL)

• Negative Medium (NM)

• Negative Small (NS)

• Approximately Zero (AZ)

• Positive Small (PS)

• Positive Medium (PM)Positive Large (PL)

In the same manner as in classical control tuning, the error between the reference speed

and the measured speed is used as the first input. The variation of this error is then added in order

to determine the direction of change.

Fuzzy

controller

Chapter 4 Fuzzy Control

43

Figure IV. 3 Linear membership function or 3 5 and 7 sets

The rules of a fuzzy controller rely on the expertise and experience of human operators.

In the context of regulation, error and error variation are used, translated into fuzzy variables.

Subsequently, it becomes possible to determine the rules in the temporal domain based on temporal

analysis to control it according to the objectives set in a closed loop.

Figure IV. 4 Rules following temporal analysis.

From this, we can define the following rules:

IF E is PG AND dE is EZ THEN dU is PG (start-up)

Chapter 4 Fuzzy Control

44

IF En is PG AND dEn is NP THEN dUn is PM (increase in control to reach equilibrium)

IF E is PM AND dE is NP THEN dUn is PP (very small increase in control to avoid

overshoot)

IF En is PP AND dEn is NP THEN dUn is EZ (convergence towards correct equilibrium)

IF En is EZ AND dE is NP THEN dU is NP (braking of the process)

IF E is NM AND dE is EZ THEN dU is NM (recall of the process towards equilibrium)

IF E is NP AND dE is PP THEN dU is EZ (braking and reversal of the control variation)

IF E is NP AND dE is EZ THEN dU,, is NP (convergence towards the correct equilibrium)

IF E,, is EZ AND dE,, EZ THEN dU,, is EZ (equilibrium)..

Figure IV. 5 Rule tables according to the inputs and output use membership functions

Chapter 4 Fuzzy Control

45

4.5. Adaptive fuzzy controller example

The proposed adaptive fuzzy controller (AFC) is based on Sugeno method thanks to its

computational efficiency and it is well suited for linear technique, such as PI conventional

controllers. The main difference between Mamdani and Sugeno is that the Sugeno output

membership functions are either linear or constant. Inputs are the error between the actual and the

reference speed, its first derivative and the Vsat variable due to the saturation of isq :

{

𝐸𝑟(𝑡) = 𝛺∗(𝑡) − 𝛺(𝑡)
𝑑𝐸𝑟(𝑡) = 𝐸𝑟(𝑡) − 𝐸𝑟(𝑡 − 1)

𝑉𝑠𝑎𝑡 = 𝐼𝑠𝑞𝑚𝑎𝑥

{ (4.1)

Output is the weight to be used in order to adapt the PI controller by adjusting in real time

proportional and integral action using the center of gravity method as follows:

𝑊 =
∑ 𝑐𝑖.𝜇𝑖

𝑛
𝑖=1

∑ 𝜇𝑖
𝑛
𝑖=1

 (4 2)

Scale factors gain defined as GEr, GdEr, Gsat, GW_Integ and GW_Prop are used to make

the AFC sensitive and near to the normalized defined input and output range values. Input variables

fuzzy set are Negative: N. Positive: P. Zero: Z. The values range of output variables are: Zero: Z.

Positive normal: PN. Positive Big: PB.

The following heuristic considerations have been noted from the observation of the

process behavior: Integral action: Overshoot is mainly caused by integral term. Significant

reduction causes system response to exceed the set point, Proportional action: Increasing

proportional term reduces the leading time but increases the oscillations, Saturation: A variable

depending on isq current is introduced for limitations due to the saturation. The use of triangular

membership functions for the inputs and singleton in output is advantageous for time

calculation

Chapter 4 Fuzzy Control

46

Figure IV. 6 . Input membership functions of the AFC

Figure IV. 7 Output membership functions of the AFC

0 1 5

zero positivenegative

110-1 -1

1

0

D
eg

re
e

o
f

m
em

b
er

sh
ip

0.5

sqSaturation I

Error Change

zero positivenegative

10.20-1 -0.2

1

0

D
eg

re
e

o
f

m
em

b
er

sh
ip

0.5

zero positivenegative

10.20-1 -0.2

1

0

D
eg

re
e

o
f

m
em

b
er

sh
ip

0.5

Error

Chapter 4 Fuzzy Control

47

Table 4. 1 Rule table:

Er dEr Vsat PI

N / N Z

N / P PG

P / N PG

P / P Z

Z / / PN

/ / Z PN

/ Z / PN

N N Z PG

P P Z PG

Chapter 4 Fuzzy Control

48

• Implement the Simulink model with a fuzzy controller based on a given system.

• Respect the system parameters and verify the resulting waveforms.

• Verify the operation after varying the normalization gains.

• Compare the results obtained with those of a conventional PI controller.

Figure IV. 8 Global system Simulink Bloc diagram

Figure IV. 9 Mcc Simulink Bloc Diagram

Chapter 4 Fuzzy Control

49

Figure IV. 10 Internal fuzzy controller Bloc Diagram

Chapter 4 Fuzzy Control

50

Figure IV. 11 System output characteristics (to check your model)

0 1 2 3 4 5 6 7

x 10
4

-200

-150

-100

-50

0

50

100

150

200

0 1 2 3 4 5 6 7

x 10
4

-120

-100

-80

-60

-40

-20

0

20

40

60

Chapter 4 Fuzzy Control

51

%System parameters

vn=220; ian=0.55;ien=0.1;

ven=220; ra=43.07; Nn=2000;

pa=0.1*1e+3; la=0.7689; ta=0.0178;

ka=0.9788; Csec=0.017; f=0.00042;

J=9.32*1e-4; tmec=2.219; kconv=47.67;

%PID Controller

kmw=0.00955; kp =2.5576 ki =49.6522 kd =0.0605

Chapter 4 Fuzzy Control

52

4.6. Advantages and disadvantages of fuzzy logic control

Advantages of Fuzzy Control

Can handle imprecise, vague, or uncertain information.

Does not require an exact mathematical model of the system.

Closer to human reasoning and decision-making, making it intuitive to design.

Flexible and adaptable to different systems and operating conditions.

Can integrate qualitative knowledge from human experts.

Disadvantages of Fuzzy Control

Design of the rule base can become complex for systems with many variables.

Performance depends on the quality and completeness of the rules.

Lack of standard methodology for tuning membership functions and rules.

Computationally more intensive than simple classical controllers for large-scale systems.

May be difficult to guarantee stability and robustness formally

Chapter 4 Fuzzy Control

53

4.7. References

[1] . Mamdani, E. H. & Assilian, S.An Experiment in Linguistic Synthesis with a Fuzzy

Logic Controller, International Journal of Man-Machine Studies, vol. 7, pp. 1–13,

1975.

[2] . Zadeh, L. A. Outline of a New Approach to the Analysis of Complex Systems and

Decision Processes, IEEE Transactions on Systems, Man, and Cybernetics, vol. 3,

no. 1, pp. 28–44, 1973.

[3] . Ross, T. J. Fuzzy Logic with Engineering Applications, 4th Edition, Wiley, 2016.

[4] . Driankov, D., Hellendoorn, H., & Reinfrank, M. An Introduction to Fuzzy Control,

2nd Edition, Springer, 1996. ➤ Manuel classique dédié exclusivement à la

commande floue.

[5] . Passino, K. M. & Yurkovich, S. Fuzzy Control, Addison-Wesley, 1998.

[6] . Tanaka, K. & Wang, H. O. Fuzzy Control Systems Design and Analysis: A Linear

Matrix Inequality Approach, Wiley, 2001.

[7] . Lee, C. C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Parts I & II,

[8] . IEEE Transactions on Systems, Man, and Cybernetics, 1990.

[9] . Commande Floue Adaptative et Neuro-FloueZadeh, L. A.Fuzzy Sets, Information

and Control, vol. 8, no. 3, pp. 338–353, 1965.

Chapter 5 Artificial Neural Networks

54

5 1. Introduction

Artificial neural networks belong to the second major paradigm of artificial intelligence,

commonly referred to as the numerical or connectionist approach. The primary objective of this

approach is to minimize an error criterion between the output of a model and a reference signal,

thereby producing a model that closely reproduces the behavior of the system under study. This

optimization-based framework contrasts with symbolic AI, which relies on explicit rules and

logical reasoning.

Neural networks are fundamentally based on parameterized nonlinear functions, whose

parameters are adjusted through learning algorithms. Due to their strong approximation

capabilities, neural networks have been successfully applied across a wide range of domains,

including chemistry, biology, finance, medicine, signal processing, and control engineering.

In the fields of system identification and control, neural networks play a central role. They

enable the construction, through learning, of a broad class of models and controllers capable of

representing highly nonlinear and uncertain systems. Neural networks can be used both to identify

unknown system dynamics from input–output data and to design control laws that adapt to changes

in system behavior.

A neural network can be trained to perform a specific task—such as pattern recognition,

function approximation, classification, or control—by adjusting the connection weights using

learning algorithms such as gradient descent and backpropagation. During training, the network

iteratively updates its parameters to minimize a predefined cost function, typically representing

the discrepancy between the network output and the desired output. This learning capability allows

neural networks to generalize from data and to adapt to new operating conditions.

In control engineering, neural networks are employed to design intelligent and adaptive

controllers. They may be used as:

Direct controllers,

Inverse models,

Adaptive or self-tuning controllers,

Components of hybrid control structures (e.g. neural–PID or neural–fuzzy controllers).

Chapter 5 Artificial Neural Networks

55

Through learning, neural networks can construct a very broad class of models and control

laws, enabling real-time adaptation to changes in system parameters or operating conditions

5 2. . Historical of Artificial Neural Networks

• 1890 – William James

In 1890, the renowned American psychologist William James introduced the concept of

associative memory in his seminal work on psychology. He proposed that mental

associations are formed through repeated co-activation of ideas, a principle that would

later serve as the conceptual foundation for Hebbian learning. James’s insights highlighted

the importance of experience-based learning in biological cognition.

• 1943 – McCulloch and Pitts

In 1943, Warren McCulloch and Walter Pitts proposed one of the first mathematical

models of a biological neuron. Their work introduced a network of formal neurons capable

of performing basic logical operations such as AND, OR, and NOT. This model

demonstrated that networks of simple processing units could implement logical reasoning,

thereby establishing a theoretical link between neuroscience and computation.

• 1949 – Donald Hebb

In 1949, the American physiologist Donald O. Hebb explained learning and conditioning

in animals through the adaptive properties of neurons. In his book The Organization of

Behavior, Hebb formulated a learning principle stating that the strength of a synaptic

connection increases when the connected neurons are activated simultaneously. This

principle, now known as the Hebbian learning rule, became a cornerstone of neural

learning theory.

• 1957 – Frank Rosenblatt

In 1957, Frank Rosenblatt developed the Perceptron model, one of the earliest learning

algorithms for artificial neural networks. He also constructed the first neurocomputer

based on this model. Inspired by the human visual system, the perceptron was designed

for pattern recognition tasks. However, despite its innovative nature, the perceptron

remained largely theoretical and suffered from significant limitations, particularly its

inability to solve non-linearly separable problems.

6

Chapter 5 Artificial Neural Networks

56

• 1960 – Bernard Widrow

In 1960, Bernard Widrow, a specialist in control engineering, introduced the ADALINE

(Adaptive Linear Element) model. Structurally similar to the perceptron, ADALINE

differed in its learning mechanism, which was based on minimising a mean square error

criterion. This model played a significant role in adaptive signal processing and laid the

groundwork for modern adaptive learning algorithms.

• 1982 – John J. Hopfield

In 1982, the physicist John J. Hopfield revitalised interest in artificial neural networks by

presenting a theoretical framework describing their operation and computational

capabilities. Hopfield networks demonstrated how neural systems could function as

associative memories and optimisation mechanisms, providing strong theoretical

justification for neural computation.

• 1983 – Boltzmann Machine

In 1983, the Boltzmann Machine was introduced as the first neural network model capable

of overcoming many of the limitations associated with the perceptron. By incorporating

stochastic elements and energy-based learning, it enabled more powerful representations.

However, its practical application was limited by extremely slow convergence and

prohibitive computational costs.

1985 – Backpropagation Algorithm

In 1985, the backpropagation of gradient algorithm emerged as a major breakthrough in

neural network training. This learning algorithm enabled efficient training of multilayer

neural networks by propagating error gradients backward through the network.

Backpropagation remains one of the most extensively studied and widely applied learning

algorithms, forming the foundation of modern deep learning systems.

Chapter 5 Artificial Neural Networks

57

5 3. . Biological Neuron

The neuron is the fundamental cell of nervous tissue and constitutes the basic functional

unit of the nervous system. It is a specialized cell designed to receive, process, and transmit

information in the form of electrical and chemical signals.

Figure V. 1 Connections of biological neural networks

A biological neuron is composed of a cell body, also known as the soma, which contains

the nucleus and most of the cellular organelles. Extending from the cell body are multiple branched

structures called dendrites, whose primary function is to receive information from other neurons

or external stimuli. These incoming signals are conveyed from the dendrites towards the cell body,

where they are integrated and processed.

The transmission of information from the neuron to other neurons is ensured by a long,

slender projection known as the axon. The axon conducts electrical impulses, called action

potentials, away from the cell body towards other neurons, muscles, or glands. In many neurons,

the axon is covered by a myelin sheath, which increases the speed and efficiency of signal

transmission.

Between neurons, there exists a very small intercellular gap, typically measuring a few

tens of angstroms (on the order of 10−9 meters), known as the synapse. The synapse plays a critical

role in neural communication, as it is the site where electrical signals are converted into chemical

signals and transmitted to the next neuron via neurotransmitters.

Chapter 5 Artificial Neural Networks

58

Figure V. 2 Simplified diagram of a biological neuron

Each component of the neuron performs a specific function, and the interaction between

these components enables complex information processing in biological neural systems. The

roles of the different parts of a biological neuron are summarized in the following table.

 Table 5. 1 Functioning of the biological neuron.

Part Function

Cell body Nerve impulse reception

Processing

Activation

Axon Transmission

Synapse Electrical-chemical transformation

Transmission of the signal from the axon

Reception of the electrical-chemical signal

Dendrites Signal transmission from other cell bodies.

5 4. . Formal (Artificial) Neuron

The formal neuron, also referred to as an artificial neuron, is a mathematical abstraction

of the biological neuron. Its purpose is to model, in a simplified yet effective manner, the essential

mechanisms of information processing observed in biological neural systems.

The earliest and most influential formalization of the neuron emerged from the seminal

work of Warren McCulloch and Walter Pitts in 1943. Their model provided the first theoretical

8

Chapter 5 Artificial Neural Networks

59

framework for representing neural activity using logical and mathematical principles. By

idealizing neuronal behavior, they demonstrated that networks of simple artificial neurons could

perform basic logical operations and, in principle, support complex computations.

Figure V.3 illustrates a basic model of a formal neuron. In this model, the neuron receives

multiple input signals, each associated with a synaptic weight that represents the strength of the

corresponding connection. These weighted inputs are combined through a summation process and

compared to a threshold or bias. The result is then processed by an activation function, which

determines the neuron’s output.

Despite its simplicity, the formal neuron constitutes the fundamental building block of

artificial neural networks. By interconnecting large numbers of such neurons, it becomes possible

to construct powerful computational models capable of learning, generalization, and nonlinear

function approximation

Figure V. 3 Basic model of a formal neuron

▪ The inputs of the formal neuron xi, i=1,2,...,n ;

▪ The weighting parameters, also called weights wij,

▪ The activation or thresholding function (non-linear, sigmoid shape, etc.),

▪ - The output S of the formal neuron.

▪ The output uk of the formal neuron is given by the following relation:

▪ The activation function will give the output value j of the neuron. This is the value that

will be transmitted to the downstream neurons.

Chapter 5 Artificial Neural Networks

60

5 5. . Activation Function

There are many possible forms for the activation function. This is why an infinite number

of possible values can be obtained.

Table 5. 2 Activation Functions

Linear functionai = .ti

Threshold function

ai = 1 if ti  i

 = 0 else

Sigmoid function

ai =
()itexp1

1
−+

Hyperbolic tangent functionai

=
()
()i

i

texp1

texp1

−+

−−

 Gaussian function

8

Chapter 5 Artificial Neural Networks

61

5 6. Neural Network Architecture

Artificial neural networks are composed of simple processing elements working in

parallel. Their structure and operation are strongly inspired by the biological nervous system,

particularly by the way biological neurons transmit and process information through synaptic

connections. The overall behavior of a neural network is primarily determined by the pattern of

interconnections between neurons and the numerical values of the associated synaptic weights

Artificial neural networks are strongly inspired by the biological nervous system,

particularly by the structure and functioning of biological neurons and synapses. In biological

systems, neurons communicate through electrical impulses transmitted across synapses, whose

strengths change as a result of learning and experience.

Similarly, in artificial neural networks, the synaptic weights represent the strength of the

connections between neurons. The global behavior of the network is not determined by individual

neurons but by the collective interaction of many simple processing units operating in parallel

Formally, a neural network can be described as a system of interconnected nonlinear

operators that receives external signals through its inputs and generates output signals

accordingly. These operators, known as artificial neurons, are organized into layers and operate

collectively to process information.

Open-Loop Networks

The output signal is obtained directly after the input signal is applied. They are

unidirectional without feedback (feedforward) and have the structure of a combinational

system.

Figure V. 4 Feedforward network

Chapter 5 Artificial Neural Networks

62

Closed-loop networks

With feedback (feedback network or recurrent network) They have a structure

similar to that of sequential systems

Figure V. 5 Feedback network

5 7. Learning

Learning and adaptation are the two essential characteristics of neural networks. The role

of learning is to define the weight of each connection.

After this step, the network must make the correct associations for the input vectors it has

not learned. This gives it the ability to recognize similar and even degraded forms of prototypes;

this is the recognition phase.

Learning techniques are classified into three categories:

Supervised learning: A supervisor, or teacher, provides the network with input-

output pairs using a learning method. Learning is complete when all the inputs and outputs are

recognized by the network.

• Unsupervised learning: This learning method involves automatically detecting

without the help of a supervisor—regularities in the presented examples and modifying the

connection weights so that cases with the same regularity characteristics produce the same

output.

• Self-supervised (reinforcement) learning: The neural network evaluates its own

performance. An object is presented to the neural network's input, and the network has been

informed of the class to which this object belongs.

Chapter 5 Artificial Neural Networks

63

5 8. Neural Networks in System Identification and Control

In system identification, neural networks are used to approximate unknown system

dynamics based on observed input–output data. Given sufficient data and an appropriate network

architecture, neural networks can accurately model nonlinear systems that are difficult or

impossible to describe using classical analytical methods. Generally, neural network control

involves an identification step and a control step. Identification uses learning to develop a neural

model. The simplest models are based on learning from an existing conventional controller, others

perform offline learning of the inverse model of the process or a reference model, and finally,

others operate entirely online.

A neural network can be trained to perform a specific task—such as pattern recognition,

classification, regression, prediction, or control—by adjusting its weights through a learning

process. The most common training approach is supervised learning, where the network is

provided with input–output pairs.

Direct Identification

The identifier neural network (INN) is used in parallel with a black-box process. The

process output, y, is compared with the output of the neural network, y, and then the error between

the actual measured value and the value estimated by the INN is used for correction

Figure V. 6 Diagram of direct process identification using a neural network

Inverse Identification

In this method, the input of the process is compared with the output of the neural identifier

(INN). The output of the process is then injected as input to the neural network. Following this

offline l/earning of the inverse model, the INN can be configured to provide direct control.

Chapter 5 Artificial Neural Networks

64

Figure V. 7 Inverse process identification scheme using a neural network.

Learning a Conventional Controller

A neural network can reproduce the behavior of an existing conventional controller (PI,

PID, etc.). The RST-type control method poses serious problems in numerical integration and can

therefore be used similarly.

The principle of direct identification of a conventional controller is presented by the

following diagram.

Figure V. 8 Basic learning scheme of a conventional controller

Inverse control with online learning

The inverse control scheme with a neural network control (NNC) is represented by the

following figure

Chapter 5 Artificial Neural Networks

65

Figure V. 9 Reverse control scheme with a neural network control.

5 9. Advantages and Limitations

Advantages

• Strong capability for nonlinear approximation,

• Adaptation and learning from data,

• Robustness to noise and modelling uncertainties,

• Applicability to a wide range of problems.

Limitations

• Need for large data sets,

• Computational complexity,

• Lack of transparency (black-box behavior),

• Difficulty in guaranteeing stability in control applications.

5 10. Conclusion

Artificial neural networks constitute a cornerstone of modern numerical artificial

intelligence. Their ability to learn from data, approximate complex nonlinear relationships, and

adapt to changing environments makes them particularly well suited for system identification

and intelligent control. Inspired by biological neural systems yet grounded in mathematical

optimization, neural networks continue to play a central role in the evolution of artificial

intelligence and intelligent engineering systems..

Chapter 5 Artificial Neural Networks

66

▪ Given that the weights of the two-input perceptron are:

 w1 = 0.5, w2 = 0.2, and that the threshold value is S = 0.0,

▪ Determine its behavior. Knowing that the behaviors of the logical AND, logical OR, and

exclusive OR gates are recalled, we can manipulate the value of S.

e1 e2 AND OR XOR

1 1 1 1 1

1 -1 -1 1 -1

-1 1 -1 1 -1

-1 -1 -1 -1 1

For each combination, we determine the interval that must yield the same values shown in the

column corresponding to the logical AND operation, and then the intersection so that all cases are verified

simultaneously.

e1 e2 e1w1+e2w2 X AND Interval of S

1 1 1*0.5+1*0.2 0.7 1]-∞ 0.7[

1 -1 1*0.5-1*0.2 0.3 -1 [0.3 +∞[

-1 1 -1*0.5+1*0.2 -0.3 -1 [-0.3 +∞[

-1 -1 -1*0.5-1*0.2 -0.7 -1 [-0.7 +∞[

Intersection of intervals [0.3 0.7[

Within this interval of S, it behaves like a logical AND

Chapter 5 Artificial Neural Networks

67

e1 e2 e1w1+e2w2 X OR Interval of S

1 1 1*0.5+1*0.2 0.7 1]-∞ 0.7[

1 -1 1*0.5-1*0.2 0.3 1]-∞ 0.3[

-1 1 -1*0.5+1*0.2 -0.3 1]-∞ -0.3[

-1 -1 -1*0.5-1*0.2 -0.7 -1 [-0.7 +∞[

Intersection of intervals [-0.7 -0.3[

Within this interval of S, it behaves like a logical OR

e1 e2 e1w1+e2w2 X XOR Interval of S

1 1 1*0.5+1*0.2 0.7 1]-∞ 0.7[

1 -1 1*0.5-1*0.2 0.3 -1 [0.3 +∞[

-1 1 -1*0.5+1*0.2 -0.3 -1 [-0.3 +∞[

-1 -1 -1*0.5-1*0.2 -0.7 1]-∞ -0.7[

Intersection of intervals Empty set ф

For these weight values, no value of S satisfies this behavior

Chapter 5 Artificial Neural Networks

68

To write a MATLAB program that approximates the function sin(x) with -2 ≤ x ≤ 2, we

use the following conditions:

n = 10; % increasing difficulty function

k = 10; % limits the number of input data points

P = -2:(.4/k):2; T = sin(n*P);

• Explain the operation of the following instructions:

▪ net = newff(minmax(P), [20, 1], {'logsig', 'purelin'}, 'trainlm');

▪ net.trainParam.epochs = 100

▪ net.trainParam.goal = 1e-5

▪ [net, tr] = train(net, P, T);

• Write the command lines that will create a neural network object.

To verify the generalization capability, we will use a step size of 0.01.

• Write the commands that will simulate and display the results of the training.

Chapter 5 Artificial Neural Networks

69

Figure V. 10 Artificial neural networks homework correction

Chapter 5 Artificial Neural Networks

70

5 11. References

[1] . Haykin, Neural Networks and Learning Machines, 3rd Edition, Pearson, 2009.

[2] . Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[3] . Rumelhart, D. E., McClelland, J. L.Parallel Distributed Processing, MIT Press, 1986.

[4] . Hertz, J., Krogh, A., & Palmer, R. G. Introduction to the Theory of Neural

Computation, Addison-Wesley, 1991.

[5] . Goodfellow, I., Bengio, Y., & Courville, A. Deep Learning, MIT Press, 2016.

[6] . LeCun, Y., Bengio, Y., & Hinton, G.Deep Learning, Nature, vol. 521, pp. 436–444,

2015.

[7] . Schmid Huber, Deep Learning in Neural Networks: An Overview, Neural Networks,

2015.

[8] . McCulloch, W. S. & Pitts, W.A Logical Calculus of the Ideas Immanent in Nervous

Activity, Bulletin of Mathematical Biophysics, 1943.

[9] . Hebb, D. O.The Organization of Behavior, Wiley, 1949. Introduction de la règle

d’apprentissage de Hebb.

[10] . Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain, Psychological Review, 1958. Modèle fondateur du

perceptron.

[11] . Widrow, B. & Hoff, M.Adaptive Switching Circuits, IRE WESCON Convention

Record, 1960 Introduction de l’ADALINE et de la règle LMS.

[12] . Narendra, K. S. & Parthasarathy, K.Identification and Control of Dynamical Systems

Using Neural Networks, IEEE Transactions on Neural Networks, 1990.

.

Chapter 6 Neuro-fuzzy systems

71

6 1. Introduction

Neuro-fuzzy systems provide a powerful framework for combining the learning capability

of neural networks with the reasoning and interpretability of fuzzy logic. Depending on the degree

of integration between the two paradigms, neuro-fuzzy architectures can be classified as parallel,

cooperative, or hybrid, each offering distinct advantages for modelling, control, and decision-

making under uncertainty.

6 2. Neuro-Fuzzy Systems

Neuro-fuzzy networks represent a class of intelligent systems in which fuzzy logic

techniques are employed to enhance the learning process of artificial neural networks. In this

approach, fuzzy concepts such as linguistic variables, fuzzy rules, and membership functions are

integrated into neural learning mechanisms in order to improve interpretability, robustness, and

adaptability when dealing with uncertainty and imprecise data.

6 3. Parallel Neural and Fuzzy Systems

In simultaneous neural–fuzzy systems, the neural network and the fuzzy system operate in

parallel on the same task, without directly influencing each other’s internal structures or

parameters. Typically, the neural network is used either to pre-process the input data before it is

fed into the fuzzy system or to post-process the outputs generated by the fuzzy inference

mechanism. This architecture allows each subsystem to exploit its respective strengths while

maintaining functional independence.

6 4. Cooperative Neuro-Fuzzy Models

In cooperative neuro-fuzzy models, the neural network is employed primarily as a learning

and optimization tool for the fuzzy system. During the training phase, the neural network adjusts

the parameters of the fuzzy system, including fuzzy rules, membership functions, and inference

parameters. Once the learning process is completed, the fuzzy system operates independently,

without further involvement of the neural network. This approach combines the learning capability

of neural networks with the interpretability of fuzzy rule-based systems.

6 5. Hybrid Neuro-Fuzzy Models

Hybrid neuro-fuzzy models represent the most advanced and widely used neuro-fuzzy

architectures in modern applications. In these systems, the neural network and the fuzzy system

are tightly integrated within a unified and homogeneous architecture. Learning and fuzzy inference

Chapter 6 Neuro-fuzzy systems

72

are performed simultaneously, enabling automatic tuning of membership functions and rule

parameters through neural learning algorithms. Well-known examples of this approach include

Adaptive Neuro-Fuzzy Inference Systems (ANFIS). Hybrid models offer high modelling

accuracy, adaptive behavior, and improved transparency compared to purely neural approaches.

6 6. ANFIS (Adaptive Network Fuzzy Inference System)

ANFIS represents a powerful hybrid framework that integrates fuzzy inference and neural

learning into a unified architecture. By combining interpretability with adaptive learning, ANFIS

provides an effective solution for modelling and controlling complex nonlinear systems under

uncertainty.

Principle of Operation: The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid

intelligent system that combines the human-like reasoning capability of fuzzy logic with the

learning and adaptation abilities of artificial neural networks. ANFIS was introduced by Jang

(1993) as a systematic framework for constructing fuzzy inference systems whose parameters are

automatically tuned using data-driven learning techniques.

ANFIS is typically based on a Sugeno-type fuzzy inference system, which is well suited

for optimization and adaptive learning due to its mathematical structure.

ANFIS is organized as a multilayer feedforward network, where each layer performs a

specific function in the fuzzy inference process. The architecture usually consists of five layers,

each corresponding to a stage of fuzzy reasoning.

• Layer 1: Fuzzification Layer: In the first layer, the crisp input variables are

transformed into fuzzy values using membership functions. Each neuron in this

layer corresponds to a linguistic term (e.g. Low, Medium, High). Typical

membership functions include Gaussian, triangular, and bell-shaped functions. The

parameters of these membership functions are called premise parameters and

determine the shape and position of the fuzzy sets.

• Layer 2: Rule Layer (Firing Strength Computation). Each node in the second layer

represents a fuzzy rule. The output of each node is the firing strength of a rule,

obtained by combining the membership degrees of the inputs using a fuzzy AND

operator (usually multiplication). This layer determines the degree to which each

fuzzy rule is activated.

Chapter 6 Neuro-fuzzy systems

73

• Layer 3: Normalization Layer: In this layer, the firing strengths of all rules are

normalized to ensure that their relative influence is properly weighted.

Normalization ensures numerical stability and facilitates parameter optimization.

• Layer 4: Consequent Layer: Each node in this layer computes the contribution of

each rule to the output. In a Sugeno-type system, the consequent of each rule is a

linear function of the inputs.

• Layer 5: Output Layer (Defuzzification). The final layer computes the overall

system output by summing the outputs of all rules:

In Sugeno-type ANFIS, this summation directly provides a crisp output, eliminating the

need for a separate defuzzification process. ANFIS employs a hybrid learning algorithm that

combines: Least Squares Estimation (LSE) to optimize the consequent parameters, Gradient

Descent to update the premise parameters. This two-step learning approach improves convergence

speed and reduces computational complexity compared to purely gradient-based methods.

6 7. Advantages of ANFIS

• Automatic tuning of membership functions and fuzzy rules,

• High modelling accuracy for nonlinear systems,

• Interpretable rule-based structure,

• Strong capability for system identification and adaptive control.

• Typical Applications of ANFIS

• ANFIS has been successfully applied in:

• Nonlinear system identification,

• Adaptive and intelligent control,

• Signal processing,

• Fault diagnosis,

• Forecasting and decision-making systems.

Chapter 6 Neuro-fuzzy systems

74

6 8. ANFIS (Adaptive Network Fuzzy Inference System) in Matlab

The Anfisedit command displays the following window:

Figure VI. 1 ANFIS Window in MATLAB environment

1.File: Open or Save

2. Editing

3. Display via GUI

4. Graphics Area

5. Input/Output Status (Numbers)

6. Allows visualization of the

graphical structure of the

inputs/outputs.

7. Data Testing

8. Training the FIS after selecting the optimization

method and error tolerance. It generates the error in the

graphics area.

9. Import or create an FIS Model

10. Clear Data

11. Import Data

12. All data appears in this area.

Chapter 6 Neuro-fuzzy systems

75

Application 1

• The data vectors x = (0, 0, 1, 10) and y = sin(2*x)/exp(x/5) are used for training the

system. Save this file as nfexemple1.fis

• Open this file with the fuzzy inference system editor.

• Depending on the number and shape of the membership functions and the approximation

method, choose the one that converges best

Application 2

Complete this table to obtain the following graphical structure

Program Explanation

x = (0:0.1:10)';

y = sin(2*x)./exp(x/5);

trnData = [x y];

numMFs = 5;

mfType = 'gbellmf';

epoch_n = 20;

in_fis =genfis1(trnData,numMFs,mfType);

out_fis = anfis(trnData,in_fis,20);

plot(x,y,x,evalfis(x,out_fis));

legend('Training Data','ANFIS Output')

Chapter 6 Neuro-fuzzy systems

76

Figure VI. 2 Training Data and generating fis with grid partition

Figure VI. 3 Training data and Neural network structure.

Chapter 6 Neuro-fuzzy systems

77

Figure VI. 4 Fuzzy inference system and Rule editor

Figure VI. 5 Rule viewer and surface viewer

Chapter 6 Neuro-fuzzy systems

78

Program Explanation

x = (0:0.1:10)';

y = sin(2*x)./exp(x/5);

trnData = [x y];

numMFs = 5;

mfType = 'gbellmf';

epoch_n = 20;

in_fis =genfis1(trnData,numMFs,mfType);

out_fis = anfis(trnData,in_fis,20);

plot(x,y,x,evalfis(x,out_fis));

legend('Training Data','ANFIS Output')

Data column vector x: inputs

Data column vector x: outputs

Coupled reference model (inputs/outputs)

Number of membership functions

Shape of membership functions

Number of iterations

Generation of the system composed of data and parameters

Calculation of outputs after data training

Display of the two reference shapes and estimated values

Graph legend.

Chapter 6 Neuro-fuzzy systems

79

6 9. References

[1] . Jang, J.-S. R.ANFIS: Adaptive-Network-Based Fuzzy Inference System,

IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–685,

1993.

[2] . Jang, J.-S. R., Sun, C.-T., & Mizutani, E.Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence, Prentice Hall, 1997

[3] . Wang, L.-XA Course in Fuzzy Systems and Control,Prentice Hall, 1997.

[4] . Nauck, D., Klawonn, F., & Kruse, R.Foundations of Neuro-Fuzzy Systems,Wiley,

1997.

[5] . Passino, K. M. & Yurkovich, S.Fuzzy Control,Addison-Wesley, 1998.

Chapter 7 Genetic Algorithms

80

7 1. Genetic Algorithms definition

A Genetic Algorithm (GA) is an iterative stochastic algorithm that uses a population of

individuals representing the potential solutions to the optimization problem to be solved.

This population will evolve from generation to generation: the "best adapted" individuals

will have a greater chance of reproducing and thus passing on their hereditary characteristics. An

individual's genetic makeup is contained in a chromosome, which is made up of a set of genes

whose values are in a binary alphabet or not. The evolutionary process is translated through

selection and reproduction operators. Individuals are selected based on their adaptation. To

reproduce, two mechanisms allow for the "production" of new individuals:

A Genetic Algorithm (GA) is a population-based search and optimisation algorithm inspired

by the principles of natural selection and genetics. It belongs to the class of evolutionary

algorithms, which aim to solve complex problems by mimicking the evolutionary processes

observed in nature.

The fundamental idea behind a genetic algorithm is to combine a “survival of the fittest”

strategy with a structured yet stochastic exchange of information. This approach allows the

algorithm to efficiently explore large and complex search spaces, particularly in problems where

the optimal solution is unknown or difficult to obtain using classical analytical methods.

7 2. Genetic Algorithms Vocabulary

• Chromosome In biology carrier of the genetic information necessary for the

construction and functioning of the organism is seen as a possible solution to a

problem of optimizing any function.

• Genotype In biological systems, the entire set of genetic material is called the

genotype. In genomics, the set of chains is called the structure.

• Phenotype In biological systems, the organism formed by the interaction of all the

genetic material with its environment is called the phenotype. In GAs, the decoded

structures form a set of given parameters, or solutions, or points in the solution space.

• Allele. In natural systems, an allele is a component of a gene. Alleles are the

different possible values that genes can take. In genetic engineering, an allele is the

code used to represent a gene (binary, real, etc.).

Chapter 7 Genetic Algorithms

81

• Locus: The locus is the position of a gene on the chromosome

• Individual In biological systems, an individual is a form that is the product of gene

activity. For a genetic agent, it is reduced to a chromosome and is called a

chromosome or an individual to designate the same object

• Population in a Genetic Algorithm (GA), a population refers to a collection of

candidate solutions to a given optimization or search problem. Each candidate

solution, called an individual, represents a possible solution encoded in the form of

a chromosome. The population constitutes the fundamental working unit of the

genetic algorithm. A generation corresponds to the state of the population at a

particular iteration of the algorithm. As the algorithm evolves, the population is

updated from one generation to the next through genetic operations such as selection,

crossover, and mutation.

• Parents In a natural system, individuals who can reproduce by creating new

individuals forming a new generation in order to ensure the continuity of life. In the

context of a GA, parents correspond to individuals capable of producing new

offspring to form a new generation.

• Offspring (Children) The new individuals forming a new generation, resulting from

the genetic interactions between parents, produce children who can take on the

genetic characteristics of their parents.

7 3. Genetic Algorithms Main steps

A Genetic Algorithm (GA) operates through a sequence of well-defined steps that are

iteratively applied until a satisfactory solution is obtained or a convergence criterion is met.

• 1. Creation of the Initial Population : The algorithm begins with the generation of

an initial population composed of a set of individuals, each representing a candidate

solution to the problem. This population is usually created randomly in order to

ensure sufficient diversity and broad exploration of the search space. In some cases,

heuristic or previously known solutions may also be included to accelerate

convergence.

• 2. Evaluation of the Population Each individual in the population is then evaluated

using a fitness function, which quantitatively measures how well the candidate

Chapter 7 Genetic Algorithms

82

solution satisfies the objectives of the problem. The fitness value determines the

quality of each individual relative to the others in the population.

• 3. Selection of the Best Individuals Based on their fitness values, individuals are

selected for reproduction. Selection mechanisms favor individuals with higher

fitness, reflecting the principle of survival of the fittest. Common selection strategies

include roulette wheel selection, tournament selection, and rank-based selection.

• 4. Crossover and Mutation in the Mating Pool: The selected individuals form a

mating pool, from which new offspring are generated. Crossover combines genetic

material from pairs of parent individuals to produce new solutions that inherit traits

from both parents. Mutation introduces random modifications to certain genes,

helping maintain genetic diversity and preventing premature convergence to

suboptimal solutions.

• 5. Formation of a New Generation : The offspring produced through crossover and

mutation constitute a new generation. Depending on the replacement strategy, this

new population may completely or partially replace the previous generation. Elitism

is often applied to ensure that the best individuals are preserved.

• 6. Convergence Check and Iteration : The algorithm then checks whether a

convergence criterion has been satisfied. This criterion may be based on a maximum

number of generations, a target fitness value, or stagnation of improvement. If

convergence has not been achieved, the algorithm returns to Step 2 and the

evolutionary cycle continues.

Through repeated evaluation, selection, and genetic variation, a genetic algorithm

progressively improves the quality of solutions across generations, ultimately converging towards

an optimal or near-optimal solution.

Chapter 7 Genetic Algorithms

83

 Figure VII. 1 Genetic Algorithms organizational chart

7 4. Evolutionary Process and Convergence

The population evolves over successive generations through repeated cycles of evaluation,

selection, and reproduction. Over time, advantageous traits become more prevalent in the

population, while less effective traits gradually disappear.

It can be demonstrated that, under appropriate conditions, genetic algorithms converge

progressively towards high-quality solutions within a reasonable computational time. The

stochastic nature of genetic algorithms allows them to escape local optima, making them

particularly suitable for solving nonlinear, multimodal, and high-dimensional optimisation

problems.

7 5. Analogy with Natural Evolution

As in biological evolution, the best traits—often referred to as dominant traits—are

preserved and propagated across generations. Offspring inherit combinations of genes from their

parents, resulting in continuous improvement of the population and increasing adaptation to the

problem environment.

Genetic algorithms provide a robust and flexible optimization framework by combining

randomness with structured evolutionary principles. Their ability to efficiently search complex

Chapter 7 Genetic Algorithms

84

solution spaces makes them widely applicable in areas such as control system design, machine

learning, scheduling, and engineering optimization.

7 6. Using Genetic Algorithms in MATLAB

MATLAB provides a powerful and user-friendly environment for the implementation and

application of Genetic Algorithms (GAs) through its Global Optimization Toolbox. This toolbox

offers a wide range of built-in functions that facilitate the design, configuration, and execution of

genetic algorithms for solving complex optimization problems. In MATLAB, a genetic

algorithm is typically implemented by defining:

• An objective (fitness) function,

• A set of decision variables and constraints,

• A collection of algorithm parameters, such as population size, crossover rate, and

mutation rate.

• The core function used to execute a genetic algorithm is the ga function, which

applies evolutionary operators automatically to search for an optimal solution.

a. Defining the Fitness Function

The first step in using a genetic algorithm in MATLAB is to define the fitness function,

which evaluates the quality of each candidate solution. This function must be written as a

MATLAB function file or an anonymous function. The genetic algorithm seeks to minimise (or

maximise) this fitness function.

Example: fitnessFcn = @(x) x(1)^2 + x(2)^2;

b. Setting Constraints and Variable Bounds

MATLAB allows the inclusion of linear and nonlinear constraints, as well as upper and

lower bounds on the decision variables. This flexibility enables genetic algorithms to handle

constrained optimisation problems commonly encountered in engineering applications.

c. Configuring Algorithm Parameters

The behavior and performance of the genetic algorithm can be customized using the Opti

options function. Key parameters include:

• Population size,

• Selection function,

• Crossover fraction,

Chapter 7 Genetic Algorithms

85

• Mutation function,

• Stopping criteria.

Example: options = optimoptions('ga','PopulationSize',100,'MaxGenerations',200);

d. Running the Genetic Algorithm

Once the fitness function, constraints, and options are defined, the genetic algorithm is executed using

the ga function:

[x_opt, fval] = ga(fitnessFcn, nvars, [], [], [], [], lb, ub, nonlcon, options);

where:

• x_opt is the optimal solution found,

• fval is the corresponding fitness value,

• nvars is the number of decision variables.

Chapter 7 Genetic Algorithms

86

e. Visualization and Analysis

MATLAB provides built-in tools for monitoring convergence and analysing algorithm performance.

Users can plot fitness evolution, population diversity, and constraint satisfaction across generations. These

visualization features are particularly useful for educational purposes and algorithm tuning.

f. Applications in Engineering and Control

In MATLAB, genetic algorithms are widely used for:

• Parameter tuning of controllers (PID, fuzzy, and neural controllers),

• System identification,

• Feature selection and model optimization,

• Multi-objective optimization.

The combination of MATLAB’s numerical capabilities and genetic algorithms makes it a highly effective

platform for solving nonlinear, non-convex, and multimodal optimization problems.

Using genetic algorithms in MATLAB provides a flexible and efficient approach to solving complex

optimization problems. The availability of high-level functions, graphical tools, and extensive documentation

makes MATLAB an ideal environment for both research and teaching in evolutionary computation and

intelligent systems.

Chapter 7 Genetic Algorithms

87

Figure VII. 2 Genetic Algorithm MATLAB Toolbox

Chapter 7 Genetic Algorithms

88

We consider the minimization of a nonlinear function:

f = (x(1)-1)^2 + (x(2)-2)^2 + sin(3*x(1))*cos(3*x(2))

This function is nonlinear and multimodal, which makes it suitable for genetic algorithms.

• Create a file called fitness_function.m

• Create a script called GA_example.m

Generated Plots When you run the script, MATLAB automatically generates:

Plot 1 – Best Fitness Value vs Generations

• Shows how the best individual improves over generations

• Used to analyse convergence speed

Plot 2 – Average Distance Between Individuals

• Indicates population diversity

• Helps detect premature convergence

1. function f = fitness_function(x)

2. % x(1) = x, x(2) = y

3. f = (x(1)-1)^2 + (x(2)-2)^2 + sin(3*x(1))*cos(3*x(2));

4. end

Chapter 7 Genetic Algorithms

89

1. clc;

2. clear;

3. close all;

4. % Number of variables

5. nvars = 2;

6. % Variable bounds

7. lb = [-5 -5];

8. ub = [5 5];

9. % GA options

10. options = optimoptions('ga', ...

11. 'PopulationSize', 80, ...

12. 'MaxGenerations', 100, ...

13. 'CrossoverFraction', 0.8, ...

14. 'MutationFcn', @mutationgaussian,..

15. 'SelectionFcn', @selectiontournament, ...

16. 'Display', 'iter', ...

17. 'PlotFcn', {@gaplotbestf, @gaplotdistance});

18. % Run Genetic Algorithm

19. [x_opt, fval] = ga(@fitness_function, nvars, [], [], [], [], lb, ub, [], options);

20. % Display results

21. disp('Optimal solution found:');

22. disp(x_opt);

23. disp('Minimum function value:');

24. disp(fval);

Chapter 7 Genetic Algorithms

90

25. [X,Y] = meshgrid(-5:0.1:5, -5:0.1:5);

26. Z = (X-1).^2 + (Y-2).^2 + sin(3*X).*cos(3*Y);

27. figure;

28. surf(X,Y,Z)

29. shading interp

30. xlabel('x')

31. ylabel('y')

32. zlabel('f(x,y)')

33. title('Objective Function Surface')

Figure VII. 3 Obtained function surface

Chapter 7 Genetic Algorithms

91

We consider the minimization of a nonlinear function:

x.^2 + 10*sin(x)

• Create a file called fitness_function.m

• Create a script called GA_example.m

1. clc; clear; close all;

2. % Objective function

3. fitnessFcn = @(x) x.^2 + 10*sin(x);

4. % Number of variables

5. nvars = 1;

6. % Bounds

7. lb = -10;

8. ub = 10;

9. % GA options

10. options = optimoptions('ga', ...

11. 'PopulationSize', 50, ...

12. 'MaxGenerations', 100, ...

13. 'Display', 'iter', ...

14. 'PlotFcn', {@gaplotbestf});

15. % Run GA

16. [x_opt, fval] = ga(fitnessFcn, nvars, [], [], [], [], lb, ub, [], options);

17. fprintf('Optimal solution x = %.4f\n', x_opt);

18. fprintf('Minimum value f(x) = %.4f\n', fval);

Chapter 7 Genetic Algorithms

92

We consider the minimization of a nonlinear function:

• (x(1)-1)^2 + (x(2)-2)^2

• Create a file called fitness_function.m

• Create a script called GA_example.m

1. clc; clear; close all;

2. fitnessFcn = @(x) (x(1)-1)^2 + (x(2)-2)^2;

3. nvars = 2;

4. % Linear inequality: A*x ≤ b

5. A = [1 1];

6. b = 2;

7. lb = [-5 -5];

8. ub = [5 5];

9. options = optimoptions('ga', ...

10. 'PopulationSize', 80, ...

11. 'MaxGenerations', 100, ...

12. 'PlotFcn', {@gaplotbestf});

13. [x_opt, fval] = ga(fitnessFcn, nvars, A, b, [], [], lb, ub, [], options);

14. disp('Optimal solution:');

15. disp(x_opt);

Chapter 7 Genetic Algorithms

93

7 7. References

[1] . The MathWorksGlobal Optimization Toolbox™ User’s Guide,MathWorks Inc

[2] . Holland, J. H.Adaptation in Natural and Artificial Systems,

University of Michigan Press, 1975

[3] . Goldberg, D. E.Genetic Algorithms in Search, Optimization, and Machine

Learning,Addison-Wesley, 1989.

[4] . Mitchell, M.An Introduction to Genetic Algorithms, MIT Press, 1998.

[5] . Goldberg, D. E. & Holland, J. H.Genetic Algorithms and Machine Learning,

Machine Learning, 1988.

Chapter 8 Particule Swarm Optimization

94

8 1. Introduction to Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based stochastic optimization

technique inspired by the collective behavior of social organisms, such as bird flocks, fish schools,

or insect swarms. It was first introduced in 1995 by James Kennedy and Russell Eberhart as an

alternative to evolutionary algorithms, particularly genetic algorithms (GAs).

PSO belongs to the broader class of swarm intelligence methods, which emphasize

distributed problem solving, self-organization, and cooperation among simple agents. Unlike

genetic algorithms, PSO does not rely on genetic operators such as crossover or mutation. Instead,

candidate solutions—called particles—move through the search space by adjusting their

trajectories based on their own experience and that of neighboring particles.

PSO has gained widespread popularity due to its:

• Conceptual simplicity,

• Ease of implementation,

• Low number of tuning parameters,

• Strong performance on nonlinear, multimodal, and high-dimensional optimization

problems.

Particle Swarm Optimization is a powerful, flexible, and widely adopted optimization

technique inspired by collective intelligence. Its mathematical simplicity, combined with strong

empirical performance, makes PSO a preferred choice for solving complex optimization problems

in control systems, artificial intelligence, and engineering design.

Modern research continues to enhance PSO through hybridization, adaptive parameter

control, and integration with fuzzy logic, neural networks, and evolutionary strategies.

8 2. Optimizations Problem Formulation

PSO is designed to solve general optimization problems of the min or the max of a

Constraints may be:

• bound constraints,

• linear or nonlinear constraints,

• equality or inequality constraints.

Chapter 8 Particule Swarm Optimization

95

PSO is particularly effective when:

• the objective function is nonlinear or non-convex,

• gradients are unavailable or expensive to compute,

• multiple local optima exist.

8 3. Biological Inspiration and Swarm Intelligence

The fundamental idea of PSO is derived from social sharing of information. In natural swarms:

each individual has limited intelligence, global behavior emerges from local interactions,

individuals adjust their motion based on neighbors and past experiences.

In PSO:

• each particle represents a potential solution,

• particles communicate indirectly through the global or local best solutions,

• the swarm collectively explores the search space.

The optimization process balances:

• exploration (searching new regions),

• exploitation (refining known good solutions).

8 4. Particle Representation and Swarm Structure

Each particle i is characterized by

• a position vector:

• a velocity vector:

At each iteration

 particles move through the search space according to velocity update equations.

Chapter 8 Particule Swarm Optimization

96

Figure VIII. 1 Diagram explaining the calculation of particle velocity

Figure VIII. 2 Particle movement.

8 5. . PSO Algorithm (Step-by-Step)

1. Initialize particle positions and velocities randomly

2. Evaluate fitness of each particle

3. Update personal bests

4. Update global (or local) best

5. Update velocities

6. Update positions

7. Check stopping criteria

8. Repeat until convergence

Chapter 8 Particule Swarm Optimization

97

8 6. Applications of PSO in Engineering

Control Systems

• PID tuning

• Fuzzy controller optimization

Power Systems

• Economic dispatch

• Load frequency control

• Renewable energy optimization

Machine Learning

• Neural network training

• Feature selection

• Hyperparameter optimization

Robotics

• Path planning

• Trajectory optimization

Chapter 8 Particule Swarm Optimization

98

8 7. Advantages and Limitations

Advantages

• Gradient-free

• Easy to implement

• Fast convergence

• Scalable

Limitations

• Premature convergence

• Sensitive to parameter choice

• Performance degrades in very high dimensions

Chapter 8 Particule Swarm Optimization

99

[6] .

Problem Definition

We consider the minimization of a nonlinear, multimodal function:

f(x)=x2+10sin (x)f(x) = x^2 + 10\sin(x)f(x)=x2+10sin(x)

This function contains multiple local minima, which makes it well suited to illustrate the

effectiveness of PSO.

1. T PSO algorithm successfully avoids local minima.

2. The convergence plot (pswplotbestf) shows the best fitness value decreasing iteratively.

3. The final solution corresponds to the global minimum or a very close approximation.

2. Mathematical Formulation

min f(x)x ∈ [−10,  10]  f(x)\min{x \in [−10,\,10]} \; f(x)x ∈ [−10,10]minf(x)

where:

• x is the decision variable,

• the objective function is non-convex and nonlinear.

Chapter 8 Particule Swarm Optimization

100

1. clc;

2. clear;

3. close all;

4. % Objective function

5. fitnessFcn = @(x) x.^2 + 10*sin(x);

6. % Number of variables

7. nvars = 1;

8. % Lower and upper bounds

9. lb = -10;

10. ub = 10;

11. % PSO options

12. options = optimoptions('particleswarm', ...

13. 'SwarmSize', 50, ...

14. 'MaxIterations', 100, ...

15. 'Display', 'iter', ...

16. 'PlotFcn', {@pswplotbestf});

17. % Run PSO

18. [x_opt, fval] = particleswarm(fitnessFcn, nvars, lb, ub, options);

19. fprintf('Optimal solution x = %.4f\n', x_opt);

20. fprintf('Minimum value f(x) = %.4f\n', fval);

Chapter 8 Particule Swarm Optimization

101

1. % Plot objective function

2. x = linspace(-10, 10, 1000);

3. y = x.^2 + 10*sin(x);

4. figure;

5. plot(x, y, 'LineWidth', 2);

6. hold on;

7. plot(x_opt, fval, 'ro', 'MarkerSize', 10, 'LineWidth', 2);

8. grid on;

9. xlabel('x');

10. ylabel('f(x)');

11. title('PSO Optimisation Result');

12. legend('Objective Function', 'PSO Solution');

Chapter 8 Particule Swarm Optimization

102

8 1. References

[1] . Kennedy, J., & Eberhart, R., Particle Swarm Optimization, IEEE ICNN, 1995

[2] . Clerc, M., Particle Swarm Optimization, ISTE Press

[3] . MathWorks, Global Optimization Toolbox – particle swarm

Annex

103

ANNEX

Norbert Wiener (1894-1964), A mathematician,

Wiener launched cybernetics in the 1940s as the

science of the functioning of the human mind. He

wanted to model the mind as a "black box" with

behavior dependent on feedback mechanisms.

Warren McCulloch (1898-1969),

 et Walter Pitts (1923-1969), In 1943,

neurologists invented the first

mathematical model of the biological

neuron, the formal neuron.

Donald Hebb (1904-1985), neuropsychologist,

invented in 1949 the rule which bears his name and

makes it possible to endow formal neurons with

learning capacities:

When an axon of cell A is near enough to excite B and

repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in

one or both cells such that A’s efficiency, as one of the

cells firing B, is increased (The Organization of

Behavior, 1949)

Herbert Simon (1916-2001) He studied

economics in Chicago and earned his doctorate

in political science there in 1943. Simon sought

to understand how individuals make decisions,

particularly within organizations. Simon

introduced the concept of bounded rationality:

an individual's rationality is limited by their

environment, their history, and the lack of

information necessary for decision-making

(Administrative Behavior, 1947).

Annex

104

Allen Newell (1927-1992), after a Bachelor of

Science in physics at Stanford, joined Princeton in 1949

to pursue a PhD in mathematics. During his studies, he

was strongly influenced by the Hungarian mathematician

Georges Polya (1887-1985), who had introduced the

notion of heuristics for problem solving (How to solve it,

1945).

A heuristic (from the Greek eurisko, I believe) is an

empirical method of problem-solving whose validity or

effectiveness is not proven. Examples: protecting the queen

in chess, choosing the crate with the shortest line, etc.

Ultimately finding mathematics too abstract, Newell

accepted a position in 1950 at the RAND Corporation in

Santa Monica to conduct more practical work, particularly in

defense aeronautics.

Simon is also a consultant at RAND (Research and

Development), a non-profit research organization linked to

the American military-industrial complex. RAND, created to

study the development of an artificial satellite, gradually

expanded its work to include computer science,

economics, geopolitics, and other fields.

Simon's and Newell's ideas converge: Simon's bounded

rationality implies that decision-making relies on procedures

that compensate for information gaps by taking the context

into account. For Newell, these procedures are heuristics.

Simon and Newell considered that the necessary

and sufficient condition for a machine to

demonstrate intelligence was that it be a physical

system of symbols. However, they placed the notion

of heuristics at the heart of their work: they

developed Logic Theorist in 1956, a program for the

automatic proof of theorems.

McCarthy and Minsky enlisted the help of their elders Shannon and Rochester to secure $7,500 from

the Rockefeller Foundation to organize a workshop on thinking machines at Dartmouth College during

the two summer months of 1956.

Annex

105

▪ Marvin Minsky (born in 1927) was at Harvard University in 1956, where he was a lecturer. After

studying mathematics at Harvard (Bachelor of Arts in 1950), where he met the early cyberneticists,

he completed a dissertation at Princeton entitled "Neural Nets and the Brain Model Problem" (1954).

His dissertation focused on the creation of an artificial neural network, in collaboration with a doctoral

student in electronics, Dean Edmonds.

▪ John McCarthy (1927-2011) earned a Bachelor of Science in mathematics from the California

Institute of Technology in 1948, followed by a doctorate from Princeton in 1951. His dissertation

focused on a type of partial derivative equation, but his time at Princeton led him to meet Minsky,

with whom he discovered a shared passion for the idea of the thinking machine.

▪ Claude Shannon (1916-2001) earned a Bachelor of Science in electrical engineering and

another in mathematics from the University of Michigan in 1936, and then continued his studies

at the Massachusetts Institute of Technology. In his master's thesis, he established the link

between Boolean algebra and electrical circuits (A Symbolic Analysis of Relay and Switching

Circuits, 1937), thus laying the foundations of digital electronics. During his doctoral studies, he

worked on the mathematical formalization of genetics (An Algebra for Theoretical Genetics,

1940).

▪ Nathaniel Rochester (1914-2001) He obtained a Bachelor of Science in electrical engineering

from MIT in 1941 and joined International Business Machines (IBM) in 1948. There he developed

the first symbolic assembly language. Rochester would become chief engineer for all the IBM

7xx series, in particular the IBM 701, the first general-purpose computer produced in series

starting in 1953 (19 units were manufactured).

Citation

106

Citations

▪ Intelligence begins neither with self-knowledge, nor with knowledge of things as such,

but with knowledge of their interaction. It organizes the world by organizing itself. Jean

Piaget (1896-1980), in *The Construction of Reality*, 1936

▪ Intelligence is the ability to understand the relationships that exist between the elements

of a situation and to adapt to them in order to achieve one's own ends. It is always

understanding and invention. Gaston Viaud (1899-1961), French psychologist, in

Intelligence, Its Evolution and Forms, 1946.

▪ Intelligence is everything that allows us to intuit a new underlying order. Horace Barlow

(1921-1987), Professor of Physiology and neurobiologist, University of Cambridge.

▪ The set of mental functions whose object is conceptual and rational knowledge (as

opposed to sensation and intuition). The ability to understand and adapt easily to new

situations. From Terminology of Neuropsychology and Behavioral Neurology. Research

and editing by Louise Bérubé, c1991, 176 p.

▪ Intelligence is the capacity to discover a new context, understand it, and react to this new

situation appropriately. Richard Atkinson (1920–1994), British prehistorian and

archaeologist.

