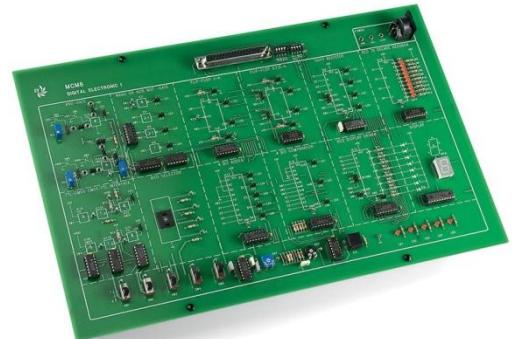
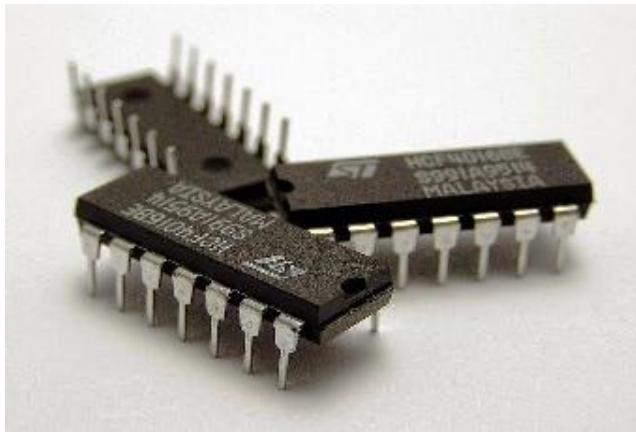


PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

IBN-KHALDOUN UNIVERSITY IN TIARET

FACULTY OF APPLIED SCIENCES
ELECTRICAL ENGINEERING DEPARTMENT

COURSE HANDOUT



COMBINATORIAL AND SEQUENTIAL LOGIC

(Course)

*Prepared by: **BERKANI Abderrahmane***

Promotion : **2nd year engineer, electrical engineering specialty**

Reviewed by:
Pr : SAHLI Belguacem
Pr : NASRI Djilali

Semester: **03**

Academic year: 2024/2025

Table of Contents

Chapter 1: Numbering system and coding of information

1. Objectives:.....	1
2. Numbering systems.....	1
3. Change of base	3
4. Operations in the bases.....	6
5. Coding of information	11

Chapter 2: BOOLE Algebra and Logical Functions

1. Objectives.....	16
2. Variables and logical functions	16
3. Basic operations of BOOLE algebra and associated properties	17
4. Materialization of logical operators.....	18

Chapter 3: Representation and simplification of combinatorial logic functions

1. Objectives.....	25
2. Representation of a logical function.....	25
3. Simplification of logical functions	32
4. Summary: Synthesis of a logical function.....	37

Chapter 4: Combinational Logic Circuits

1. Objectives.....	38
2. Arithmetic circuits.....	38

Chapter 5: : Sequential Logic

1. Objectives.....	59
2. Introduction	59
3. Asynchronous Switches.....	60
4. Synchronous Flip-flops.....	65

Chapter 6: : The Registers

1. Objectives.....	71
2. General information.....	71

3. Storage register.....	71
4. Shift register	72
5. Mixed register.....	74

Chapter 7: The Counters

1. Objectives	76
2. Introduction	76
3. Asynchronous counters and downcounters	76
4. Synchronous counters and downcounters	82

Chapter 7: The Counters

1. Objectives	85
2. Introduction	85
3. Examples	86
Bibliographic References	95

CHAPTER 1

NUMBERING SYSTEMS AND CODING OF INFORMATION

1. OBJECTIVES

- Cover in detail the different number systems: decimal, binary, octal and hexadecimal systems as well as the methods of conversion between number systems.
- Deal with arithmetic operations on numbers.
- Study several digital codes such as DCB, GRAY and ASCII codes.

2. NUMBER SYSTEMS

For digital information to be processed by a circuit, it must be put into a form suitable for it. To do this, a base B numbering system must be chosen (B is a natural whole number - 2).

There are many numbering systems used in digital technology. The most commonly used are: Decimal (base 10), Binary (base 2), Tetral (base 4), Octal (base 8) and Hexadecimal (base 16).

The table below represents a summary of these systems:

Decimal	Binary	Tetral	Octal	Hexadecimal
0	0	0	0	0
1	1	1	1	1
2	10	2	2	2
3	11	3	3	3
4	100	10	4	4
5	101	11	5	5
6	110	12	6	6
7	111	13	7	7
8	1000	20	10	8
9	1001	21	11	9
10	1010	22	12	AS
11	1011	23	13	B
12	1100	30	14	C
13	1101	31	15	D
14	1110	32	16	E
15	1111	33	17	F

2.1 Polynomial representation

Any number N can be decomposed into integer powers of the base of its numbering system. This decomposition is called the polynomial form of the number N and which is given by:

$$N = a_n B^n + a_{n-1} B^{n-1} + a_{n-2} B^{n-2} + \dots + a_2 B^2 + a_1 B^1 + a_0 B^0$$

- B: The basis of the numbering system, it represents the number of different digits that this numbering system uses.
- a: hasi: a number (or digit) among the numbers in the base of the numbering system.
- i: rank of the number hasi.

2.2 Decimal system (base 10)

The decimal system consists of 10 digits which are $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ it is a system that has imposed itself quite naturally on man who has 10 fingers. Let us write some decimal numbers in polynomial form:

Examples:

$$(5462)_{10} = 5 \cdot 10^3 + 4 \cdot 10^2 + 6 \cdot 10^1 + 2 \cdot 10^0$$

$$(239,537)_{10} = 2 \cdot 10^5 + 3 \cdot 10^4 + 9 \cdot 10^3 + 5 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$$

2.3 Binary system (base 2)

In this number system there are only two possible digits $\{0, 1\}$ which are often called bits "binary digit". As the following examples show, a binary number can be written in polynomial form.

Examples:

$$(111011)_2 = 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$(10011.1101)_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 1 \cdot 2^{-4}$$

2.4 Tetral system (base 4)

This system, also called base 4, includes four possible digits $\{0, 1, 2, 3\}$. A tetral number can be written in polynomial form as shown in the following examples:

Examples:

$$(2331)_4 = 2 \cdot 4^3 + 3 \cdot 4^2 + 3 \cdot 4^1 + 1 \cdot 4^0 \quad (130.21)_4 = 1 \cdot 4^2 + 3 \cdot 4^1 + 1 \cdot 4^0 + 2 \cdot 4^{-1} + 1 \cdot 4^{-2}$$

2.5 Octal System (base 8)

The octal or base 8 system consists of eight digits which are $\{0, 1, 2, 3, 4, 5, 6, 7\}$. The digits 8 and 9 do not exist in this base. For example, let's write the numbers 45278 and 1274,6328:

Examples:

$$(4527)_8 = 4*8^3 + 5*8^2 + 2*8^1 + 7*8^0$$

$$(1274,632)_8 = 1*8^3 + 2*8^2 + 7*8^1 + 4*8^0 + 6*8^{-1} + 3*8^{-2} + 2*8^{-3}$$

2.6 Hexadecimal system (base 16)

The Hexadecimal or base 16 system contains sixteen elements which are $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$. The digits A, B, C, D, E, and represent 10, 11, 12, 13, 14 and 15 respectively.

Examples:

$$(3256)_{16} = 3*16^3 + 2*16^2 + 5*16^1 + 6*16^0$$

$$(9C4F)_{16} = 9*16^3 + 12*16^2 + 4*16^1 + 15*16^0$$

$$(A2B.E1)_{16} = 10*16^2 + 2*16^1 + 11*16^0 + 14*16^{-1} + 1*16^{-2}$$

3. CHANGE OF BASIS

This is the conversion of a number written in a base B_1 to its equivalent in another base B_2

3.1 Converting a base B number N to a decimal number

The decimal value of a number N , written in a base B , is obtained by its polynomial form described previously.

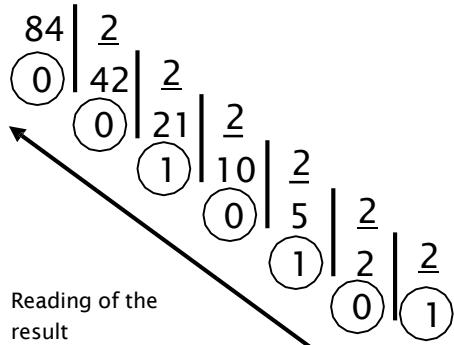
Examples:

$$(1011101)_2 = 1*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = (93)_{10}$$

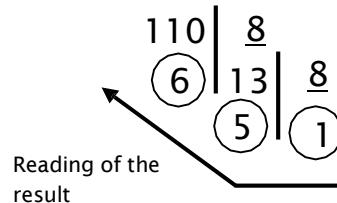
$$(231102)_4 = 2*4^5 + 3*4^4 + 1*4^3 + 1*4^2 + 0*4^1 +$$

$$2*4^0 = (2898)_{10}$$

$$(7452)_8 = 7*8^3 + 4*8^2 + 5*8^1 + 2*8^0 = (3882)_{10}$$

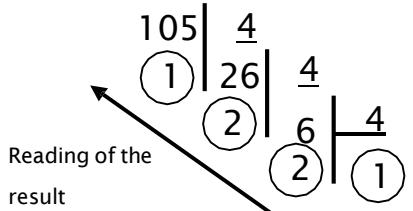

$$(D7A)_{16} = 13*16^2 + 7*16^1 + 10*16^0 = (3450)_{10}$$

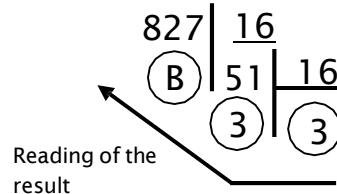
3.1.1 Conversion of a decimal whole number


To convert a whole decimal number to a base number B any, it is necessary to make successive integer divisions by the base B and keep the remainder of the division each time. We stop when we obtain a result less than* the base B . The number searched N in the base B is written from left to right, starting with the last result and going to the first remainder.

Examples:

$$- (84)_{10} = (?)_2$$

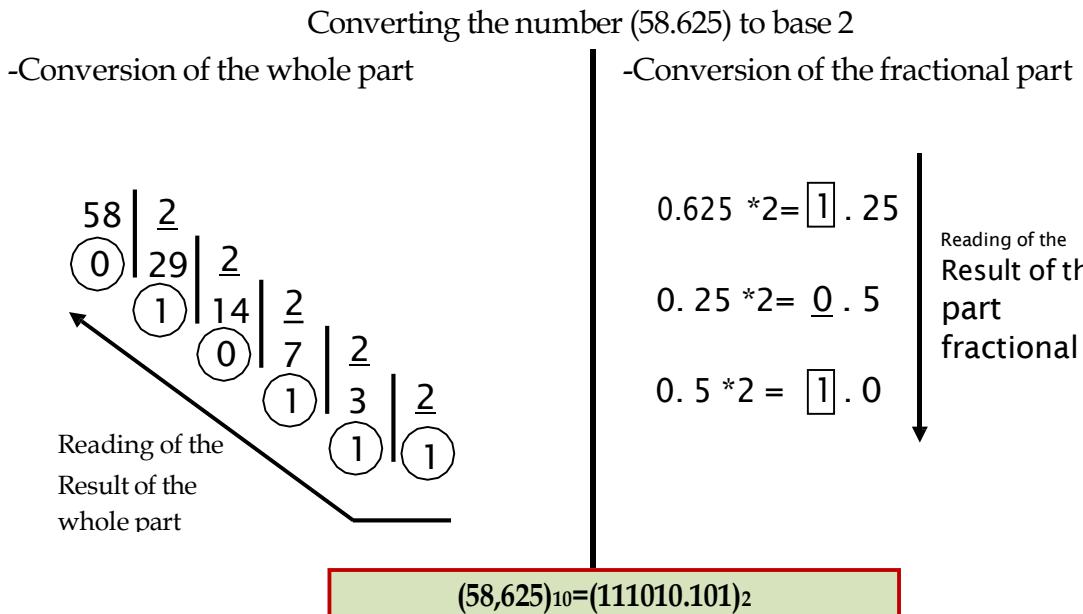

$$- (110)_{10} = (?)_8$$


$$(84)_{10} = (1010100)_2$$

$$(110)_{10} = (156)_8$$

$$- (105)_{10} = (?)_4$$

$$- (827)_{10} = (?)_{16}$$


$$(105)_{10} = (1221)_4$$

$$(827)_{10} = (33B)_8$$

3.1.3 Converting a decimal number to a comma

To convert a decimal number to a comma in a base B any, you must:

- Convert the whole part by performing successive divisions by B (as we saw previously).
- Convert the fractional part by performing successive multiplications by B and each time keeping the number becoming a whole number.

Examples:

Remarks :

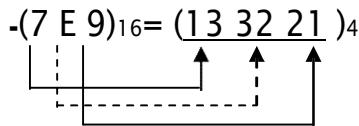
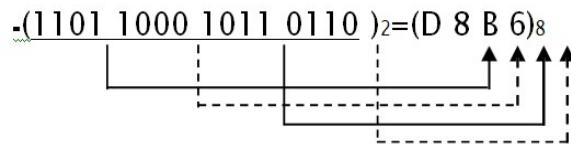
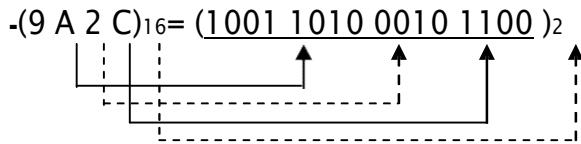
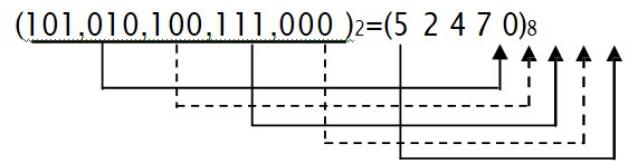
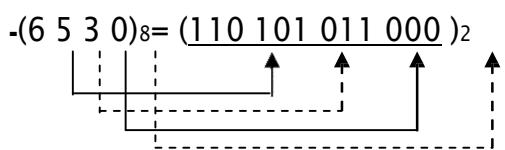
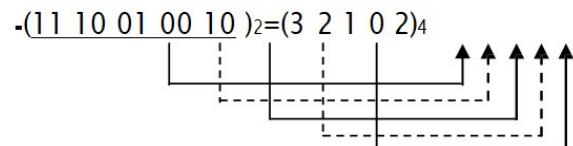
Sometimes by multiplying the fractional part by the base B we cannot convert the entire fractional part. This is mainly due to the fact that the number to be converted does not have an exact equivalent in the base B and its fractional part is cyclic

Example : $(0.15)_{10} = (?)_2$

$$\begin{aligned}
 0.15 *2 &= \underline{0} . 3 \\
 0.3 *2 &= \underline{0} . 6 \\
 0.6 *2 &= \underline{1} . 2 \\
 0.2 *2 &= \underline{0} . 4 \\
 0.4 *2 &= \underline{0} . 8 \\
 0.8 *2 &= \underline{1} . 6 \\
 0.6 *2 &= \underline{1} . 2 \\
 0.2 *2 &= \underline{0} . 4 \\
 0.4 *2 &= \underline{0} . 8 \\
 0.8 *2 &= \underline{1} . 6
 \end{aligned}$$

- $(0.15)_{10} = (0.001001\underline{1001})_2$

We say that the number $(0.15)_{10}$ is cyclic in the period base 2 **1001**.

3.1.4 Other conversions

To convert a number from any base B_1 to another base B_2 you have to go through the base 10. But if the base B_1 and B_2 are written respectively in the form of a power of 2 we can go through the base 2 (binary):

Tetral base (base 4): $4=2^2$ each tetra digit converts itself to 2 bits. Octal base (base 8): $8=2^3$ each octal digit converts itself to 3 bits.

Hexadecimal base (base 16): $16=2^4$ each hexadecimal digit converts itself to 4 bits.

Examples:

4. OPERATIONS IN THE BASES

We proceed in the same way as that used in the decimal base. Thus, we must carry out the operation in the base 10, then convert the result by column of the base B .

4.1 Addition

Binary Base

$$\begin{array}{r}
 11001001 \\
 + 110101 \\
 \hline
 = (11111110)_2
 \end{array}$$

$$\begin{array}{r}
 1101110 \\
 + 100010 \\
 \hline
 = (10010000)_2
 \end{array}$$

Tetral Base

$$\begin{array}{r}
 32210 \\
 + 1330 \\
 \hline
 = (100200)_4
 \end{array}$$

$$\begin{array}{r}
 20031 \\
 + 1302 \\
 \hline
 = (21333)_4
 \end{array}$$

Octal Base

$$\begin{array}{r}
 63375 \\
 + 7465 \\
 \hline
 = (73062)_8
 \end{array}$$

$$\begin{array}{r}
 5304 \\
 + 6647 \\
 \hline
 = (14153)_8
 \end{array}$$

Hexadecimal base

$$\begin{array}{r}
 89A27 \\
 + EE54 \\
 \hline
 = (9887B)_{16}
 \end{array}$$

$$\begin{array}{r}
 5304 \\
 + CC3B \\
 \hline
 = (11F3F)_{16}
 \end{array}$$

4.2 Subtraction

Binary Base	
$ \begin{array}{r} 1110110 \\ - 110101 \\ \hline =(1000001)_2 \end{array} $	$ \begin{array}{r} 1000001001 \\ - 11110011 \\ \hline =(100010110)_2 \end{array} $

Tetral Base	
$ \begin{array}{r} 13021 \\ - 2103 \\ \hline =(10312)_4 \end{array} $	$ \begin{array}{r} 2210 \\ - 1332 \\ \hline =(21333)_4 \end{array} $

Octal Base	
$ \begin{array}{r} 52130 \\ - 6643 \\ \hline =(43265)_8 \end{array} $	$ \begin{array}{r} 145126 \\ - 75543 \\ \hline =(47363)_8 \end{array} $

Hexadecimal Base	
$ \begin{array}{r} 725B2 \\ - FF29 \\ \hline =(62689)_{16} \end{array} $	$ \begin{array}{r} 45DD3 \\ - 9BF6 \\ \hline =(3C1DD)_{16} \end{array} $

4.3 Multiplication

Binary Base	
$ \begin{array}{r} 1110110 \\ * \quad 11011 \\ \hline 1110110 \\ 1110110 \\ 1110110 \\ 1110110 \\ \hline = (110001110010)_2 \end{array} $	$ \begin{array}{r} 1010111 \\ * \quad 10011 \\ \hline 1010111 \\ 1010111 \\ 1010111 \\ \hline = (11001110101)_2 \end{array} $

Tetral Base	
$ \begin{array}{r} 3021 \\ * \quad 113 \\ \hline 21123 \\ 3021 \\ \hline 3021 \\ \hline = (1020033)_4 \end{array} $	$ \begin{array}{r} 13320 \\ * \quad 210 \\ \hline 13320 \\ 33300 \\ \hline \hline = (10123200)_4 \end{array} $

Octal Base	
$ \begin{array}{r} 7506 \\ * \quad 243 \\ \hline 26722 \\ 36430 \\ 17214 \\ \hline = (2334622)_8 \end{array} $	$ \begin{array}{r} 4327 \\ * \quad 651 \\ \hline 4327 \\ 26063 \\ 32412 \\ \hline = (3526357)_8 \end{array} $

Hexadecimal Base	
A928 $\begin{array}{r} * \\ 7D3 \\ \hline 1FB78 \\ 89708 \\ 4A018 \\ \hline = (52B83F8)_{16} \end{array}$	6340 $\begin{array}{r} * \\ B51 \\ \hline 6340 \\ 1F040 \\ 443C0 \\ \hline = (4632740)_{16} \end{array}$

2.1 Division

Binary Base	Tetral Base
$\begin{array}{r} 110000000110 \\ - 1110010 \downarrow \\ 10011100 \\ - 1110010 \downarrow \\ 10101011 \\ - 1110010 \downarrow \\ 1110010 \end{array}$	$\begin{array}{r} 1110010 \\ \hline 11011 \\ \hline 11011 \end{array}$

Octal Base	Hexadecimal Base
$\begin{array}{r} 50064 \\ - 442 \downarrow \\ 366 \\ - 350 \downarrow \\ 164 \end{array}$	$\begin{array}{r} 72 \\ \hline 542 \end{array}$

5. CODING OF INFORMATION

Coding of information is necessary for its automatic processing. Among the most commonly encountered codes, other than the natural binary code, we cite the code DCB, the codeGRAY, the codepamongn, the ASCII code ...

5.1 Digital codes

5.1.1 The Natural Binary Code

It is a numerical representation of numbers in base 2

Decimal	Natural Binary Code			
	has3	has2	has1	has0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

This code has the disadvantage of changing more than a single bit when going from one number to an immediately higher one.

5.1.2 Reflected binary code (GRAY code)

Its interest lies in incrementation applications where a single bit changes state at each increment.

Decimal	Natural Binary Code				Reflected Binary Code			
	has ₃	has ₂	has ₁	has ₀	has' ₃	has' ₂	has' ₁	has' ₀
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

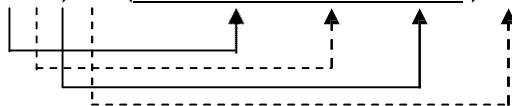
Remarks :

Conversion from Natural Binary to Reflected Binary: this involves comparing the bits b_{n+1} and the bit b_n from natural binary, the result is b_n of the reflected binary which is worth 0 if $b_{n+1} = b_n$ or 1 otherwise. The first bit on the left remains unchanged.

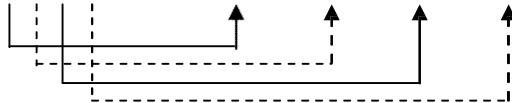
$(6)_{10} = (?)_{BR}$	$(10)_{10} = (?)_{BR}$
$(6)_{BN} = 1 \longleftrightarrow 1 \longleftrightarrow 0$ $\downarrow \quad \downarrow \quad \downarrow$ $(6)_{BR} = 1 \quad 0 \quad 1$	$(10)_{BN} = 1 \longleftrightarrow 0 \longleftrightarrow 1 \longleftrightarrow 0$ $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$ $(10)_{BR} = 1 \quad 1 \quad 1 \quad 1$

$(6)_{10} = (110)_{BN} = (101)_{BR}$ $(10)_{10} = (1010)_{BN} = (1111)_{BR}$

Conversion from Reflected Binary to Natural Binary: this involves comparing the bit b_{n+1} natural binary and bit b_n from the reflected binary the result is b_n of the natural binary which is worth 0 if $b_{n+1} = b_n$ or 1 otherwise. The first bit on the left remains unchanged.


$(10)_{10} = (?)_{BN}$	$(13)_{10} = (?)_{BN}$
$(10)_{BR} = 1$ $(10)_{BN} = 1010$ $(10)_{10} = (1111)_{BR} = (1010)_{BN}$	$(13)_{BR} = 1011$ $(13)_{BN} = 1101$ $(13)_{10} = (1011)_{BR} = (1101)_{BN}$

5.1.3 Binary Coded Decimal Code (BCD Code)


Its property is to associate 4 bits representing each digit in natural binary. The most common application is that of digital display where each digit is associated with a group of 4 bits carrying the DCB code.

Examples:

$$-(9\ 4\ 2\ 7)_{10} = (1001\ 0100\ 0010\ 0111)_{DCB}$$

$$-(6\ 8\ 0\ 1)_{10} = (0110\ 1000\ 0000\ 0001)_{DCB}$$

5.1.4 The P code among N

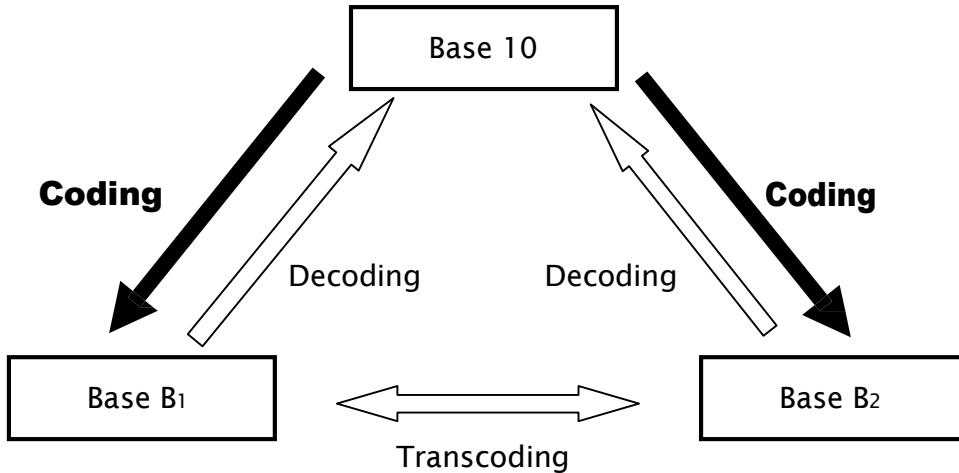
The P among N code is an N-bit code in which P bits are at 1 and (NP) bits are at 0. Reading this code can be associated with checking the number of 1s and 0s in the information, which makes it possible to check the information read by detecting the erroneous code.

Example : code 2 of 5

Decimal	Code 2 of 5				
	has ₇	has ₄	has ₂	has ₁	has ₀
0	1	1	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	1	0	0	0	1
8	1	0	0	1	0
9	1	0	1	0	0

5.1.5 ASCII code

ASII (American Standard Code for Information Interchange) is an alphanumeric code that has become an international standard. It is used for transmission between computers or between a computer and peripherals. In its standard form, it uses 7 bits. This allows for the generation of $2^7=128$ characters. This code represents uppercase and lowercase alphanumeric letters, decimal digits, punctuation marks, and control characters.


Each code is defined by 3 higher order bits b6b5b4 and 4 lower order bits b3b2b1b0. Thus the character "A" has the hexadecimal code 41H

Example :

HAS -(65) _{ASCII}	-(01000001) ₂	-(41) _H
B -(66) _{ASCII}	-(01000010) ₂	-(42) _H
Z -(90) _{ASCII}	-(01011010) ₂	-(5A) _H
has -(97) _{ASCII}	-(01100001) ₂	-(61) _H
b -(98) _{ASCII}	-(01100010) ₂	-(62) _H
z -(122) _{ASCII}	-(01111010) ₂	-(7A) _H
I -(91) _{ASCII}	-(01011011) ₂	-(5B) _H
{ -(123) _{ASCII}	-(01111011) ₂	-(7B) _H

5.2 Transcoding

One of the applications related to information coding is the transition from one code to another. This operation is called transcoding:

- The coding of information is done by means of a combinational circuit called **Coder**.
- The decoding of information is done by means of a combinational circuit called **Decoder**.
- A trans coder is a Decoder associated with a Coder.

CHAPTER 2
BOOLIAN ALGEBRA AND LOGICAL FUNCTIONS

1. OBJECTIVES

- Study the rules and theorems of Boolean algebra.
- Understand how logic gates work.

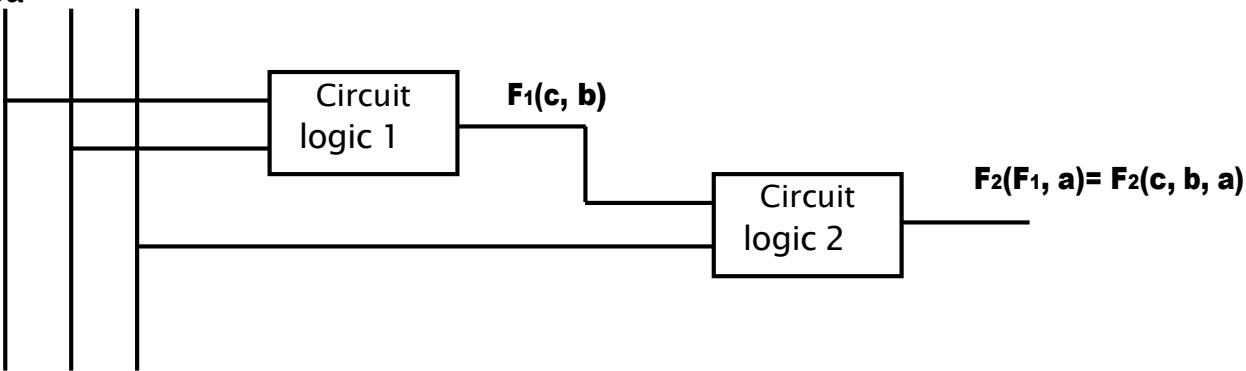
2. VARIABLES AND LOGICAL FUNCTIONS

2.1 Logical variables

A logical variable is a quantity that can only take two logical states. We symbolize them by 0 or 1.

Examples:

- A switch can be either closed (logic 1) or open (logic 0). It therefore has 2 possible operating states.
- A lamp also has 2 possible operating states which are off (logic 0) or on (logic 1).


2.2 Logical functions

A logical function is a logical variable whose value depends on other variables,

- The operation of a logical system is described by one or more simple logical propositions which have the binary character "TRUE" or "FALSE".
- A logical function that takes the values 0 or 1 can be thought of as a binary variable for another logical function.
- To describe the operation of a system by looking for the state of the output for all possible combinations of inputs, we will use "The truth table".

EXAMPLE:

cba

3. BASIC OPERATIONS OF BOOLEAN ALGEBRA AND ASSOCIATED PROPERTIES

Boolean algebra is a set of two-state variables {0 and 1} also called Boolean, equipped with 3 elementary operators presented in the following table:

Logical operation	Addition	Multiplication	Inversion																																																							
	OR	AND	NO																																																							
Algebraic Notation	$A \text{ OR } B = A + B$	$A \text{ AND } B = AB$	$\text{No } A = A -$																																																							
Truth table	<table border="1"> <thead> <tr> <th>H</th> <th>A</th> <th>B</th> <th>$A+B$</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>	H	A	B	$A+B$	0	0	0	0	0	1	1	1	1	0	1	1	1	1	1	1	<table border="1"> <thead> <tr> <th>H</th> <th>A</th> <th>B</th> <th>AB</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>	H	A	B	AB	0	0	0	0	0	1	0	0	1	0	0	0	1	1	1	1	<table border="1"> <thead> <tr> <th>H</th> <th>A</th> <th>\bar{A}</th> <th>NO</th> <th>TO</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table>	H	A	\bar{A}	NO	TO	0	0	1	1	0	1	1	0	0	1
H	A	B	$A+B$																																																							
0	0	0	0																																																							
0	1	1	1																																																							
1	0	1	1																																																							
1	1	1	1																																																							
H	A	B	AB																																																							
0	0	0	0																																																							
0	1	0	0																																																							
1	0	0	0																																																							
1	1	1	1																																																							
H	A	\bar{A}	NO	TO																																																						
0	0	1	1	0																																																						
1	1	0	0	1																																																						

3.1 Properties of basic operations

Some remarkable properties are worth knowing:

Functions	OR	AND	Comments
1 variable	$A+A=A$	$AA=A$	Idempotence
	$A+1=1$	$A.0=0$	Absorbent element
	$A+0=A$	$A.1=A$	Neutral Element
	$A+\bar{A}=1$	$\bar{A}\bar{A}=0$	Complement
	$\bar{\bar{A}}=A$		Involution

Functions	OR	AND	Comments
2 variables	$A+B=B+A$	$AB=BA$	Commutativity
3 variables	$A+(B+C)=(A+B)+C$ $=A+B+C$	$A.(BC)=(AB).C$ $=ABC$	Associativity
	$A+BC=(A+B).(A+C)$	$A.(B+C)=A.B+AC$	Distributivity

3.2 Theorems of Boolean algebra

To perform any Boolean calculation, we use, in addition to the properties, a set of theorems:

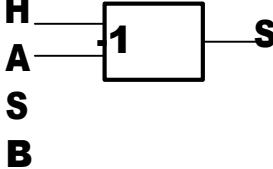
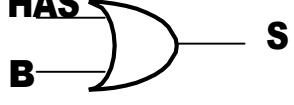

Theorems	OR	AND
Of DEMORGAN	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{AB} = \overline{A} + \overline{B}$
	This theorem can be generalized to several variables	
	$\overline{A+B+...+Z} = \overline{A} \cdot \overline{B} \cdot \dots \cdot \overline{Z}$	$\overline{AB \dots Z} = \overline{A} + \overline{B} + \dots + \overline{Z}$
Absorption	$A+A\overline{B}=A$	$A \cdot (A+B)=A$
Of lightening	$A+\overline{A}\overline{B}=A+\overline{B}$	$A \cdot \overline{(A+B)}=AB$
	$A \cdot \overline{B} + \overline{A} \cdot C + \overline{B} \cdot C = A \cdot \overline{B} + \overline{C}$	

4. MATERIALIZATION OF LOGICAL OPERATORS

4.1 Basic logic gates

Logic gates are electronic circuits whose transfer functions (relationships between inputs and outputs) materialize the basic operations applied to electrical variables.

4.1.1 The AND gate



Logical symbol	Equation	Integrated circuit
International Symbol (IEC) 	$S = AB$	TTL: 7408 CMOS: 4081

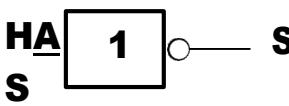
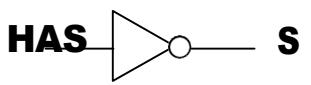
If V_0 represents the LOW voltage level (state 0) And V_1 represents the HIGH level (state 1), we note at the output of the circuit the voltages given in the operating table and we deduce the truth table.

Operating table		
V _{HAS}	V _B	V _S
V ₀	V ₀	V ₀
V ₀	V ₁	V ₀
V ₁	V ₀	V ₀
V ₁	V ₁	V ₁

Truth table		
HAS	B	S
0	0	0
0	1	0
1	0	0
1	1	1

4.1.2 The OR (OR) gate

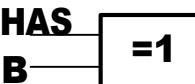
Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		S=A+B	TTL: 7432 CMOS: 4071



Operating table		
V _{HAS}	V _B	V _S
V ₀	V ₀	V ₀
V ₀	V ₁	V ₁
V ₁	V ₀	V ₁
V ₁	V ₁	V ₁

Truth table		
HAS	B	S
0	0	0
0	1	1
1	0	1
1	1	1

Noticed: There are 2, 3, 4, 8, and 13 input OR and AND logic gates available in integrated circuit form.

4.1.3 The NO gate


It is a single-entry gate, it materializes the reversing operator.

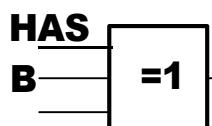
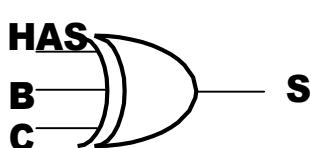
Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		S=̄A	TTL: 7404 CMOS: 4069

Operating table	
V _{HAS}	V _s
V ₀	V ₁
V ₁	V ₀

Truth table	
HAS	S
0	1
1	0

4.1.4 The exclusive-OR (XOR) gate

Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		$S = AB - AB^*AB$	TTL: 7486 CMOS: 4070



Operating table		
V _{HAS}	V _B	V _s
V ₀	V ₀	V ₀
V ₀	V ₁	V ₁
V ₁	V ₀	V ₁
V ₁	V ₁	V ₀

Truth table		
HAS	B	S
0	0	0
0	1	1
1	0	1
1	1	0

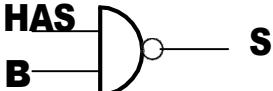
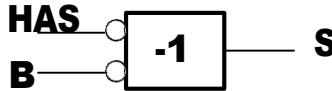
The exclusive-OR function is 1 if only one of the inputs is in the state 1 and the other is the state 0.

Generalizations of the EXCLUSIVE-OR function: The output of the EXCLUSIVE-OR function takes the logical state 1 if an odd number of input variables are in the logical state 1.

Example: Three-way exclusive-OR

Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		$S = ABC$	TTL: 74386

Operating table			
V _{HAS}	V _B	V _C	V _S
V ₀	V ₀	V ₀	V ₀
V ₀	V ₀	V ₁	V ₁
V ₀	V ₁	V ₀	V ₁
V ₀	V ₁	V ₁	V ₀
V ₁	V ₀	V ₀	V ₁
V ₁	V ₀	V ₁	V ₀
V ₁	V ₁	V ₀	V ₀
V ₁	V ₁	V ₁	V ₁

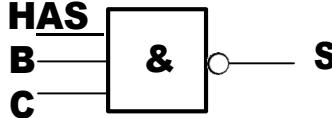
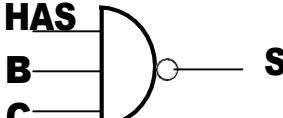
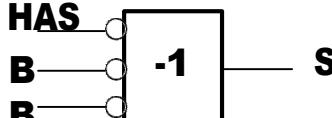



Truth table			
HAS	B	C	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

4.2 Universal gates

Other than basic (or elementary) logic gates, there are gates called universal (complete) logic gates such as NAND and NOR gates.

4.2.1 The NAND gate

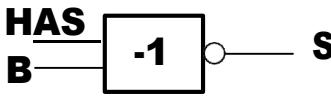
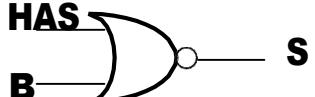
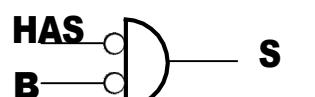



It is equivalent to a gate followed by an inverter.

Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		$S = A \bar{B}$ $S = \bar{A} \bar{B}$ $S = \bar{A} + \bar{B}$	TTL: 7400 CMOS: 4011-4093

Operating table		
V _{HAS}	V _B	V _S
V ₀	V ₀	V ₁
V ₀	V ₁	V ₁
V ₁	V ₀	V ₁
V ₁	V ₁	V ₀

Truth table		
HAS	B	S
0	0	1
0	1	1
1	0	1
1	1	0

For the three-input NAND gate we find:




Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		$S = \overline{ABC}$ $S = \overline{A+B+C}$	TTL: 7410 CMOS: 4023

Operating table			
V _{HAS}	V _B	V _C	V _S
V ₀	V ₀	V ₀	V ₁
V ₀	V ₀	V ₁	V ₁
V ₀	V ₁	V ₀	V ₁
V ₀	V ₁	V ₁	V ₁
V ₁	V ₀	V ₀	V ₁
V ₁	V ₀	V ₁	V ₁
V ₁	V ₁	V ₀	V ₁
V ₁	V ₁	V ₁	V ₀

Truth table			
HAS	B	C	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

4.2.2 The NOR gate:

It is equivalent to a gate followed by an inverter.

Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)		
		$S = AB$ $S = \overline{A+B}$ $S = \overline{AB}$	TTL: 7402 CMOS: 4001

Operating table		
VHAS	VB	VS
V ₀	V ₀	V ₁
V ₀	V ₁	V ₀
V ₁	V ₀	V ₀
V ₁	V ₁	V ₀

Truth table		
HAS	B	S
0	0	1
0	1	0
1	0	0
1	1	0

For the three-input NOR gate we find:

Logical symbol		Equation	Integrated circuit
International Symbol (IEC)	European symbol (MIL)	$S = \overline{ABC}$ $S = \overline{A} + \overline{B} + \overline{C}$ $S = \overline{ABC}$	TTL: 7427 CMOS: 4025

Operating table			
VHAS	VB	Vc	VS
V ₀	V ₀	V ₀	V ₁
V ₀	V ₀	V ₁	V ₀
V ₀	V ₁	V ₀	V ₀
V ₀	V ₁	V ₁	V ₀
V ₁	V ₀	V ₀	V ₀
V ₁	V ₀	V ₁	V ₀
V ₁	V ₁	V ₀	V ₀
V ₁	V ₁	V ₁	V ₀

Truth table			
HAS	B	C	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

4.2.3 Exercise1) Demonstrate whether universal functions are associative: $(A | ?) | ?$

$$B | C = A | (B | C) = A | B | C$$

$$(AB) \cdot C = A \cdot (BC) = ABC ?$$

2) Implement the three-input NAND function using the two-input NAND operators.

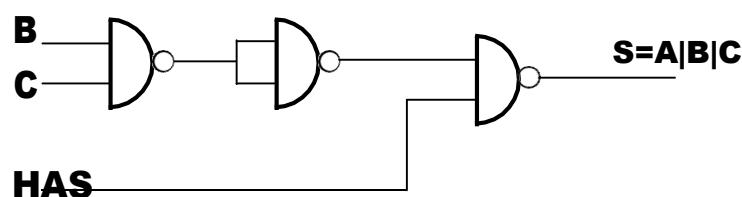
Answer :

1)

$$- (A | B) | C = (AB) \cdot C = (A + B) \cdot C = (A + B) \cdot C = (A + B) + C = (AB) + C$$

$$A | (B | C) = A | (BC) = A | (B + C) = A \cdot (B + C) = A + (B + C) = A + (BC)$$

 $(A | B) | C \neq A | (B | C)$ then the function NAND is not associative


$$- (AB) \cdot C = (A + B) \cdot C = (AB) \cdot C = (AB) + C = (AB) \cdot C = (A + B) \cdot C$$

$$A \cdot (BC) = A \cdot (B + C) = A \cdot (BC) = A \cdot (B + C) = A \cdot (BC) = A \cdot (B + C)$$

 $(AB) \cdot C \neq A \cdot (BC)$ then the function NOR is not associative

2)

$$- A | B | C = ABC = A + BC = A + BC = ABC = A | [(B | C) | (B | C)]$$

CHAPTER 3
REPRESENTATION AND SIMPLIFICATION OF LOGICAL
FUNCTIONS COMBINATORIES

1. OBJECTIVES

- Study the algebraic representation of a logical function,
- Understand the algebraic simplification of a logical function,
- Synthesize combinatorial applications.

2. REPRESENTATION OF A LOGICAL FUNCTION

A logical function is a combination of binary variables connected by the operators AND, OR and NOT. It can be represented by an algebraic notation or a truth table or a KARNAUGH table or a flowchart.

2.1 Algebraic representation

A logical function can be represented in two forms:

- SD P: \sum (-) sum of products,
- PDS: \prod (-) product of sums,

2.1.1 Sum-of-products form (Disjunctive form)

It corresponds to a sum of logical products: $F = \sum (e_i)$, or e_i represents a logical variable or its complement.

Example : $F_1(A, B, C) = AB + BC$. If each of the products contains all the input variables in direct or complemented form, then the form is called: "first canonical form » or form "disjunctive canonical ». Each of the products is called midterm.

Example : $F_1(A, B, C) = ABC + \overline{ABC} + \overline{AB}C + A\overline{BC}$.

— — —

2.1.2 Product of sums

It corresponds to a product of logical sums: $F = \prod (e_i)$, or e_i represents a logical variable or its complement.

Example : $F_2(A, B, C) = (A+B).(A+B+C)$

If each of the sums contains all the input variables in direct or complemented form, then the form is called: "second canonical form" or form "conjunctive canonical". Each of the products is called maxterm.

— — —

Example : $F_2(A, B, C) = (A+B+C).(A+B+C).(A+B+C)$

2.2 Truth table

A logical function can be represented by a truth table which gives the values that the function can take for each combination of input variables.

2.2.1 Fully defined function

It is a logical function whose value is known for all possible combinations of variables.

Example : The "Majority of 3 variables" function: $MAJ(A, B, C)$ The MAJ function is equal to 1 if the majority (2 or 3) of the variables are at state 1.

Truth table				
Combination	HAS	B	C	S=SHIFT(A, B, C)
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

2.2.2 Incompletely defined function

This is a function whose value is unspecified for certain combinations of variables. This is indicated by the symbol X or -; that is, the function is indifferent for certain combinations of input variables corresponding to situations which are:

- Can never follow in the system, Do not change
- The behavior of the system.

Example: Consider a keyboard that has 3 push buttons P1, P2 and P3 which control a machine and which have a mechanical lock such that 2 adjacent buttons cannot be pressed simultaneously:

P1-	P2-	P3-
Manual Walking	Stop	Increase speed

It is assumed that P1 is supported is worth 1 and released is worth 0. Hence the truth table of the function "keyboard" which detects at least one triggered push button:

Truth table				
Combination	HAS	B	C	Keyboard
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	-
4	1	0	0	1
5	1	0	1	1
6	1	1	0	-
7	1	1	1	-

2.2.3 Equivalence between the truth table and canonical forms

- To establish the disjunctive canonical expression (the canonical sum) of the function: it is sufficient to carry out the logical sum (or union) of the minterms associated with the states for which the function is equal to "1".
- To establish the conjunctive canonical expression (the canonical product) of the function: it is sufficient to carry out the logical product (or intersection) of the maxterms associated with the states for which the function is equal to "0".

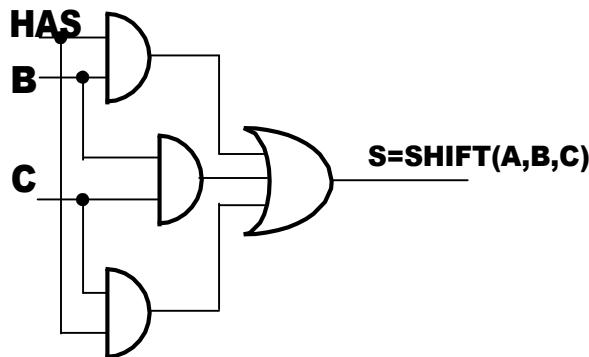
Example : The “Majority of 3 variables” function: $MAJ(A, B, C)$

Truth table						
Combination	HAS	B	C	S=SHIFT(A, B, C)	Minterme	Maxterme
0	0	0	0	0	$\bar{A}\bar{B}\bar{C}$	$A+B+C$
1	0	0	1	0	$\bar{A}\bar{B}C$	$A+B+\bar{C}$
2	0	1	0	0	$\bar{A}BC$	$A+\bar{B}+C$
3	0	1	1	1	ABC	$A+\bar{B}+\bar{C}$
4	1	0	0	0	$A\bar{B}\bar{C}$	$\bar{A}+B+C$
5	1	0	1	1	$A\bar{B}C$	$\bar{A}+B+\bar{C}$
6	1	1	0	1	$A\bar{B}C$	$\bar{A}+\bar{B}+C$
7	1	1	1	1	ABC	$\bar{A}+\bar{B}+\bar{C}$

■ We notice that $SHIFT(A, B, C)=1$ for the combinations 3, 5, 6, 7. We write the function thus specified in a so-called numerical form: $MAJ= R(3,5,6,7)$, Union of states 3, 5, 6, 7. The first canonical form of the function NAJ can be directly deduced from this:

$$UPDATE_{(A, B, C)} = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + ABC.$$

■ We notice that $SHIFT(A, B, C)=0$ for the combinations 0, 1, 2, 4. We write the function thus specified in a so-called numerical form: $MAJ= I(0,1,2,4)$, Intersection of states 0, 1, 2, 4. The second canonical form of the function NAJ can be directly deduced from this:


$$PDATE_{(A, B, C)} = (A + \bar{B} + \bar{C}) \cdot (\bar{A} + \bar{B} + C) \cdot (A + B + C) \cdot (A + B + \bar{C})$$

■ NB: We are generally interested in the representation of a function in the form of a sum or canonical sum (disjunctive form).

2.3 Flowchart

It is a graphical method based on symbols or gates.

Example : The “Majority of 3 variables” function: $MAJ(A, B, C)$ $UPDATE_{(ABC)} = AB + BC + AC$.

2.4 The painting by KARNAUGH (TK)

The Karnaugh table method allows you to visualize a function and intuitively derive a simplified function. The basic element of this method is the Karnaugh table, which is represented as a table formed by rows and columns.

2.4.1 Adjacency of boxes

Two binary words are said to be adjacent if they differ only by the complement of one and only one variable. If two adjacent words are summed, they cannot be merged and the variable that differs from them will be eliminated. The words ABC and ABC are adjacent since they differ only by the complementarity of the variable C. The adjacency theorem therefore states that $ABC + ABC = AB$.

2.4.2 Construction of the table

KARNAUGH's painting was constructed in such a way as to bring out the logical visual adjacency.

- Each box represents a combination of variables (minterm),
- The truth table is transported into the array by putting the value of the corresponding function in each box.

The function represented by a KARNAUGH table is written as the sum of the products associated with the different boxes containing the value 1.

2.4.3 Rules to follow for a problem with n variables: (n>2)

The KARNAUGH table has 2^n cases or combinations. The order of the variables is not important but it only respects the following rule:

- The monomials identifying the rows and columns are assigned in such a way that 2 consecutive monomials only differ in the state of a variable, it results that 2 consecutive boxes in row or column identify adjacent combinations, we therefore use the GRAY code.

Example

n=2

		B	
		$\bar{B}(0)$	B(1)
$\bar{A}(0)$	00	01	
	10	11	

n=3

		BC			
		$\bar{B}\bar{C}(00)$		$\bar{B}C(01)$	BC(11)
$\bar{A}(0)$	000	001	011	010	
	100	101	111	110	

n=4

		CD			
		$\bar{C}\bar{D}(00)$		$\bar{C}D(01)$	CD(11)
$\bar{A}\bar{B}(00)$	0000	0001	0011	0010	
	0100	0101	0111	0110	
	1100	1101	1111	1110	
	1000	1001	1011	1010	

NB: The Karnaugh Table has a structure wrapped around the rows and columns.

It has a spherical shape.

2.4.4 Example of filling the KARNAUGH table from the truth table:

Truth table						
Combination	H	A	B	C	D	$F_{(A,B,C,D)}$
0	0	0	0	0	0	0
1	0	0	0	1	0	1
2	0	0	1	0	0	0
3	0	0	1	1	0	0
4	0	1	0	0	0	1
5	0	1	0	1	0	1
6	0	1	1	0	0	0
7	0	1	1	1	0	1
8	1	0	0	0	0	0
9	1	0	0	1	0	0
10	1	0	1	0	0	0
11	1	0	1	1	0	1
12	1	1	0	0	0	0
13	1	1	0	1	0	1
14	1	1	1	0	0	0
15	1	1	1	1	0	0

Painting by KARNAUGH				
CD(00) CD(01) CD(11) CD(10)				
$\bar{A}\bar{B}$	$\bar{C}\bar{D}$	AB(00)	AB(01)	AB(11)
0	0	0	1	0
1	1	1	1	1
2	0	0	1	0
3	0	1	0	0

3. SIMPLIFICATION OF LOGIC FUNCTIONS

The goal of simplifying logic functions is to minimize the number of terms in order to obtain a simpler hardware implementation, therefore easier to build and troubleshoot and less expensive.

Two simplification methods are used:

- Algebraic simplification.
- Graphical simplification by KARNAUGH table.

3.1 Algebraic simplification of logical expressions

To obtain a simpler expression of the function by this method, one must use:

- Theorems and properties of Boolean algebra (see chapter 2).
- Multiplication by 1 ($X+X$).
- The addition of a zero term (XX).

Example : Simplification of the “Majority” function: $MAJ(A,B,C)$

$$\begin{aligned}
 MAJ_{(ABC)} &= \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}}. \\
 MAJ_{(ABC)} &= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}. \\
 MAJ_{(ABC)} &= BC(A+A) + AB(C+C) + AC(B+B). \\
 MAJ_{(ABC)} &= BC + AB + AC
 \end{aligned}$$

NB: The rules and properties of Boolean algebra allow functions to be simplified, but it remains a relatively cumbersome method. It never allows us to know whether or not we arrive at a minimal expression of the function.

We can then use the KARNAUGH table method

3.2 Graphical simplification of logical expressions (by KARNAUGH table)

The KARNAUGH table allows you to visualize a function and intuitively derive a simplified function from it

3.2.1 Grouping adjacent boxes

The method consists of making groups of adjacent squares. These groupings of squares must be of maximum size (maximum number of cases) and equal to 2^k (i.e. 2, 4, 8, 16, ...). We stop grouping when all the ones belong to at least one of them.

NB: Before deriving the equations from the KARNAUGH table, the following rules must be observed:

- ⊕ Group all together.
- ⊕ Group as many of them as possible into a single
- ⊕ grouping. A grouping has a rectangular shape.
- ⊕ The number of ones in a group is a power of 2 is equal to 2^k
- ⊕ A 1 can appear in more than one grouping.
- ⊕ A grouping must respect the axes of symmetry of the TK

Grouping of the 2 adjacent boxes

Simplification of the Majority function of 3 variables (MAJ(A,BC))

		BC	BC(00)	BC(01)	BC(11)	BC(10)
		A(0)	0	0	1	0
		A(1)	0	1	1	1

$G_1 = ABC + A\bar{B}\bar{C} = AC$

$G_2 = \bar{A}\bar{B}\bar{C} + A\bar{B}C = BC$

$G_3 = ABC + A\bar{B}C = AB$

$\boxed{\text{SHIFT}(A,B,C) = G_1 + G_2 + G_3 = AB + BC + AC}$

Ruler: Combining two adjacent squares containing 1 each eliminates one only variable that changes state when moving from one box to another.

Grouping of the 4 adjacent boxes

		Function F ₁			
		CD(00)	CD(01)	CD(11)	CD(10)
AB	AB(00)	0	0	0	1
	AB(01)	1	1	0	1
AB(11)	1	1	0	1	
AB(10)	0	0	0	1	

		Function F ₂			
		CD(00)	CD(01)	CD(11)	CD(10)
AB	AB(00)	1	0	0	1
	AB(01)	0	0	0	0
AB(11)	1	0	0	1	
AB(10)	1	0	0	1	

$$F_1(A, B, C, D) = \overline{BC} + \overline{CD}$$

$$F_2(A, B, C, D) = \overline{AD} + \overline{BD}$$

		Function F ₃			
		CD(00)	CD(01)	CD(11)	CD(10)
AB	AB(00)	1	0	1	1
	AB(01)	1	0	0	0
AB(11)	1	1	1	1	
AB(10)	1	0	1	1	

$$F_3(A, B, C, D) = \overline{CD} + AB + \overline{BC}$$

Ruler: 2 variables disappear when we group 4 adjacent boxes, we can then replace the sum of the 4 boxes (4 minterms with 4 variables each) by a single term which only has 2 variables.

Grouping of 8 adjacent boxes

		Function F ₄				
		CD(00)	CD(01)	CD(11)	CD(10)	
AB	CD	AB(00)	1	0	0	1
		AB(01)	1	0	0	1
		AB(11)	1	0	0	1
		AB(10)	1	0	0	1

$$F_{4(A,B,C,D)} = \overline{D}$$

Ruler: 2 variables disappear when we group 8 adjacent boxes, we can then replace the sum of the 8 boxes (8 minterms with 4 variables each) by a single term which contains only 1 variable.

Noticed: We will limit ourselves to tables of 4 variables, to solve by example of problems with 5 variables; we break them down each into two problems with 4 variables.

3.22 Handling 5-variable problems

To solve this problem we will break it down into 2 problems with 4 variables by applying the expansion theorem (SHANNON).

$$\text{we have: } F_{(A,B,C,D,E)} = \overline{E}F_{(A,B,C,D,0)} + \overline{E}F_{(A,B,C,D,1)}$$

NB: SHANNON's expansion theorem remains applicable whatever the number of variables we have:

$$F_{(A,B,C, \dots, Z)} = \overline{Z}F_{(A,B,C, \dots, 0)} + \overline{Z}F_{(A,B,C, \dots, 1)}$$

Example : Simplify the function $F(A,B,C,D,E) = -(4, 5, 6, 7, 24, 25, 26, 27)$

The diagram illustrates the simplification of a Karnaugh map for $F(A,B,C,D,0)$ to $F(A,B,C,D,1)$, and the resulting expression for $F(A,B,C,D,E)$.

Left Karnaugh Map ($F(A,B,C,D,0)$):

AB	CD			
	CD(00)	CD(01)	CD(11)	CD(10)
AB(00)	0	0	0	1
AB(01)	0	0	0	1
AB(11)	0	0	0	1
AB(10)	0	0	0	1

Right Karnaugh Map ($F(A,B,C,D,1)$):

AB	CD			
	CD(00)	CD(01)	CD(11)	CD(10)
AB(00)	0	1	0	0
AB(01)	0	1	0	0
AB(11)	0	1	0	0
AB(10)	0	1	0	0

Resulting Expression:

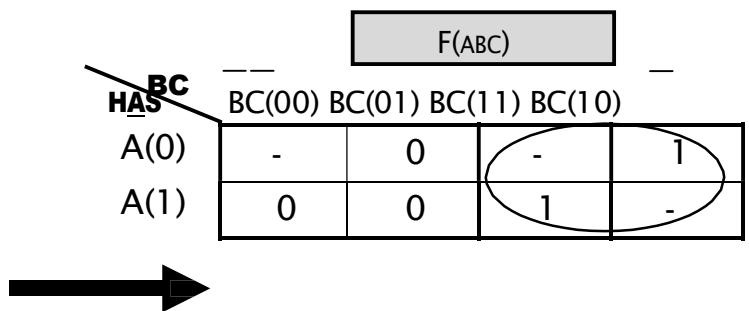
$$F_{(A,B,C,D,0)} = \overline{CD}$$

$$F_{(A,B,C,D,1)} = \overline{CD}$$

Final Expression:

$$F_{(A,B,C,D,E)} = \overline{E}CD' + ECD$$

What results from this:


$$F_{(A,B,C,D,E)} = \overline{E}CD' + ECD$$

3.23 Indifferent or undefined values

The symbol - (or X) can take the value 0 or 1 indifferently: we therefore replace by 1 only those which allow us to increase the number of boxes in a grouping and those which reduce the number of groupings.

Example

Truth table						
Combination	H	A	S	B	C	F(A,B,C)
0	0	0	0	0	0	-
1	0	0	0	1	0	0
2	0	1	0	0	1	1
3	0	1	1	0	1	-
4	1	0	0	0	0	0
5	1	0	1	0	1	0
6	1	1	0	0	0	-
7	1	1	1	1	1	1

$$F_{(ABC)} = B$$

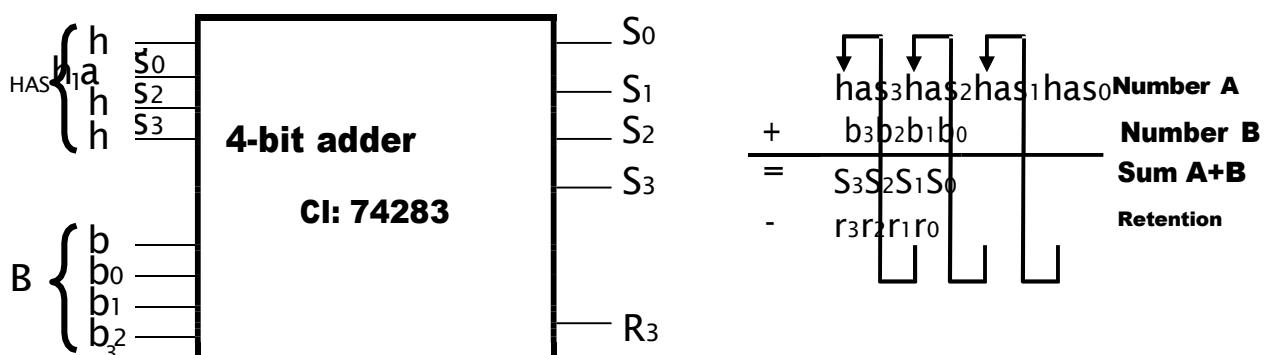
4. SUMMARY: SYNTHESIS OF A LOGICAL FUNCTION

- Step 1: Reading and analysis of the statement of the function.
- Step 2: writing the function in the canonical form of a truth table.
- Step 3: Simplification of the function expression by the method algebraic or by the TK method
- Step 3: Creation of the flowchart:
 - ✓ With only one type of operators using universal logical functions.
 - ✓ With a minimum of operators using basic logic functions

CHAPTER 4
COMBINATORIAL LOGIC CIRCUITS

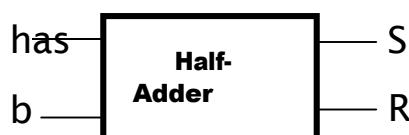
1. OBJECTIVES

- Study the main combinational logic circuits used in digital systems (such as: arithmetic circuits, encoders, transcoders, etc.),
- Implement logic functions using combinational circuits.


2. ARITHMETIC CIRCUITS

2.1 Adders

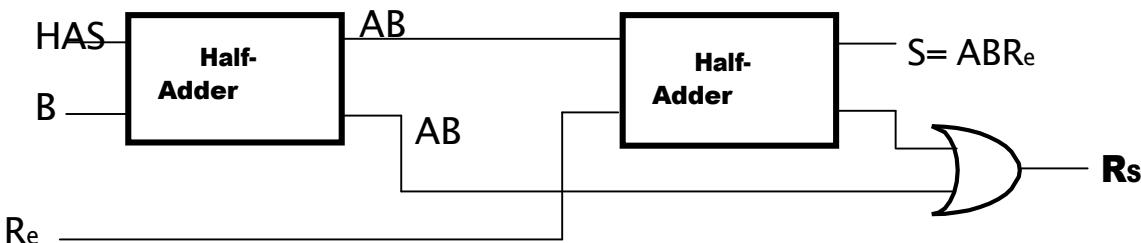
An adder is a circuit capable of adding two binary numbers HASAndB. An addition implements two outputs:


- The sum, generally noted S,
- The restraint, generally noted R(Or C: carry).

As in decimal, we must take into account the possible carryover, the result of a previous calculation. The following figure shows the decomposition of the addition of two 4-bit binary numbers.

2.1.1 The Half Adder (2 bits)

It is a 2-bit adder without taking into account the previous carry.


Truth table	Output equation	Flowchart																				
<table border="1"> <thead> <tr> <th>HA</th> <th>B</th> <th>S</th> <th>R</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>1</td> </tr> </tbody> </table>	HA	B	S	R	0	0	0	0	0	1	1	0	1	0	1	0	1	1	0	1	$S = \overline{A}\overline{B} + A\overline{B} = AB$ $R = AB$	
HA	B	S	R																			
0	0	0	0																			
0	1	1	0																			
1	0	1	0																			
1	1	0	1																			

2.1.2 The Full Adder (2 bits)

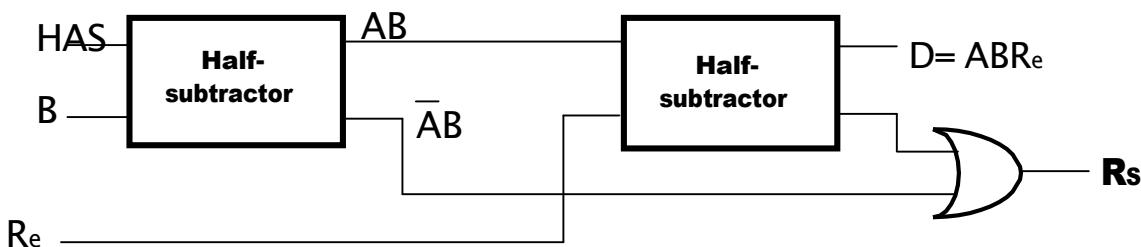
It has three inputs A, B and Re and two exits S and RS: R represents the carry of rank n-1 and RS that of rank n.

Truth table	Output equation	Flowchart																											
<table border="1"> <thead> <tr> <th>ABRe</th> <th>S</th> <th>Rs</th> </tr> </thead> <tbody> <tr> <td>0 0 0 0</td> <td>0</td> <td></td> </tr> <tr> <td>0 0 1 1</td> <td>0</td> <td></td> </tr> <tr> <td>0 1 0 1</td> <td>0</td> <td></td> </tr> <tr> <td>0 1 1 0</td> <td>1</td> <td></td> </tr> <tr> <td>1 0 0 1</td> <td>0</td> <td></td> </tr> <tr> <td>1 0 1 0</td> <td>1</td> <td></td> </tr> <tr> <td>1 1 0 0</td> <td>1</td> <td></td> </tr> <tr> <td>1 1 1 1</td> <td>1</td> <td></td> </tr> </tbody> </table>	ABRe	S	Rs	0 0 0 0	0		0 0 1 1	0		0 1 0 1	0		0 1 1 0	1		1 0 0 1	0		1 0 1 0	1		1 1 0 0	1		1 1 1 1	1		$S = \overline{AB}R_e + \overline{AB}R_e + \overline{AB}R_e + \overline{AB}R_e$ $= \overline{AB}R_e$ $Rs = R_e A - B + AB$	<p>Integrated circuit: 74LS183</p>
ABRe	S	Rs																											
0 0 0 0	0																												
0 0 1 1	0																												
0 1 0 1	0																												
0 1 1 0	1																												
1 0 0 1	0																												
1 0 1 0	1																												
1 1 0 0	1																												
1 1 1 1	1																												

Flowchart:

2.2 The subtractors

A half-subtract or ignores any carry from lower-order bits. D represents the result of the difference (AB) and R restraint.


Truth table	Output equation	Flowchart																				
<table border="1"> <thead> <tr> <th>HA</th> <th>B</th> <th>D</th> <th>R</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> </tbody> </table>	HA	B	D	R	0	0	0	0	0	1	1	1	1	0	1	0	1	1	0	0	$D = \overline{A}\overline{B} + A\overline{B} = AB$ $R = \overline{AB}$	
HA	B	D	R																			
0	0	0	0																			
0	1	1	1																			
1	0	1	0																			
1	1	0	0																			

2.2.1 The complete subtractor (2 bits)

It has three inputs A, B and Re and two exits D and RS: R represents the carry of rank n-1 and RS that of rank n.

Truth table	Output equation	Flowchart																																				
<table border="1"> <thead> <tr> <th>AB</th> <th>Re</th> <th>D</th> <th>s</th> </tr> </thead> <tbody> <tr> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0 0</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>0 1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>0 1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>1 0</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>1 0</td> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1 1</td> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1 1</td> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>	AB	Re	D	s	0 0	0	0	0	0 0	1	0	0	0 1	1	0	0	0 1	1	1	1	1 0	1	0	0	1 0	0	1	1	1 1	0	1	1	1 1	1	1	1	$D = \overline{AB}R_e + \overline{AB}\overline{R_e} + A\overline{B}R_e + A\overline{B}\overline{R_e}$ $= A\overline{B}R_e$ $RS = \overline{R_e}A - B + AB -$	
AB	Re	D	s																																			
0 0	0	0	0																																			
0 0	1	0	0																																			
0 1	1	0	0																																			
0 1	1	1	1																																			
1 0	1	0	0																																			
1 0	0	1	1																																			
1 1	0	1	1																																			
1 1	1	1	1																																			

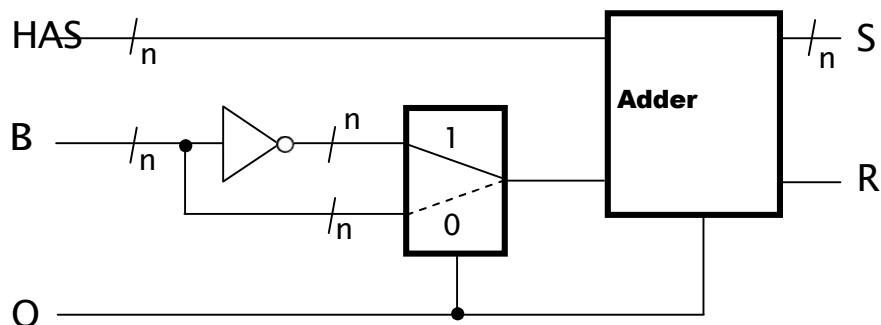
Flowchart:

2.3 Adder-subtractors

- A number coded on n bits can take a value between 0 and $2^n - 1$.
- The complement of an n-bit word is obtained by taking the complement of each of its n bits. Thus, we have:

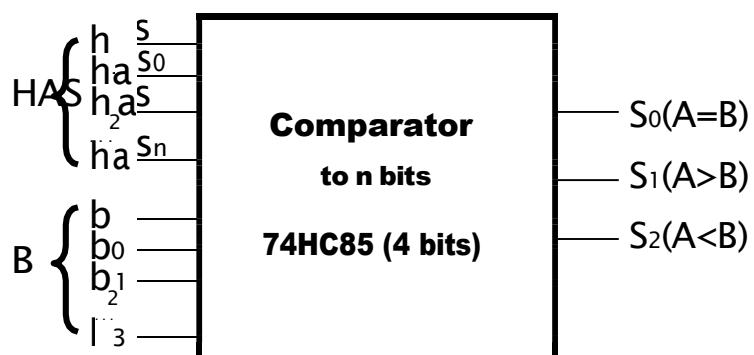
$$A + \overline{A} = 2^n - 1 \quad -A = A + 1 - 2^n$$

- For a variable coded on n bits: $2^n=0$. That is to say, it is possible to write a negative integer as the "2's complement" of its value absolute.


$$-A = \bar{A} + 1$$

- We can use this property to write the subtraction of two n -bit words in the following form:

$$AB = A + B + 1$$


- A single device shown in the figure below can be used for addition and subtraction according to the operation code O :

- ✓ $O=0$: addition
- ✓ $O=1$: subtraction

2.4 Comparator

It is a circuit that allows you to compare two binary numbers. It indicates whether the first number is less than (S_2), equal (S_0) or higher (S_1) to the second number.

Basic principle

The principle is to first compare the most significant bits (MSB). If they are different, there is no point in continuing the comparison. On the other hand, if they are equal, the next lowest-order bits must be compared, and so on.

2.4.1 The 1-bit comparator

Truth table	Equation of exits	Flowchart																									
<table border="1"> <thead> <tr> <th>B</th> <th>HA</th> <th>S_0</th> <th>S_1</th> <th>S_2</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> </tbody> </table>	B	HA	S_0	S_1	S_2	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	1	1	1	0	0	$S_0 = \overline{A}\overline{B} + A\overline{B} = \overline{AB}$ $S_1 = AB$ $S_2 = \overline{AB}$	
B	HA	S_0	S_1	S_2																							
0	0	1	0	0																							
0	1	0	1	0																							
1	0	0	0	1																							
1	1	1	0	0																							

2.4.2 The 2-bit comparator

Operating diagram	Organizational chart

Truth table							
b_1	b_0	has1	has0	S_0	S_1	S_2	
0	0	0	0	1	0	0	
0	0	0	1	0	1	0	
0	0	1	0	0	1	0	
0	0	1	1	0	1	0	
0	1	0	0	0	0	1	
0	1	0	1	1	0	0	
0	1	1	0	0	1	0	
0	1	1	1	0	1	0	

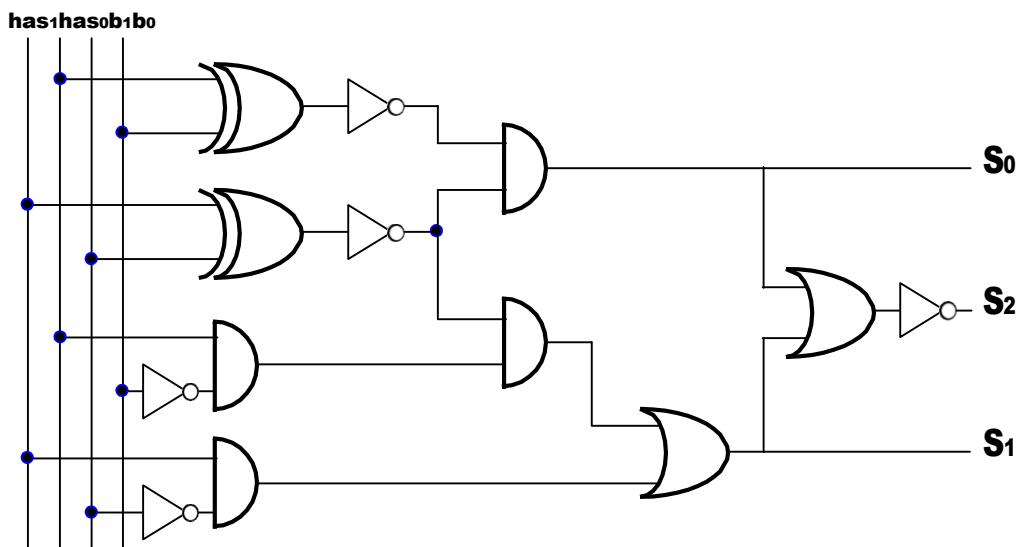
b_1	b_0	has1	has0	S_0	S_1	S_2
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

Equations

We have S_0 is worth 1 if $a_1=b_1$ and if $a_0=b_0$

$$S_0 = (a_1 - b_1) \cdot (\overline{has_0} \cdot \overline{b_0}).$$

And S_1 is worth 1 if $a_1 > b_1$ or if $(a_1 = b_1 \text{ and } \overline{has_0} > b_0)$


$$S_1 = a_1 \overline{b_1} + (a_1 - b_1) \overline{has_0} \overline{b_0}$$

And S_2 is worth 1 if $a_1 < b_1$ or if $(a_1 = b_1 \text{ and } \overline{has_0} < b_0)$

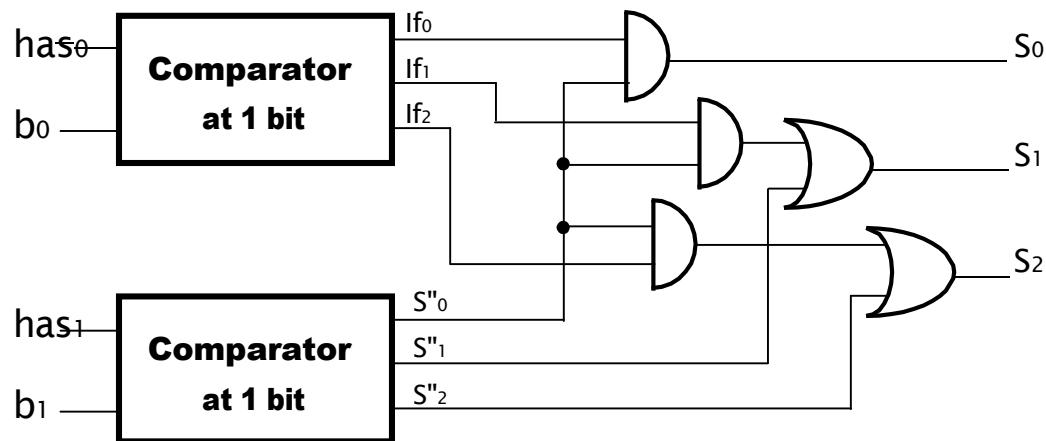
$$S_2 = \overline{a_1} \overline{b_1} + (a_1 - b_1) \overline{has_0} \overline{b_0}$$

$$S_2 = S_0 + S_1$$

Logic diagram using basic logic gates

Flowchart using the 2 1-bit comparators.

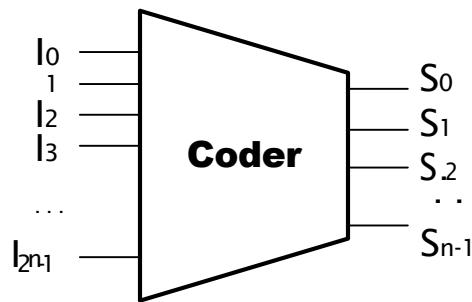
$$S_0 = (a_1 - b_1) \cdot (\text{has}_0 - b_0) = S''_0 \text{if } f_0$$


And S_1 is worth 1 if $a_1 > b_1$ or if $(a_1 = b_1 \text{ and } \text{has}_0 > b_0)$

$$S_1 = a_1 \bar{b}_1 + (a_1 - b_1) \text{has}_0 \bar{b}_0 = S''_1 + S''_0 \text{if } f_1$$

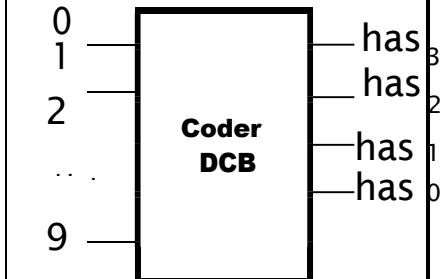
And S_2 is worth 1 if $a_1 < b_1$ or if $(a_1 = b_1 \text{ and } \text{has}_0 < b_0)$

$$S_2 = a_1 \bar{b}_1 + (a_1 - b_1) \text{has}_0 b_0 = S''_2 + S''_0 \text{if } f_2$$

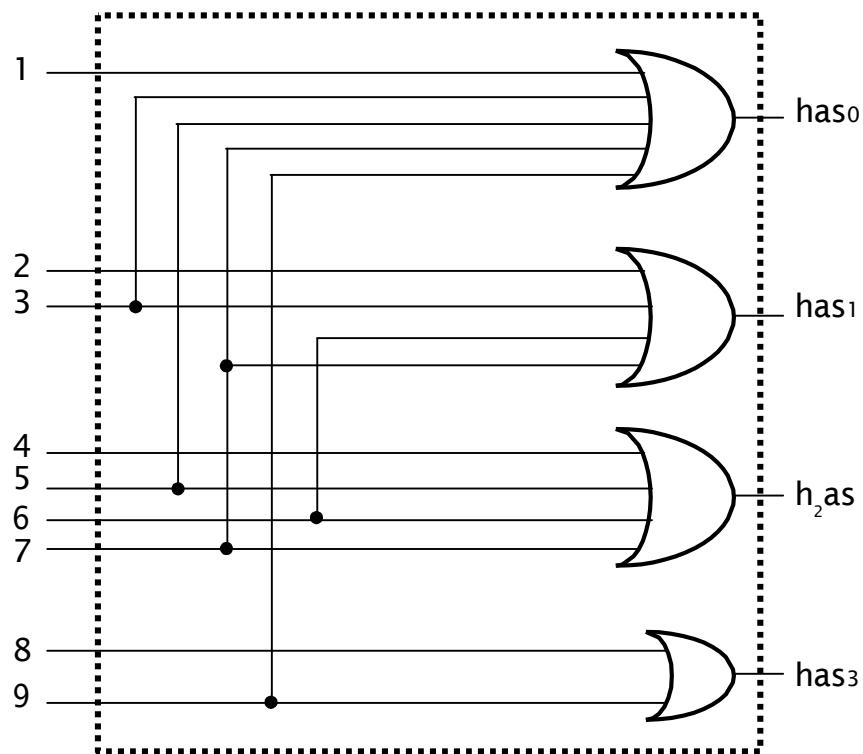

$$S_2 = \overline{S_0 + S_1}$$

2.5 Coders and decoders

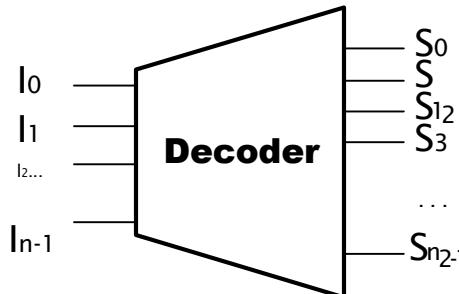
2.5.1 The coders


It is a circuit that translates the values of an input into a chosen code. An encoder (or encoder) is a logic circuit that has 2^n input channels of which only one is activated and n exit routes.

Example: DCB Encoder


Truth table				Output equation	Flowchart
Entrances	Exits				
	has ₃	has ₂	has ₁		
0	0	0	0	0	
1	0	0	1		
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	

$$\begin{aligned}
 a_0 &= 1 + 3 + 5 + 7 + 9 \\
 has_1 &= 2 + 3 + 6 + 7 \\
 has_2 &= 4 + 5 + 6 + 7 \\
 has_3 &= 8 + 9
 \end{aligned}$$

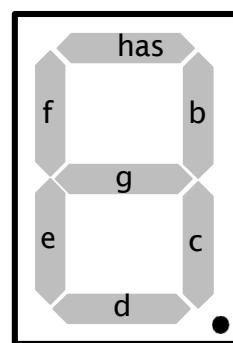
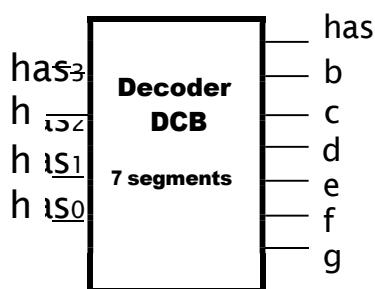

Integrated circuit:
74LS147

Flowchart:

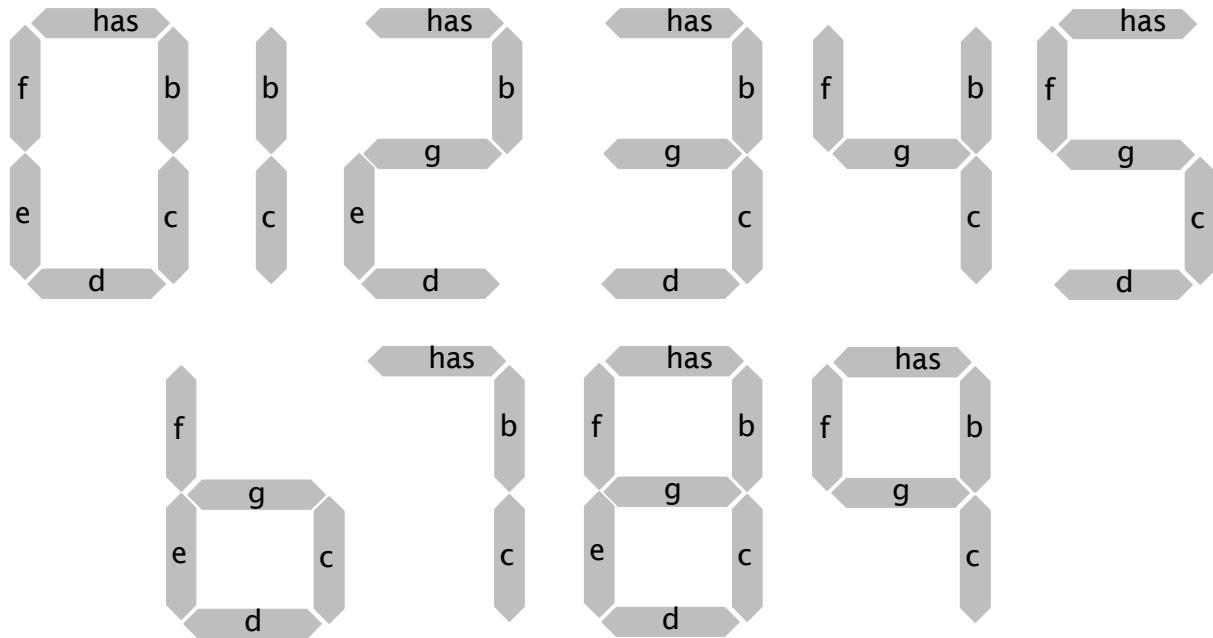
2.5.2 The decoders

A decoder is a circuit with N inputs and 2^N outputs of which only one is active at a time. It detects the presence of a specific combination of bits (code) at these inputs and indicates it by a specific output level.

Example: DCB Decoder



Operating table				Output equation	Flowchart
Entrances				Exits	
has ₃	has ₂	has ₁	has ₀	S ₀	$S_0 = \overline{a_3} \overline{a_2} \overline{a_1} \overline{a_0}$
0	0	0	0	S ₁	$S_1 = \overline{a_3} \overline{a_2} \overline{a_1} a_0$
0	0	0	1	S ₂	$S_2 = \overline{a_3} a_2 \overline{a_1} \overline{a_0}$
0	0	1	0	S ₃	$S_3 = \overline{a_3} a_2 \overline{a_1} a_0$
0	0	1	1	S ₄	$S_4 = \overline{a_3} a_2 a_1 \overline{a_0}$
0	1	0	0	S ₅	$S_5 = \overline{a_3} a_2 a_1 a_0$
0	1	0	1	S ₆	$S_6 = a_3 \overline{a_2} \overline{a_1} \overline{a_0}$
0	1	1	0	S ₇	$S_7 = a_3 \overline{a_2} \overline{a_1} a_0$
0	1	1	1	S ₈	$S_8 = a_3 \overline{a_2} a_1 \overline{a_0}$
1	0	0	0	S ₉	$S_9 = a_3 a_2 \overline{a_1} \overline{a_0}$
1	0	0	1		

Integrated circuit:


74145

2.5.3 The 7-segment DCB decoder

The 7-segment decoder accepts 4 BCD bits as input ($a_0, \text{has}_1, \text{has}_2, \text{has}_3$) and activates the outputs which will allow a current to pass through the segments of a digital display to form the decimal digits (from 0 to 9).

■ RNote: There are 6 titled combinations 10, 11, 12, 13, 14, 15 which will be noted -. The other figures are displayed as follows:

Truth table											Display
Entrances				Exits							Display
has	3has	2has	1has	0ha	sb	c	d	e	f	g	
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	0	0	1	1	9

Example: DCB Decoder

Segment a

has:has2
has:has0

has:has00 has:has01 has:has11 ... has:has10

has:has00 1 0 - 1
has:has01 0 1 - 1
has:has11 1 1 - -
has:has10 1 0 - -

$a = a_2 \overline{has_1} + a_2 has_0 + a_2 \overline{has_0} + has_3$

Segment b

has:has2
has:has0

has:has00 has:has01 ... has:has11 has:has10

has:has00 1 1 - 1
has:has01 1 0 - 1
has:has11 1 1 - -
has:has10 1 0 - -

$b = a_2 + a_1 \overline{has_0} + a_1 has_0 = a_2 + a_1 - has_0$

Segment c

has:has2
has:has0

has:has00 has:has01 has:has11 ... has:has10

has:has00 1 1 - 1
has:has01 1 1 - 1
has:has11 1 1 - -
has:has10 0 1 - -

$c = a_2 + \overline{a_1} + a_0$

Segment d

has:has2
has:has0

has:has00 has:has01 has:has11 ... has:has10

has:has00 1 0 - 1
has:has01 0 1 - 0
has:has11 1 0 - -
has:has10 1 1 - -

$d = a_2 has_0 + a_3 \overline{has_0} + a_2 \overline{has_1} + a_1 has_0 + a_2 has_1 has_0$

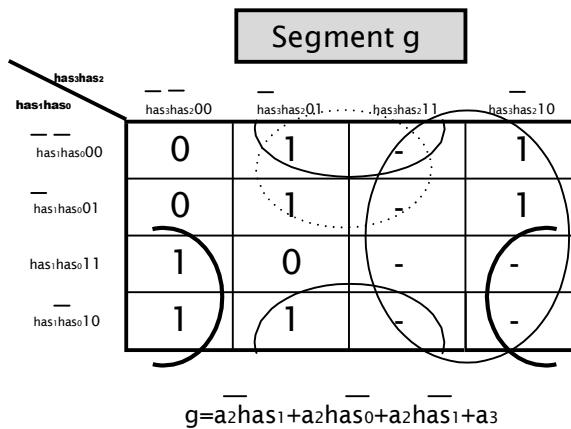
Segment e

has:has2
has:has0

has:has00 has:has01 has:has11 has:has10

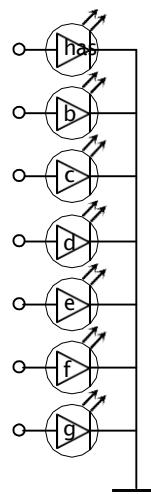
has:has00 1 0 - 1
has:has01 0 0 - 0
has:has11 0 0 - -
has:has10 1 1 - -

$e = a_1 has_0 + a_2 has_0$

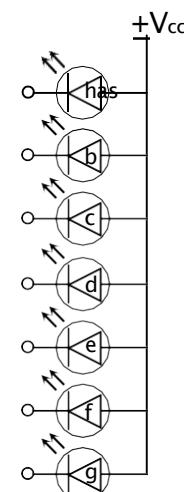

Segment f

has:has2
has:has0

has:has00 has:has01 has:has11 has:has10


has:has00 1 1 - 1
has:has01 0 1 - 1
has:has11 0 0 - -
has:has10 0 1 - -

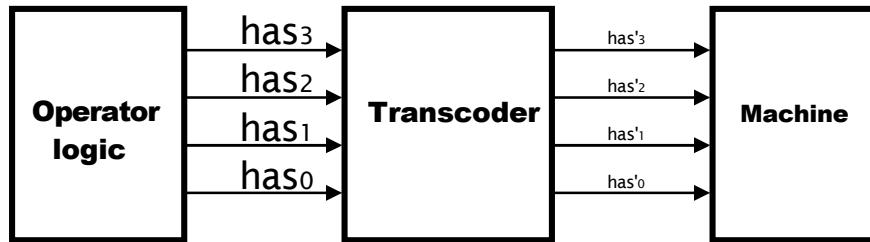
$f = \overline{a_1} \overline{has_0} + a_2 \overline{has_1} + a_2 has_0 + a_3$



Noticed : The display is made up of 7 LEDs (segments), a, d, c, d, e, f, g which require a specific polarization depending on the type of display (common anode or common cathode):

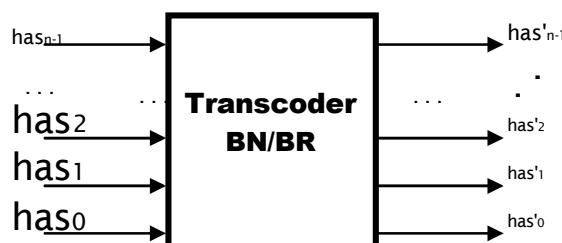
- For a common anode display: The anodes are connected together at the high level and the decoder outputs are active at the low level (CI: 74LS47) and are connected to the cathodes of the display.
- For a common cathode display: The cathodes are connected together to ground and the decoder outputs are active at high level (CI: 74LS48) and are connected to the anodes of the display.

Cathode display
municipalities

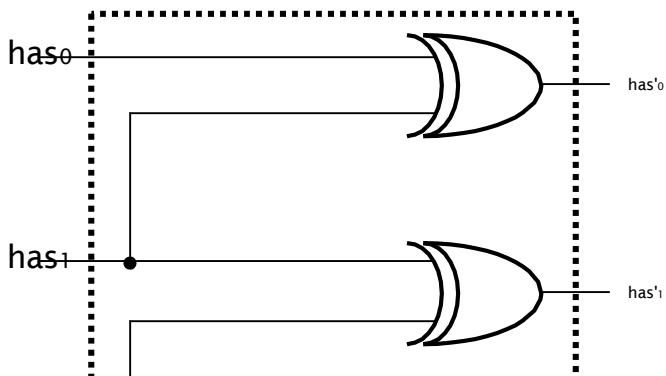
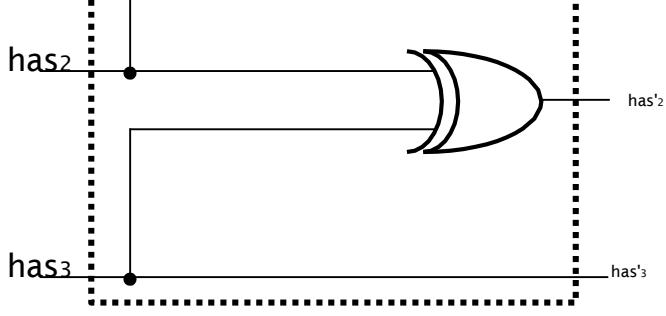


Anode display
municipalities

2.6 Transcoders

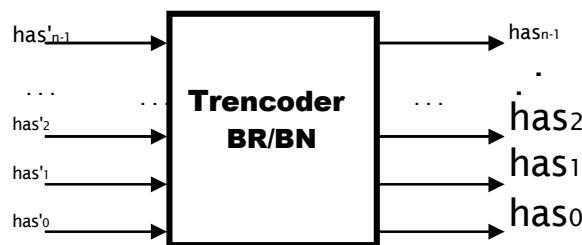

A transcoder is a circuit that allows information written in a C code to be passed1 to a C code2.

It is usually formed by a decoder cascaded with an encoder.

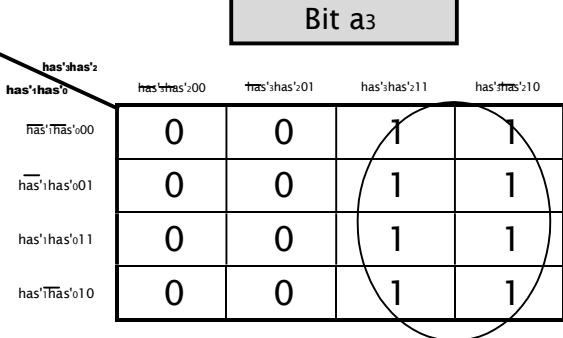
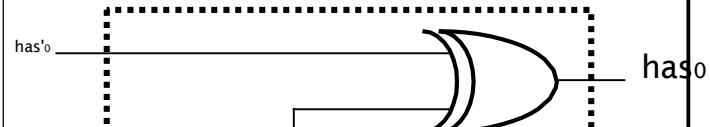
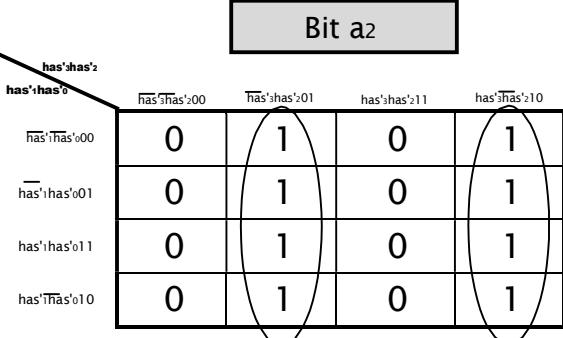
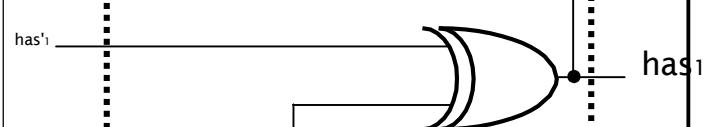
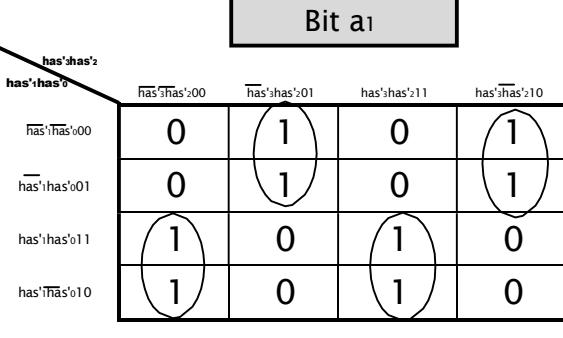
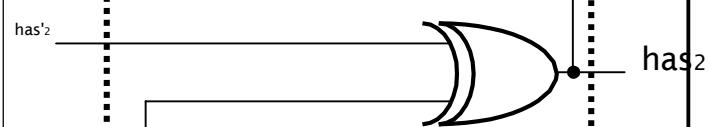
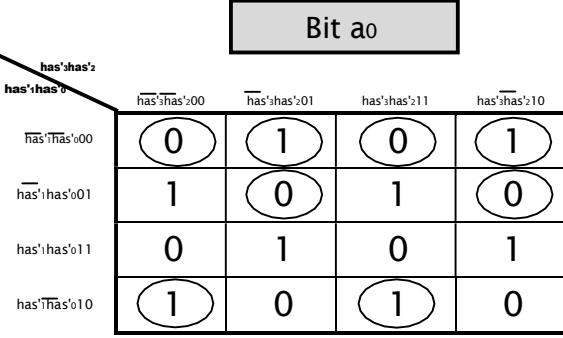



2.6.1 Natural Binary-Reflected Binary Transcoder

Example: BN/BR Transcoder (4 bits)

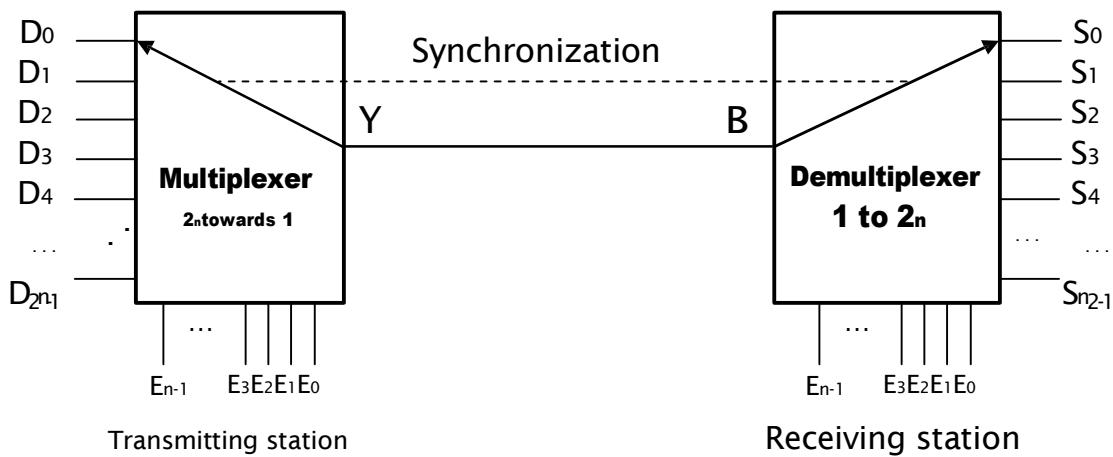


Truth table								Decimal	
BN entries				BR releases					
has	3has	2has	1has	0has'3	has'2	has'1	has'0		
0	0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	1	
0	0	1	0	0	0	1	1	2	
0	0	1	1	0	0	1	0	3	
0	1	0	0	0	1	1	0	4	
0	1	0	1	0	1	1	1	5	
0	1	1	0	0	1	0	1	6	
0	1	1	1	0	1	0	0	7	
1	0	0	0	1	1	0	0	8	
1	0	0	1	1	1	0	1	9	
1	0	1	0	1	1	1	1	10	
1	0	1	1	1	1	1	0	11	
1	1	0	0	1	0	1	0	12	
1	1	0	1	1	0	1	1	13	
1	1	1	0	1	0	0	1	14	
1	1	1	1	1	0	0	0	15	








Operating table	Output equation and flow chart																									
<div style="text-align: center; border: 1px solid black; padding: 5px; margin-bottom: 10px;">Bit a'_3</div> <table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <td></td><td>has₀</td><td>has₁</td><td>has₂</td><td>has₃</td></tr> <tr> <td>has₀</td><td>0</td><td>0</td><td>1</td><td>1</td></tr> <tr> <td>has₁</td><td>0</td><td>0</td><td>1</td><td>1</td></tr> <tr> <td>has₂</td><td>0</td><td>0</td><td>1</td><td>1</td></tr> <tr> <td>has₃</td><td>0</td><td>0</td><td>1</td><td>1</td></tr> </table>		has ₀	has ₁	has ₂	has ₃	has ₀	0	0	1	1	has ₁	0	0	1	1	has ₂	0	0	1	1	has ₃	0	0	1	1	$has'_3 = a_3$ $has'_2 = a_3 - has_2$ $has'_1 = a_2 - has_1$ $has'_0 = a_1 - has_0$
	has ₀	has ₁	has ₂	has ₃																						
has ₀	0	0	1	1																						
has ₁	0	0	1	1																						
has ₂	0	0	1	1																						
has ₃	0	0	1	1																						
<div style="text-align: center; border: 1px solid black; padding: 5px; margin-bottom: 10px;">Bit a'_2</div> <table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <td></td><td>has₀</td><td>has₁</td><td>has₂</td><td>has₃</td></tr> <tr> <td>has₀</td><td>0</td><td>1</td><td>0</td><td>1</td></tr> <tr> <td>has₁</td><td>0</td><td>1</td><td>0</td><td>1</td></tr> <tr> <td>has₂</td><td>0</td><td>1</td><td>0</td><td>1</td></tr> <tr> <td>has₃</td><td>0</td><td>1</td><td>0</td><td>1</td></tr> </table>		has ₀	has ₁	has ₂	has ₃	has ₀	0	1	0	1	has ₁	0	1	0	1	has ₂	0	1	0	1	has ₃	0	1	0	1	<pre> graph TD has0[has_0] --> inv0[Inverter] has3[has_3] --> inv0 inv0 --> has0p[has'_0] has1[has_1] --> or1[OR] has2[has_2] --> or1 or1 --> has2p[has'_2] </pre>
	has ₀	has ₁	has ₂	has ₃																						
has ₀	0	1	0	1																						
has ₁	0	1	0	1																						
has ₂	0	1	0	1																						
has ₃	0	1	0	1																						
<div style="text-align: center; border: 1px solid black; padding: 5px; margin-bottom: 10px;">Bit a'_1</div> <table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <td></td><td>has₀</td><td>has₁</td><td>has₂</td><td>has₃</td></tr> <tr> <td>has₀</td><td>0</td><td>1</td><td>1</td><td>0</td></tr> <tr> <td>has₁</td><td>0</td><td>1</td><td>1</td><td>0</td></tr> <tr> <td>has₂</td><td>1</td><td>0</td><td>0</td><td>1</td></tr> <tr> <td>has₃</td><td>1</td><td>0</td><td>0</td><td>1</td></tr> </table>		has ₀	has ₁	has ₂	has ₃	has ₀	0	1	1	0	has ₁	0	1	1	0	has ₂	1	0	0	1	has ₃	1	0	0	1	<pre> graph TD has0[has_0] --> inv0[Inverter] has3[has_3] --> inv0 inv0 --> has0p[has'_0] has1[has_1] --> or1[OR] has2[has_2] --> or1 or1 --> has2p[has'_2] </pre>
	has ₀	has ₁	has ₂	has ₃																						
has ₀	0	1	1	0																						
has ₁	0	1	1	0																						
has ₂	1	0	0	1																						
has ₃	1	0	0	1																						
<div style="text-align: center; border: 1px solid black; padding: 5px; margin-bottom: 10px;">Bit a'_0</div> <table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <td></td><td>has₀</td><td>has₁</td><td>has₂</td><td>has₃</td></tr> <tr> <td>has₀</td><td>0</td><td>0</td><td>0</td><td>0</td></tr> <tr> <td>has₁</td><td>1</td><td>1</td><td>1</td><td>1</td></tr> <tr> <td>has₂</td><td>0</td><td>0</td><td>0</td><td>0</td></tr> <tr> <td>has₃</td><td>1</td><td>1</td><td>1</td><td>1</td></tr> </table>		has ₀	has ₁	has ₂	has ₃	has ₀	0	0	0	0	has ₁	1	1	1	1	has ₂	0	0	0	0	has ₃	1	1	1	1	
	has ₀	has ₁	has ₂	has ₃																						
has ₀	0	0	0	0																						
has ₁	1	1	1	1																						
has ₂	0	0	0	0																						
has ₃	1	1	1	1																						

2.6.2 Reflected Binary Transcoder - Natural Binary

Example: BR/BN Transcoder (4 bits)


Truth table									
BR entries				BN releases					
has'_{n-3}	has'_{n-2}	has'_{n-1}	has'_{n-0}	has_{n-3}	has_{n-2}	has_{n-1}	has_{n-0}		
0	0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	1	
0	0	1	0	0	0	1	1	2	
0	0	1	1	0	0	1	0	3	
0	1	0	0	0	1	1	1	4	
0	1	0	1	0	1	1	0	5	
0	1	1	0	0	1	0	0	6	
0	1	1	1	0	1	0	1	7	
1	0	0	0	1	1	1	1	8	
1	0	0	1	1	1	1	0	9	
1	0	1	0	1	1	0	0	10	
1	0	1	1	1	1	1	0	11	
1	1	0	0	1	0	0	0	12	
1	1	0	1	1	0	0	1	13	
1	1	1	0	1	0	1	1	14	
1	1	1	1	1	1	0	1	15	

Operating table	Output equation and flowchart
Bit a3 	$has_3 = a'_3$ $has_2 = a'_2 - has'_1 = a'_2 - a'_3$ $has_1 = a_2 - has'_1$ $has_0 = a_1 - has'_0$
Bit a2 	
Bit a1 	
Bit a0 	

2.7 Multiplexers and demultiplexers

Transmitting information from one station to another requires several lines in parallel, which is difficult to achieve and very expensive when the stations are geometrically distant from each other.

The solution is then to transmit serially on a single line, using a parallel/serial converter (Multiplexer) at the transmitting station and a serial/parallel converter (Demultiplexer) at the receiving station.

2.7.1 Multiplexers

A multiplexer (MUX) is a logic circuit that has 2^n entries (D₀, D₁, D₂, ..., D_{n-1}), n selection entries (E₀, E₁, E₂, ..., E_{n-1}) and only one exit Y. It is said: MUX 2ⁿ towards 1 Or MUX 2ⁿ x 1.

Its function is to switch one of the inputs to the output based on the address code applied to the selection inputs.

Truth table

Truth table						Flowchart
Decimal	Entrances				Exits	
	E_{n-1}	... E_2	E_1	E_0	Y	
0	0	...	0	0	0	D_0
1	0	...	0	0	1	D_1
2	0	...	0	1	0	D_2
3	0	...	0	1	1	D_3
4	0	...	1	0	0	D_4
5	0	...	1	0	1	D_5
...
2^{n-1}	1	...	1	1	1	$D_{2^{n-1}}$

Multiplexer
2ⁿtowards 1

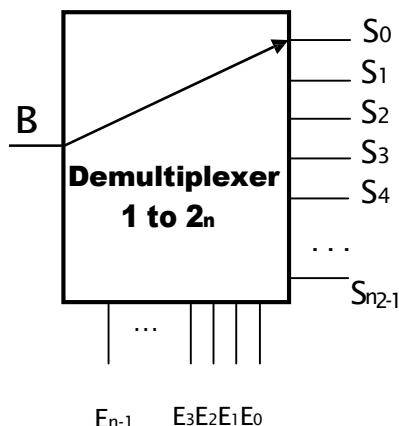
Integrated circuit:

74LS157 MUX 1 of 2

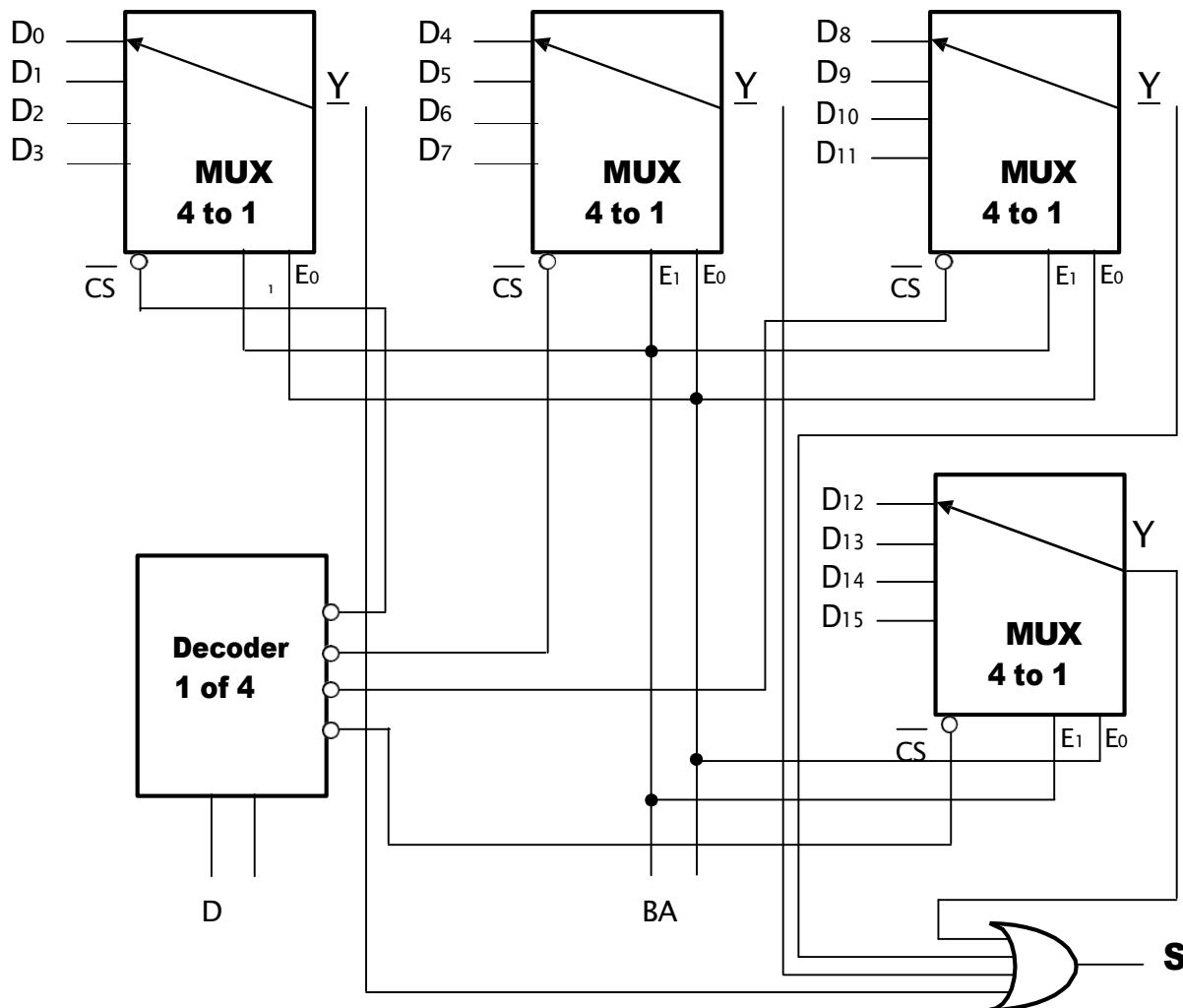
74LS153 MUX 1 of 4

74LS151 MUX 1 of 8

74LS150 MUX 1 of 16


2.7.2 Demultiplexers

A demultiplexer (DEMUX) is a logic circuit that has a single input B , n entries selection ($E_0, E_1, E_2, \dots, E_{n-1}$) And 2^n exits ($S_0, S_1, S_2, \dots, S_{n-1}$). It is said: DEMUX 1 to 2^n Or DEMUX 1×2^n .


It performs the inverse function of a multiplexer, it transmits the input data to one of the outputs according to the word written to the selection inputs, it works like a switch.

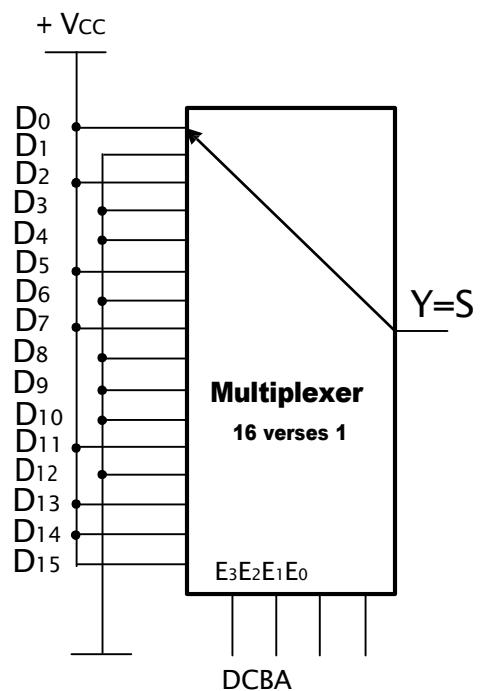
 Truth table

Decimal	Entrances					Exits				
	E_{n-1}	...	E_2	E_1	E_0	S_0	S_1	S_2	...	S_{n-1}
0	0	...	0	0	0	B	0	0	...	0
1	0	...	0	0	1	0	B	0	...	0
2	0	...	0	1	0	0	0	B	...	0
3	0	...	0	1	1	0	0	0	...	0
4	0	...	1	0	0	0	0	0	...	0
5	0	...	1	0	1	0	0	0	...	0
...
2^{n-1}	1	...	1	1	1	0	0	0	...	B

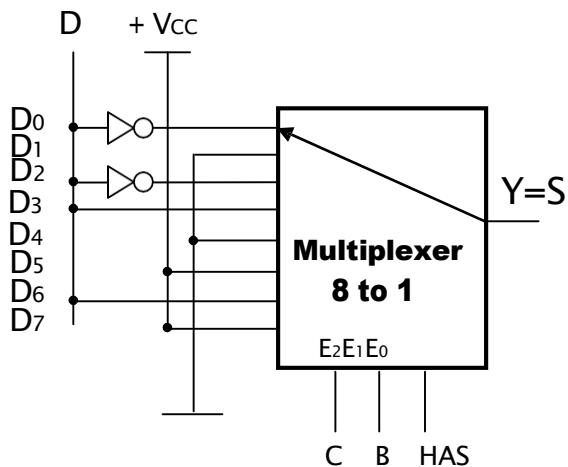
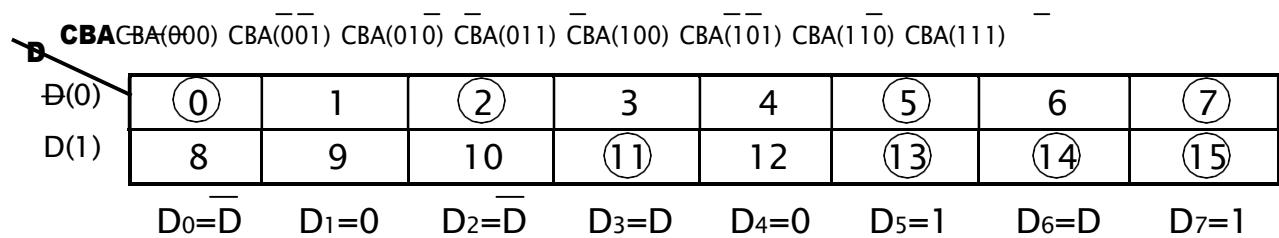
 Flowchart
Integrated circuit:**4067 DEMUX 1 to 16****74LS154 DEMUX 1 to 16****74LS138 DEMUX 1 to 8****74LS156 DEMUX 1 to 4**

2.7.3 Realization of a 1 of 16 multiplexer using 4 1 of 4 multiplexers and a 1 of 4 decoder

2.7.4 Implementation of logic functions using multiplexers


Issue

Let the function F be $F = \sum_{(A, B, C, D)} (0, 2, 5, 7, 11, 13, 14, 15)$. Perform this function using a multiplexer.

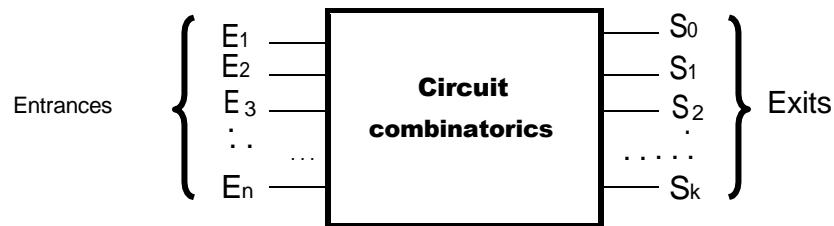


Solution

Using a 16 to 1 multiplexer (number of variables equal to the number of selection inputs).

Decimal	Entrances				Exits	
	$E_3=D$	$E_2=C$	$E_1=B$	$E_0=A$	Y	S
0	0	0	0	0	D_0	1
1	0	0	0	1	D_1	0
2	0	0	1	0	D_2	1
3	0	0	1	1	D_3	0
4	0	1	0	0	D_4	0
5	0	1	0	1	D_5	1
6	0	1	1	0	D_6	0
7	0	1	1	1	D_7	1
8	1	0	0	0	D_8	0
9	1	0	0	1	D_9	0
10	1	0	1	0	D_{10}	0
11	1	0	1	1	D_{11}	1
12	1	1	0	0	D_{12}	0
13	1	1	0	1	D_{13}	1
14	1	1	1	0	D_{14}	1
15	1	1	1	1	D_{15}	1

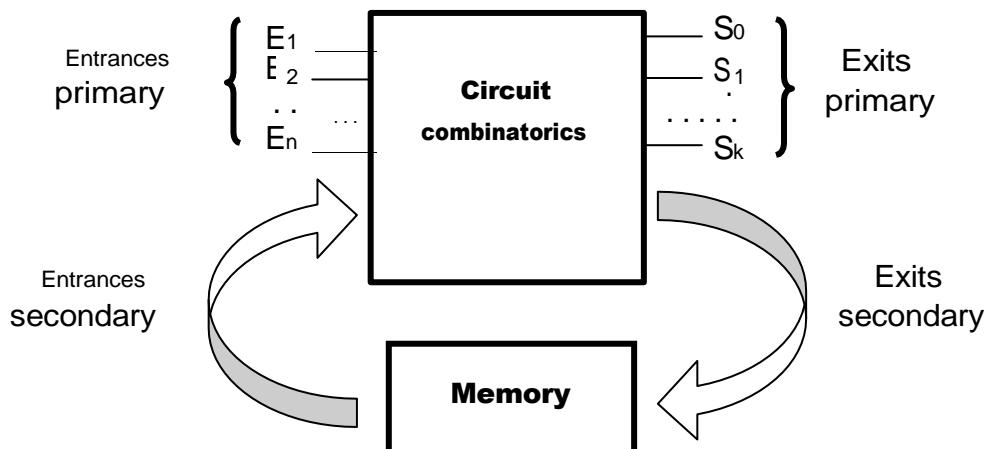
Using an 8 to 1 multiplexer (number of variables less than the number of selection inputs).

CHAPTER 5
SEQUENTIAL LOGIC


1. OBJECTIVES

- ⊕ Treat sequential systems in detail.
- ⊕ Understanding flip-flops.

2. INTRODUCTION


2.1 Reminder on combinational circuits

In a combinational system, the outputs depend only on the state of the inputs at a given time.

2.2 Sequential circuits

The output function of sequential systems depends in addition to the states of the inputs (called primary inputs) on the previous states of the outputs (called secondary inputs). The sequential circuit is said to have a memory function.

Sequential systems are classified into 2 categories:

 Asynchronous sequential circuits

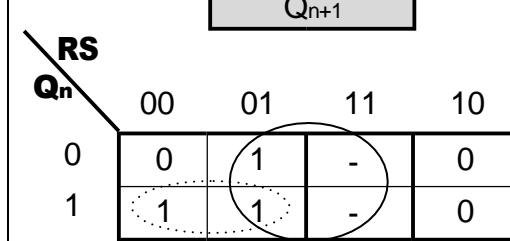
In asynchronous sequential circuits, the outputs change states as soon as the input states change.

Synchronous sequential circuits

In this type of circuit the outputs change state after having been authorized by a synchronization signal often called "Clock" signal noted H or CLK.

3. ASYNCHRONOUS FLIP-FLOATS

The flip-flop is the most common memory circuit. It also serves to create a frequency divider by two. It is a sequential system consisting of one or two inputs and two complementary outputs.

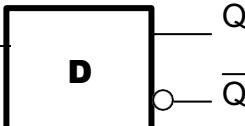


The flip-flop is the most common storage circuit. It also serves to create a frequency divider by two. It is a sequential system consisting of one or two inputs and two complementary outputs.

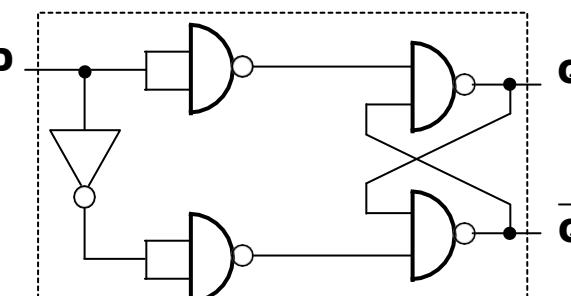
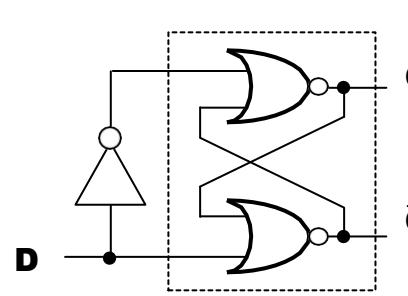

It is called a "bistable flip-flop" because it has two stable states. There are 4 types of flip-flops:RS,D,JK, AndT.

3.1 RS rocker

Truth table						Output equation
Entrances			Exits		Mode of nctioning	Q_{n+1}
R	S	Q_n	$Q_{n+1}Q$	$n+1fu$		
0	0	0	0	1	Previous state	
0	0	1	1	0	Previous state	
0	1	0	1	0	Engagement	
0	1	1	1	0	Maintain at 1	
1	0	0	0	1	Maintain at 0	
1	0	1	0	1	Triggering	
1	1	0	-	-	Forbidden	
1	1	1	-	-	Forbidden	

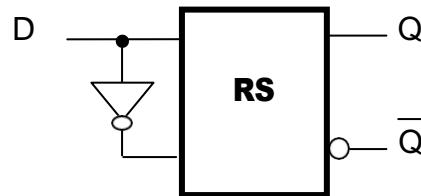


$$Q_{n+1} = \overline{R}Q_n + S$$

NB: The state $R=S=1$ is a forbidden state since it gives us the two complementary outputs Q and Q in the same state which is not logical.

3.2 D-Flip

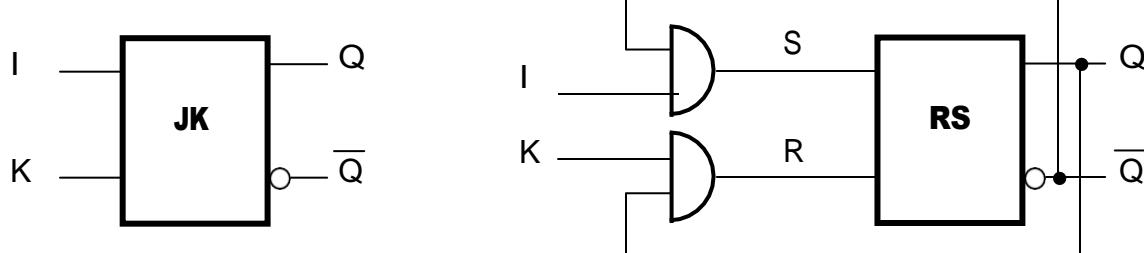

Symbol	Explanation
	A press on D-Up to 1 of Q A release of D-Reset to 0Q

Truth table				Output equation
Entrances		Exits		Mode of functioning
D	Q _n	Q _{n+1}	Q _{n+1}	
0	0	0	1	Maintain at 0: -0
0	1	0	1	Trigger: -
1	0	1	0	Engagement: -
1	1	1	0	Maintain at 1: -1

Flowchart	
Using NAND gates	Using NOR gates

Noticed: By putting S=D and R=D in the seesaw equation RS we will have $Q_{n+1} = DQ_n + D = D(1+Q_n) = D$.

So we get a flip-flop D by adding an inverter between S And R.



3.3 JK rocker

Unlike the seesaw RS, the condition $J=K=1$, does not give rise to an indeterminate condition, but on the other hand the flip-flop goes to the opposite state.

Truth table					Output equation
Entrances			Exits		Mode of functioning
I	K	Q _n	Q _{n+1}	Q _{n+1}	
0	0	0	0	1	Previous state
0	0	1	1	0	Previous state
0	1	0	0	1	Maintain at 0: - ₀
0	1	1	0	1	Trigger: -
1	0	0	1	0	Engagement: -
1	0	1	1	0	Maintain at 0: - ₁
1	1	0	1	0	Engagement: -
1	1	1	0	1	Trigger: -

$Q_{n+1} = JQ_n + \bar{K}Q_n$

3.4 T-toggle

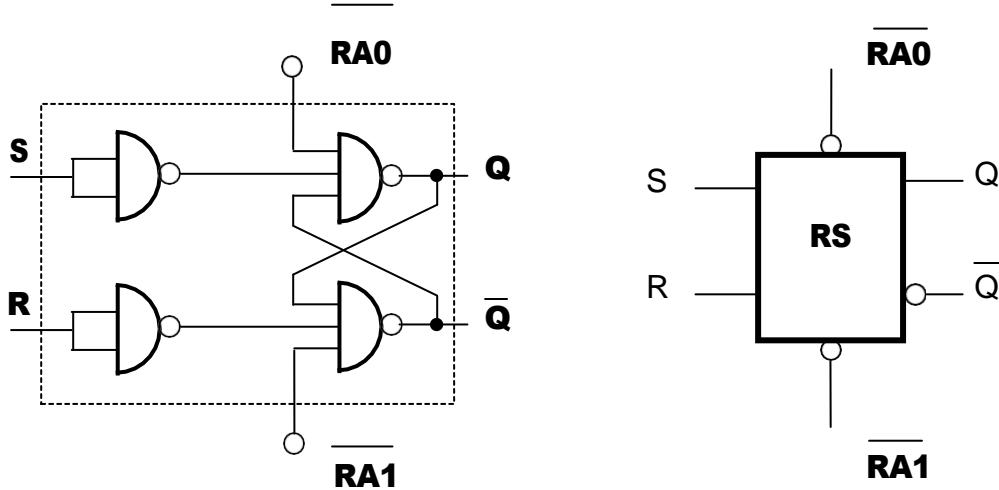
The seesaw T is obtained by connecting the inputs I And K of a seesaw JK.

Truth table				Output equation
Entrances		Exits		Mode of functioning
T	Q_n	Q_{n+1}	\bar{Q}_{n+1}	
0	0	0	1	Maintain at 0: -0
0	1	1	0	Maintain at 1: -1
1	0	1	0	Engagement: -
1	1	0	1	Trigger: -

$$Q_{n+1} = \overline{TQ_n} + \overline{TQ_n} = TQ_n$$

$$Q_{n+1}$$

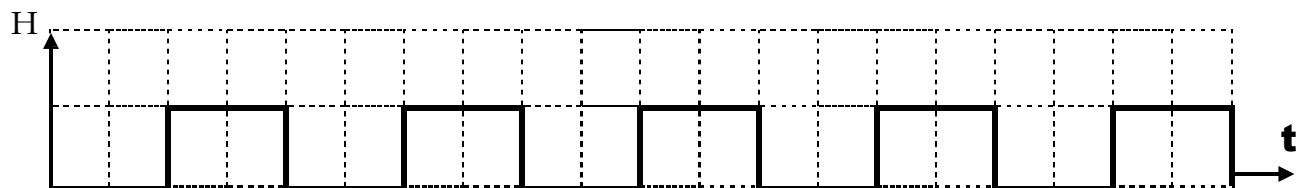
T	Q_n	0	1
0	0	0	1
1	1	1	0


Noticed : \underline{En} refill there client I And K by T in the seesaw equation JK we will have $Q_{n+1} = TQ_n + \overline{TQ_n} = TQ_n$.

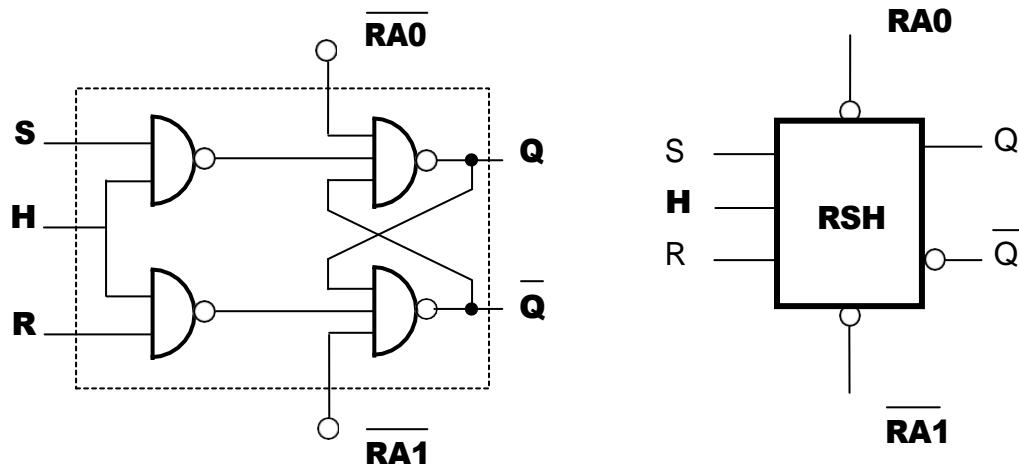
3.5 Forcing the flip-flops

Some scales are equipped with special inputs:

- ⊕ Reset input: PRESET (RA1),
- ⊕ Reset input: RESET (RA0),


The same reasoning is applied to the D, T and JK flip-flops.

3.5.1 Truth table


Entrances		Exits		Mode of functioning
PRESET	CLEAR	Q_{n+1}	\bar{Q}_{n+1}	
0	0	Q_n	\bar{Q}_n	Memorization
0	1	0	1	Force to 1
1	0	1	0	Force to 0
1	1	-	-	Forbidden

4. SYNCHRONOUS FLIP-FLOPS

A flip-flop is synchronous when its outputs only change state if an additional signal is applied to an input, called input clock (noted HOrCLK).

4.1 Synchronization on high level

- If $H=0$: the exits S And R are stuck at 1 whatever they are R And S , (inputs are hidden from outputs) the output keeps the previous state.
- If $H=1$: the seesaw RS works normally the outputs obey the entries.
- So the switch RS only works normally if $H=1$ (High Level).
- Same thing for the other switches.

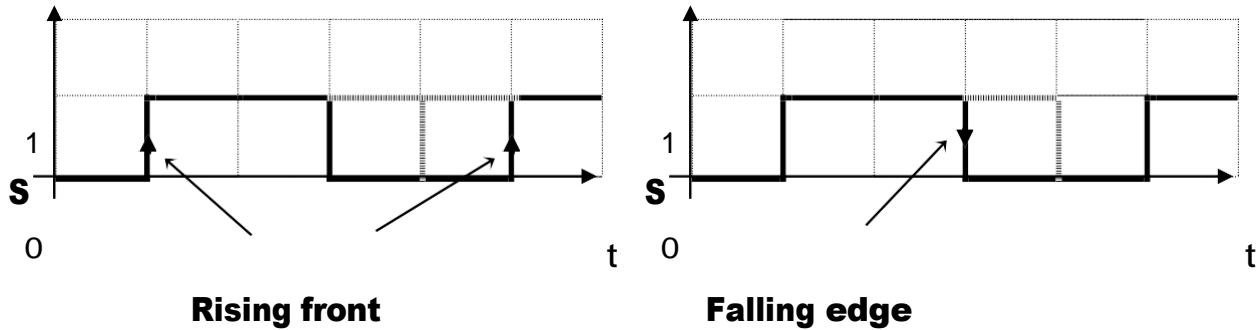
4.2 Synchronization on high level

At the lower level, the opposite is true:

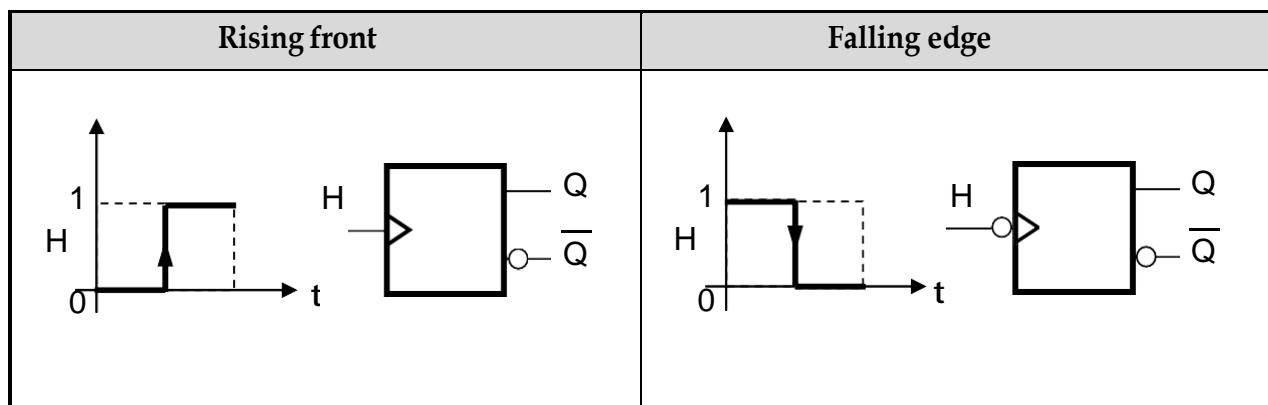
- ⊕ If $H=1$: Q keeps the previous state.
- ⊕ If $H=0$: Normal operation of the scale.

- ⊕ If $H=1$: the S and R inputs are stuck at 1 whatever they are R and S , (inputs are hidden from outputs) the output keeps the previous state.
- ⊕ If $H=0$: the flip-flop works normally the outputs obey the inputs.
- ⊕ So the switch R only works normally if $H=0$ (Low level). The synchronous flip-flop is identical to the asynchronous one.
- ⊕ Same thing for the other switches.

Noticed :

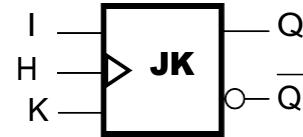

This type of synchronization (on level) has many disadvantages: the flip-flop is sensitive to inputs for the entire duration of the clock state for high level (or 0 for low level). If, while $H = 1$ (or $H = 0$), parasites appear on the S and R inputs, they can cause unexpected state changes on the Q output.

In order to minimize the duration of this sensitive state as much as possible, we arrange for the flip-flop to remain in its memory state except for a brief instant, just when the input changes from 0 to 1 (or from 1 to 0).

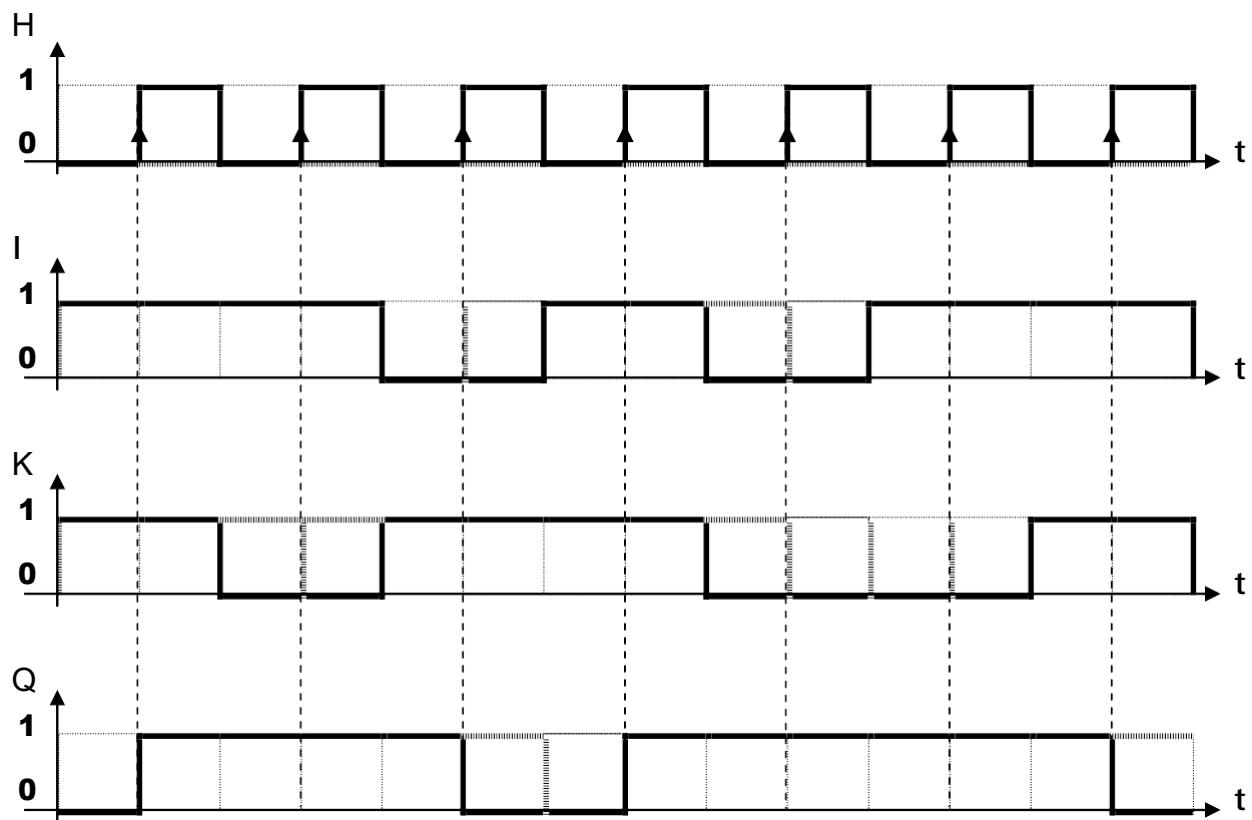

The flip-flop is said to be edge-synchronized.

4.3 Edge synchronization

A logical variable S can have two levels: high level (True) or low logic level (False). When it goes from low level to high level, it sets the rising front. Otherwise, it defines the falling edge.

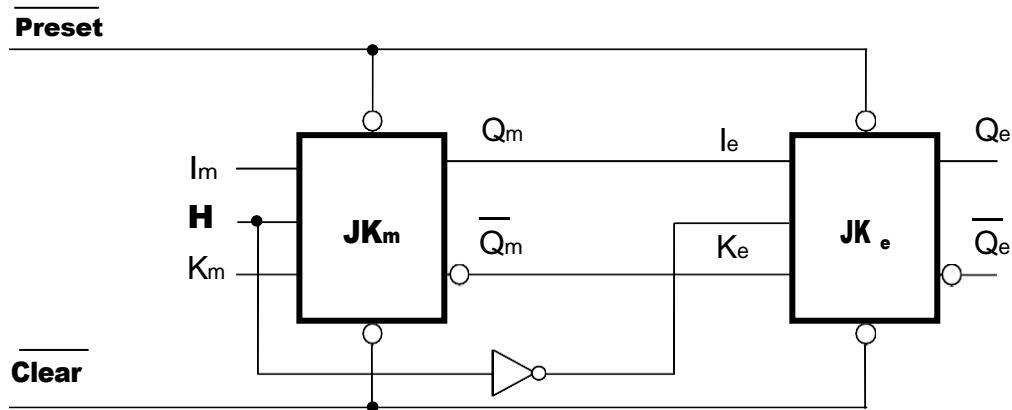


Symbol :

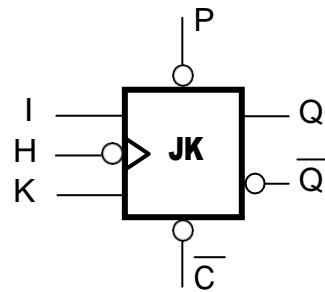


4.4 Operating principle of a JK flip-flop synchronized on rising edge

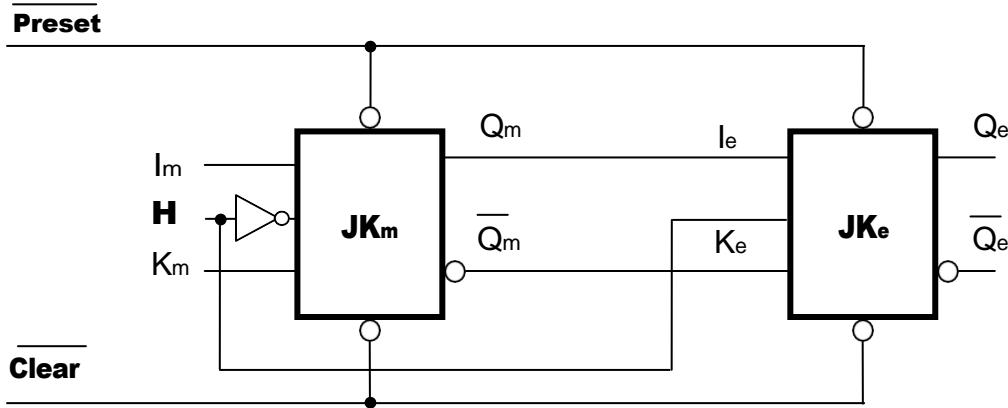
Operating table					Symbol
Entrances			Exits		Mode of operation
H	I	K	Q_{n+1}	\bar{Q}_{n+1}	
0	x	x	Q_n	\bar{Q}_n	Previous state
1	x	x	Q_n	\bar{Q}_n	Previous state
-	x	x	Q_n	\bar{Q}_n	Previous state
-	0	0	Q_n	Q_n	Previous state
-	0	1	0	1	Trigger: -
-	1	0	1	0	Engagement: -
-	1	1	Q_n	Q_n	change of state



Timeline:

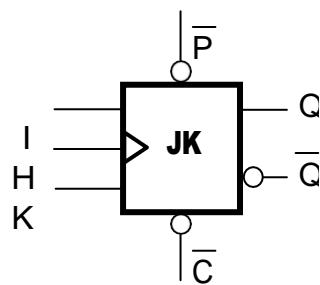

4.5 JK master slave switch

4.5.1 Synchronization on rising edge

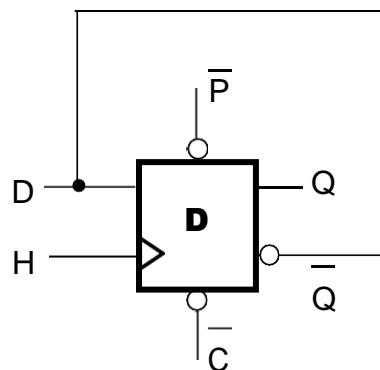


Both flip-flops operate normally if PRESET=CLEAR=1 and if $H=1$ the first flip-flop operates normally while the second is blocked and when $H=0$ the first flip-flop is blocked while the second operates normally and the two flip-flops only work together at the time of passage of H from 1 to 0, that is to say at the moment of the falling edge (-).

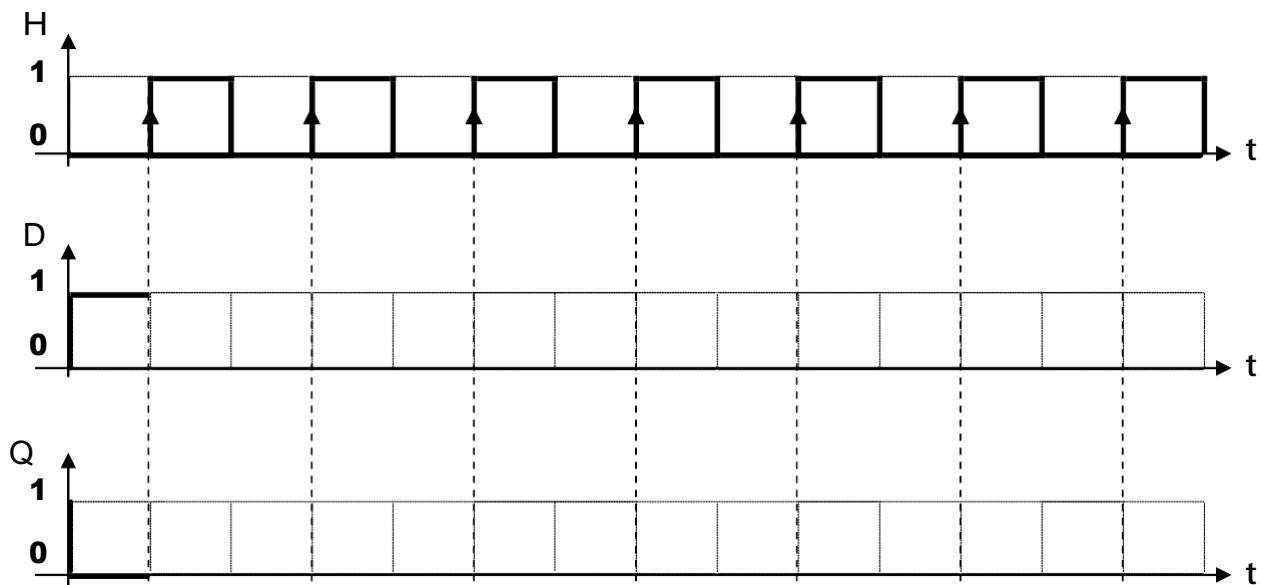
So any master-slave flip-flop where the master is working on the high level and the slave is working on the low level is a falling-edge synchronized flip-flop.



4.5.2 Synchronization on rising edge


The two flip-flops operate normally if PRESET=CLEAR=1 and if $H=0$ the first flip-flop operates normally while the second is blocked and when $H=1$ the first flip-flop is blocked while the second operates normally and the two flip-flops only operate together at the moment of passage of H from 0 to 1, that is to say at the moment of the rising edge (-).

So any master-slave flip-flop where the master is working on the low level and the slave is working on the high level is a rising-edge synchronized flip-flop.



Exercise

Let's take the following setup:

Complete the chronogram of D and Q. Deduce the function thus produced.

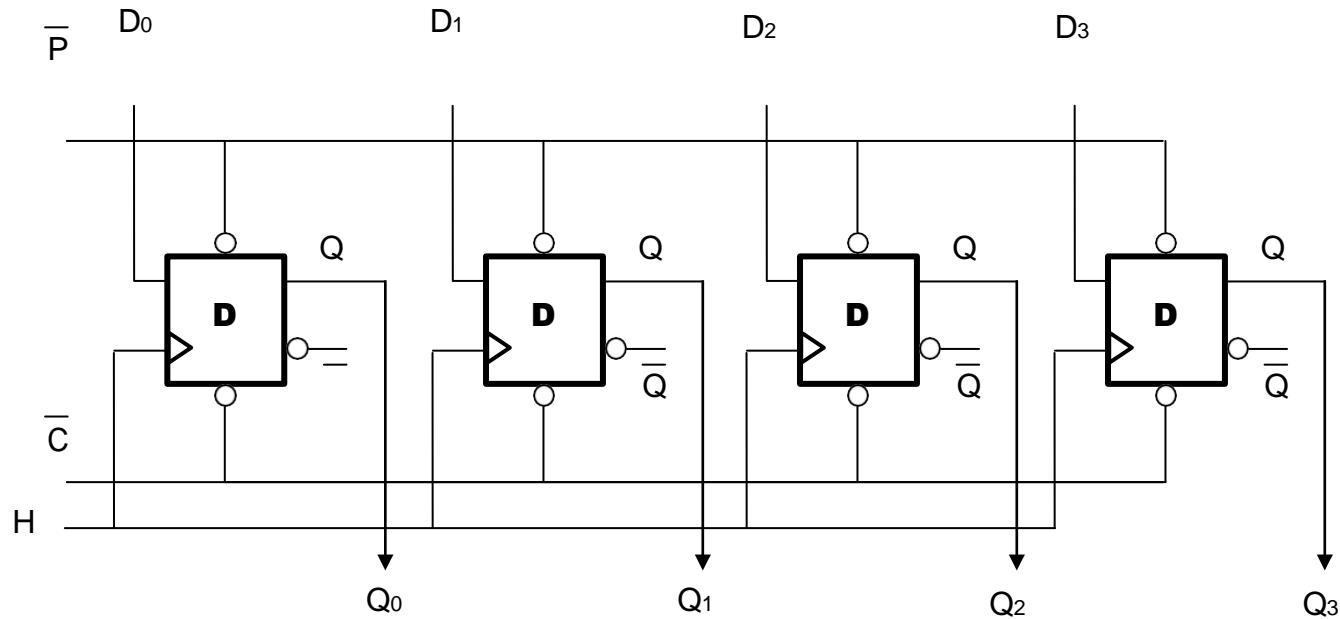
1.1 Summary

Synchronization on high level	Synchronization on low level	Synchronization on rising front	Synchronization on falling edge

CHAPTER 6
THE REGISTERS

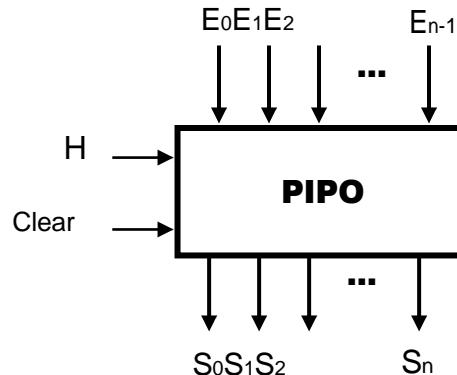
1. OBJECTIVES

- ⊕ Study the different types of register
- ⊕ Know the operating principle of each type.


2. GENERAL INFORMATION

- ⊕ A register is a collection of basic memory cells.
- ⊕ Data can be written/read at the same time (parallel) or one after the other (serial).
- ⊕ The number of bits in the register corresponds to the number of memory cells (number of D or JK flip-flops) in the register.
- ⊕ Note that all clock inputs (H) of the cells are connected (write line).
- ⊕ The registers are classified by:
 - ✓ The number of bits.
 - ✓ The operating mode (single or multiple).
- ⊕ The classification of operating modes is as follows:
 - ⊕ Parallel input and parallel output registers:PIPO(*Parallel IN-Parallel OUT*).
 - ⊕ Parallel input and serial output registers:PISO(*Parallel IN-Serial OUT*).
 - ⊕ Registers with serial inputs and parallel outputs:SIP0(*Serial IN - Parallel OUT*).
 - ⊕ Serial input and serial output registers:SISO(*Serial IN- Serial OUT*).

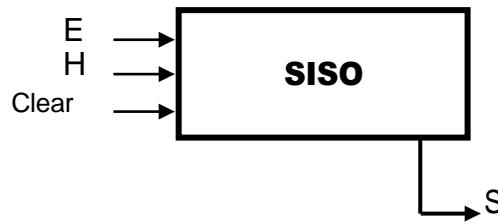
3. STORAGE REGISTER (Parallel Register)


A storage register (or data register) is a register in which the different stages are independent of each other, however certain signals act on all the stages; such as reset to 0 and reset to 1.

3.1 bit storage register

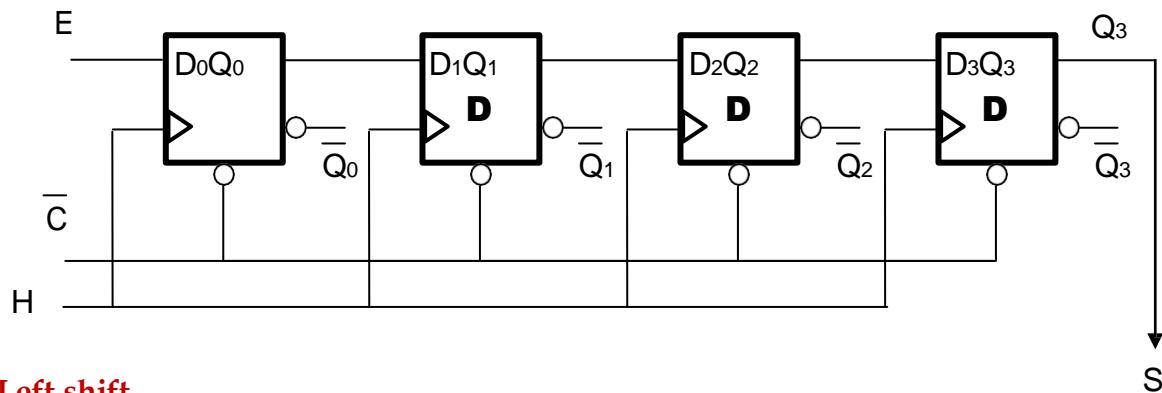
In the example below, the 4 flip-flops are loaded in parallel and read in parallel synchronously with the write signal H. This type of register is also called a registerPIPO.

3.2 Functional diagram of a PIPO register

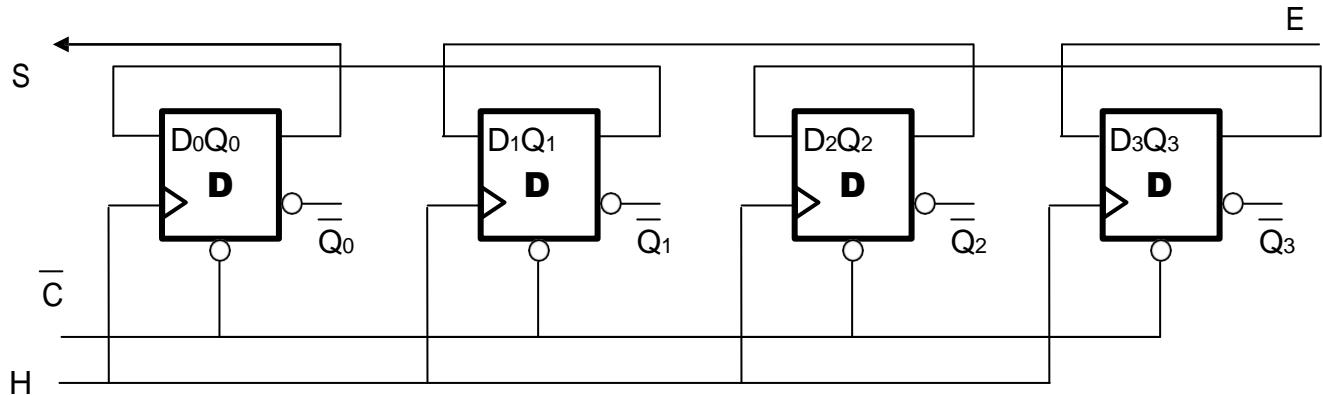


4. SHIFT REGISTER (Serial Register)

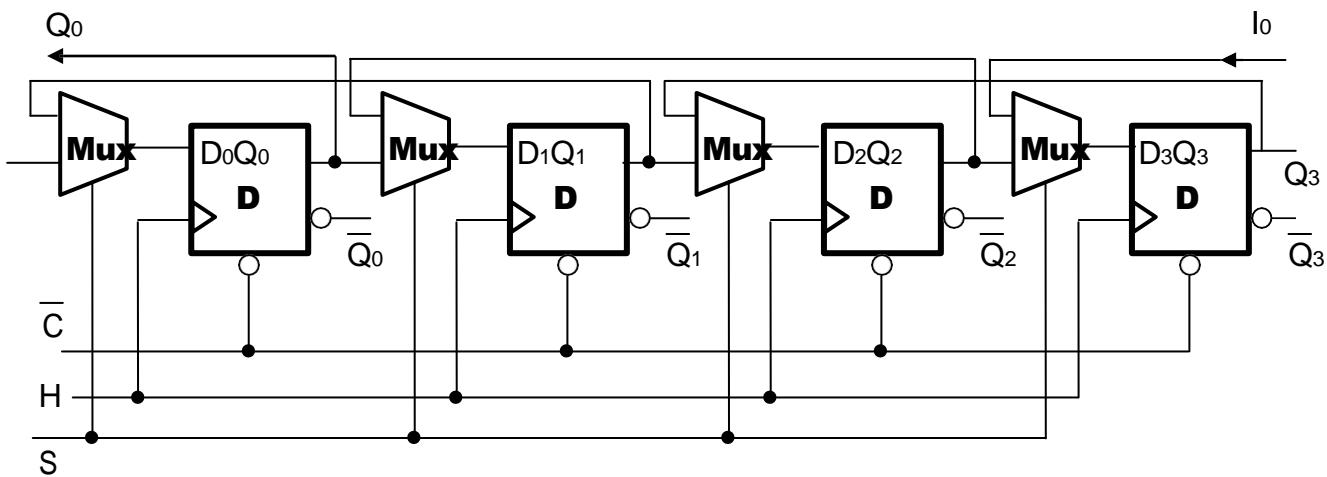
This type of register is mainly used as dynamic information memory; the shift function consists of sliding the information from each elementary cell into another adjacent elementary cell.


This type of register is also called a registerSISO.

4.1 Functional diagram


4.2 Right shift

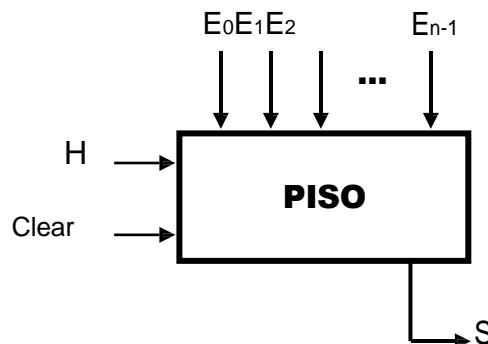
The flip-flop of rank i must copy the output of the flip-flop of rank $(i-1)$ so its input must be connected to the output $(i-1)$.


4.3 Left shift

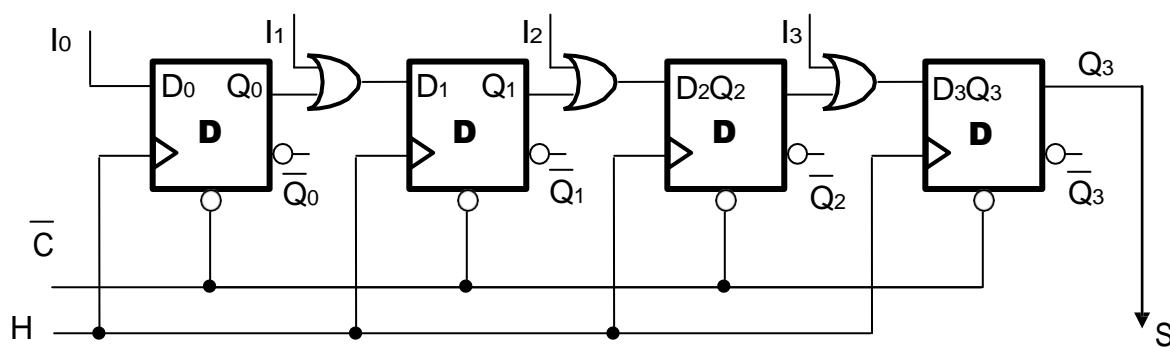
The input of the flip-flop of rank i must copy the output of the flip-flop of rank $(i+1)$.

4.4 Reversible shift

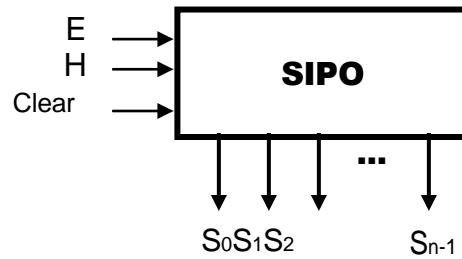
There are reversible shift registers, that is to say registers where the shift is carried out to the right and to the left depending on the logic level applied to the S input: "shift direction".

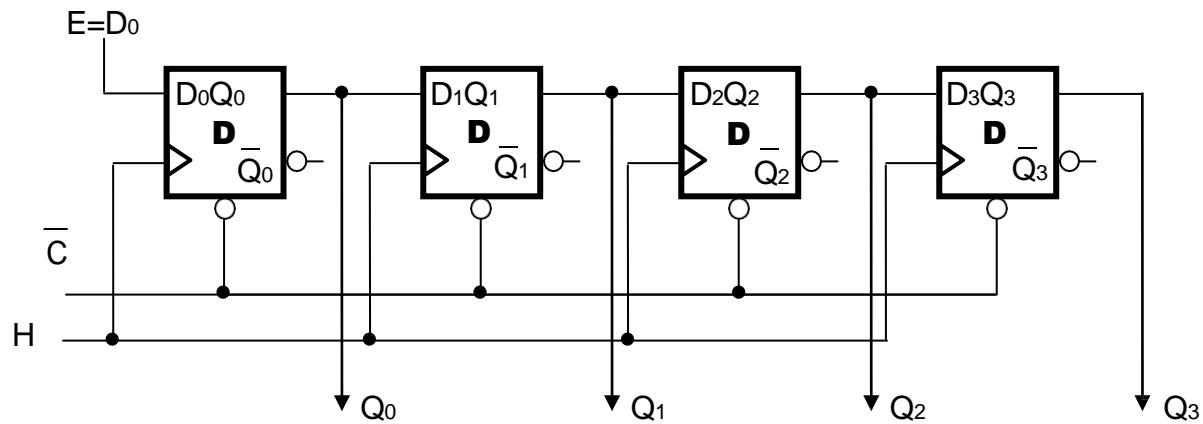

Depending on the value of the input S , we have the following operation:

S	Operation
0	Left shift
1	Right shift


5. MIXED REGISTER

We can find mixed registers, so we can write in parallel and read in serial (PISO), or vice versa (PISO), or which offer both possibilities “to choose from”.


5.1 PISO Registry


5.1.1 Flowchart using D flip-flops

5.2 SIPO Register

Flowchart using D flip-flops

5.3 Application example

Two types of registers (PISO And SIPO) are used in serial connections; they form the basis of modems. For example, if we want to transmit information between two computers a few dozen meters apart. Transmitting information in parallel requires a lot of wires and is very expensive. The solution is then to use a register PISO to send the bits on a single line. At the end of which, a register SIPO receives these bits and reconstructs bytes which are transmitted to the destination computer.

CHAPTER 7
THE COUNTERS

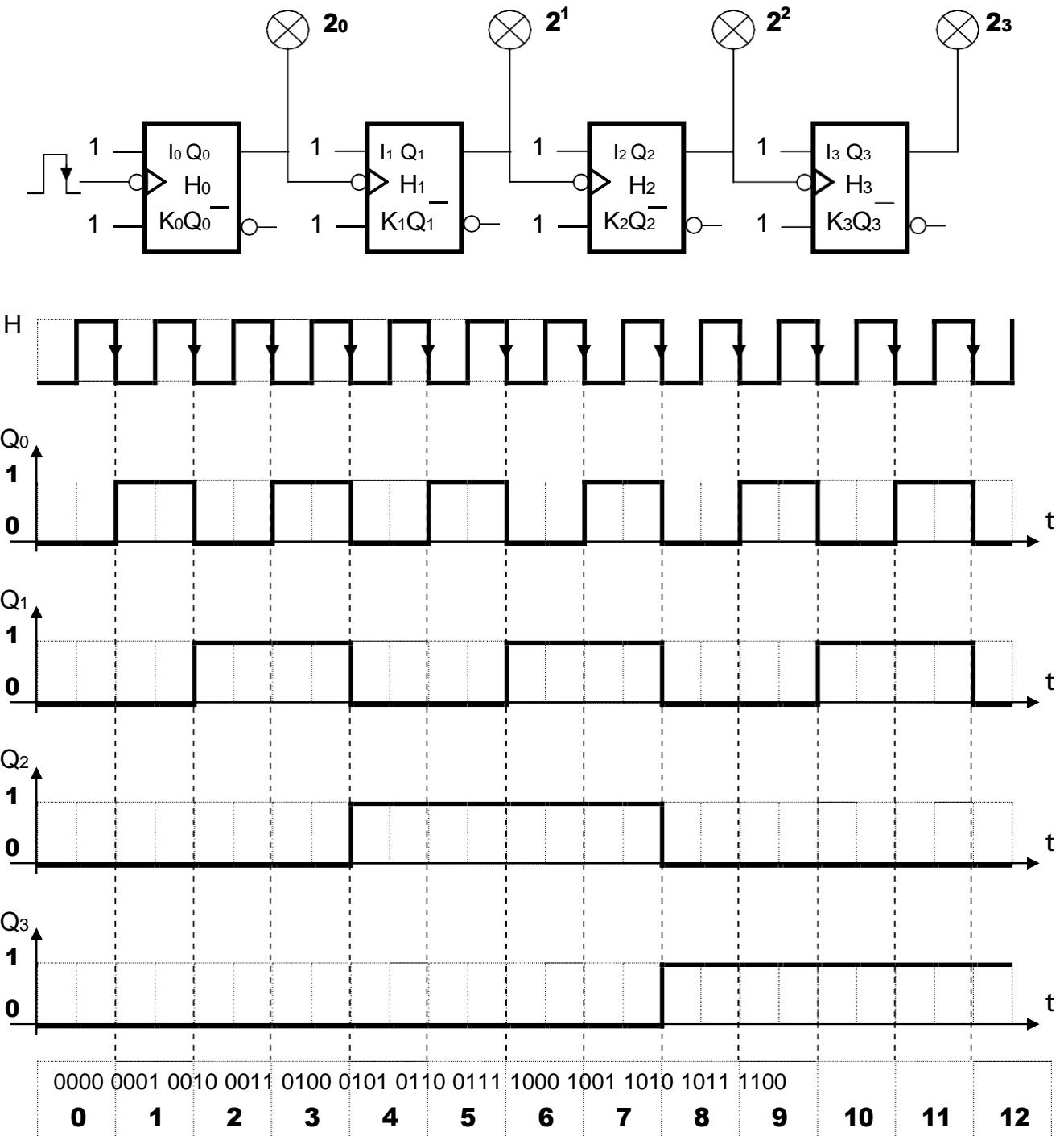
1. OBJECTIVES

- Study the different types of meters.
- Understand the operating principle of each type.
- Master the steps of synthesizing a counter.

2. INTRODUCTION

In many applications we are led to do counting: counting pulses in a given time for frequency measurement for example. In one case it is necessary to count in other it is necessary to count down from zero or another given number. A counter, in the broad sense of the term, will be likely to function as a counter itself (up counter) or even in down counter (down counter) and in which we can introduce any starting number, that is to say that we can initialize or load.

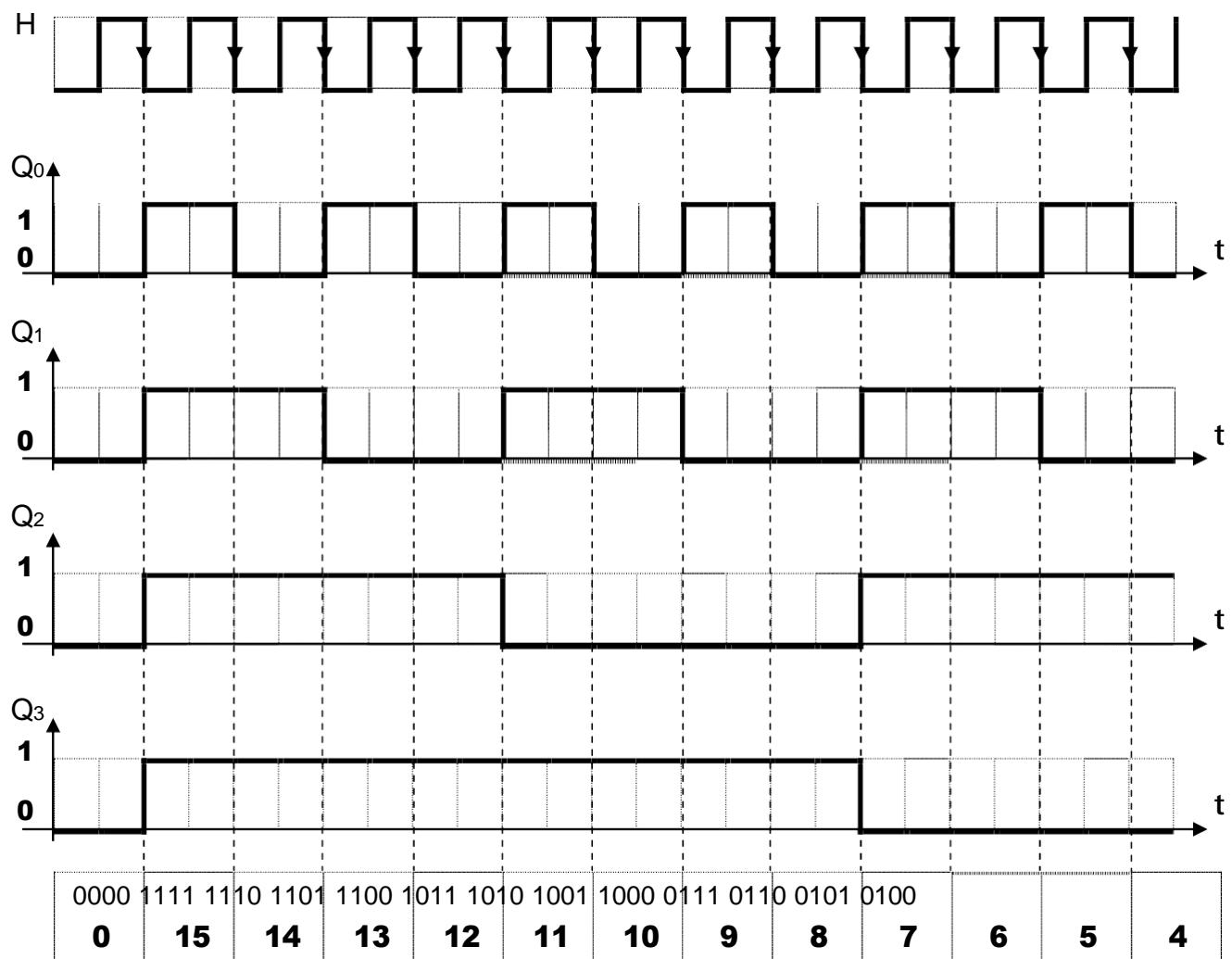
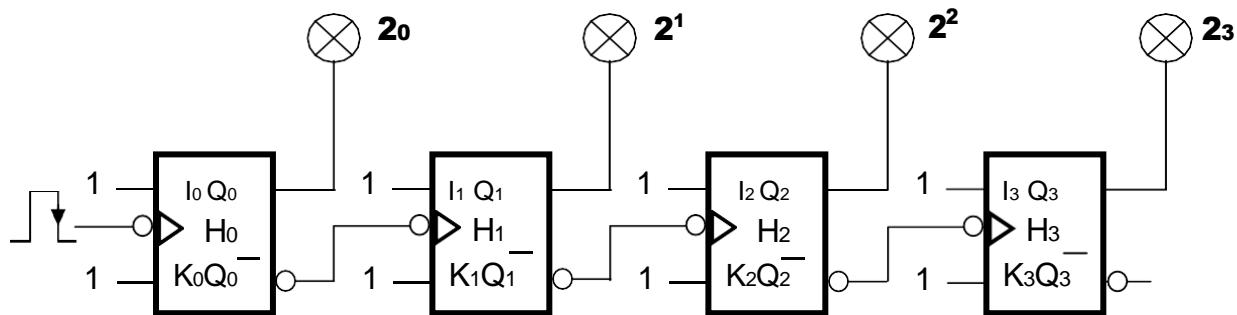
Counters can be classified according to their principle as follows:


- Asynchronous up-down counters.
- Synchronous up-down counters.
- The basic element of counters is a clock-input flip-flop (synchronous flip-flop), either D, T, or JK type.

3. ASYNCHRONOUS COUNTERS AND DOWNCOUNTERS:

The term asynchronous means that the events have no temporal relationship to each other. The flip-flops forming an asynchronous counter do not change state at the same time, because they are not connected to the same clock signal, the periodic triggering only on the first flip-flop of the counter. The triggering of the following flip-flops is done step by step so that the output Q_{n+1} will be applied to the Q_n clock depending on whether we are working on a rising or falling edge and whether we want to obtain an up or down counter.

This type of meter is generally simple to make and has the disadvantage of generating operating hazards (propagation delay).



3.1 Asynchronous counters

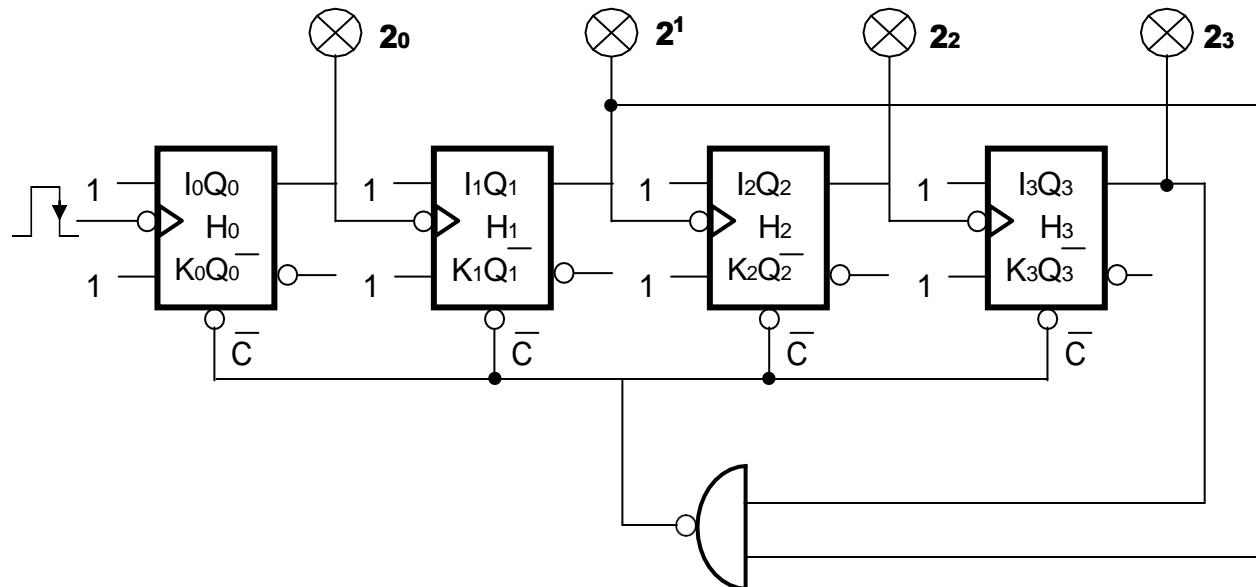
We therefore obtain a Counter asynchronous modulo 16.

The same counter can be made using stockingsc ules synchronized on rising edge whose clock Hiwill be connected to output Q_{i-1} .

3.2 Asynchronous downcounters

We therefore obtain a Down counter asynchronous modulo 16.

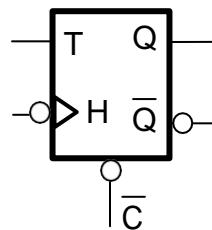
- The same counter can be made using `stockingscules` synchronized on rising edge whose clock `Hi` will be connected to output `Qi-1`.

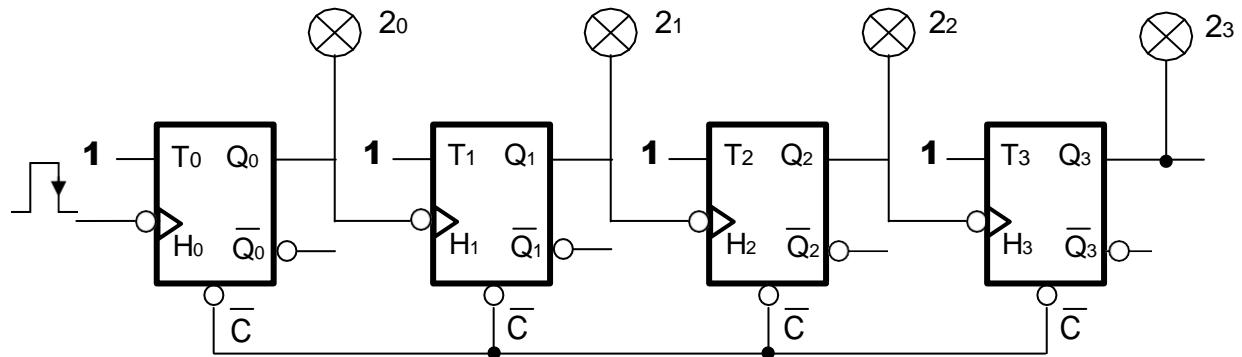
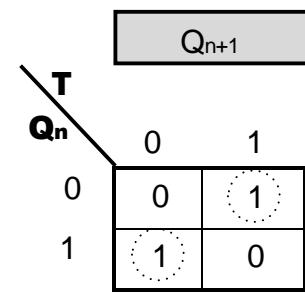

3.3 Truncated sequence:

The modulo is the number of distinct states occupied by a counter before it is recycled to the initial state. The maximum number of possible states, or maximum modulo, of a counter is equal to 2^n , where n represents the number of flip-flops in the counter.

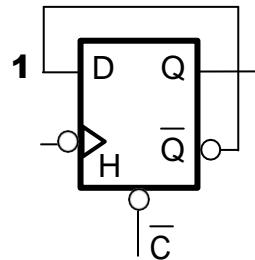
We can construct counters to obtain a sequence whose number of states is less than 2^n . The sequence is then called a truncated sequence.

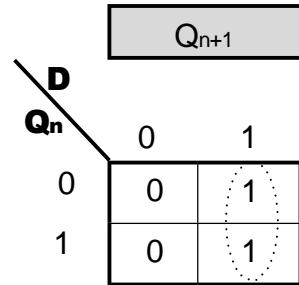
To obtain a truncated sequence, it is necessary to force the recycling of the counter before the latter has occupied all the states. It is necessary to have flip-flops equipped with reset predisposition inputs. 0 RA0 (also known RESET).

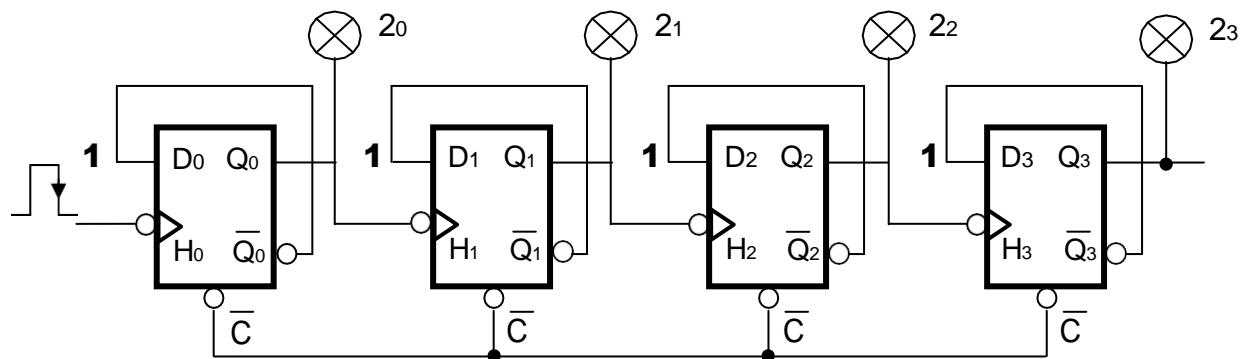

Example of a modulo 10 counter (decade counter)



3.4 Using other toggles

Other types of flip-flops can be used to make up/down counters. asynchronous:

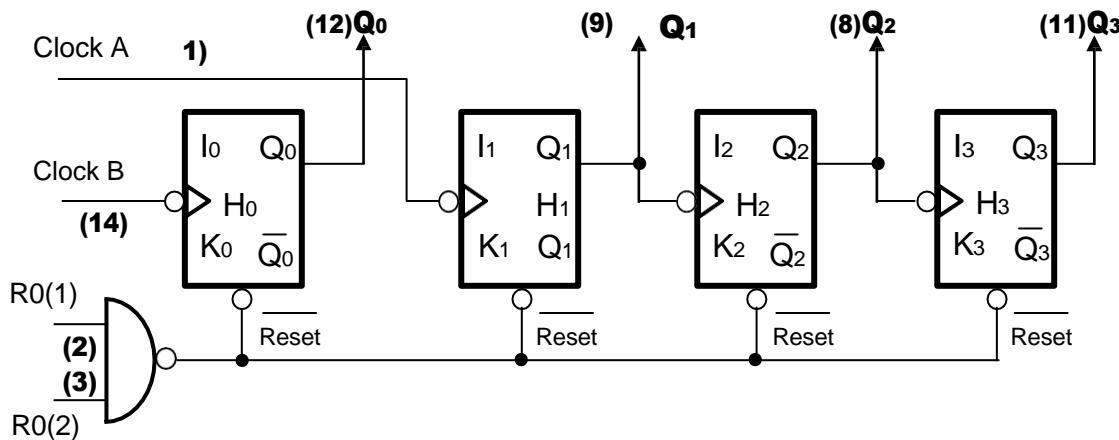

3.4.1 T-toggle:

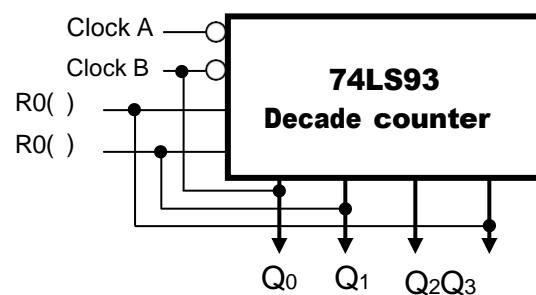
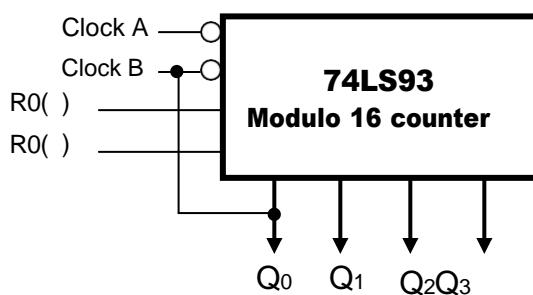

This type of flip-flops change states at each clock pulse, if the input $T=1$, so we can build asynchronous up/down counters based on T flip-flops using the assembly below.



3.4.2 Flip-flop D:

This type of flip-flops change state at each clock pulse. The trigger is performed if $D=1$ and the trigger is performed if the D input=0, so if we connect D to Q , we obtain a change of state at each clock pulse. We can build asynchronous up/down counters based on D flip-flops using the circuit below:





3.5 Integrated counter 7493:

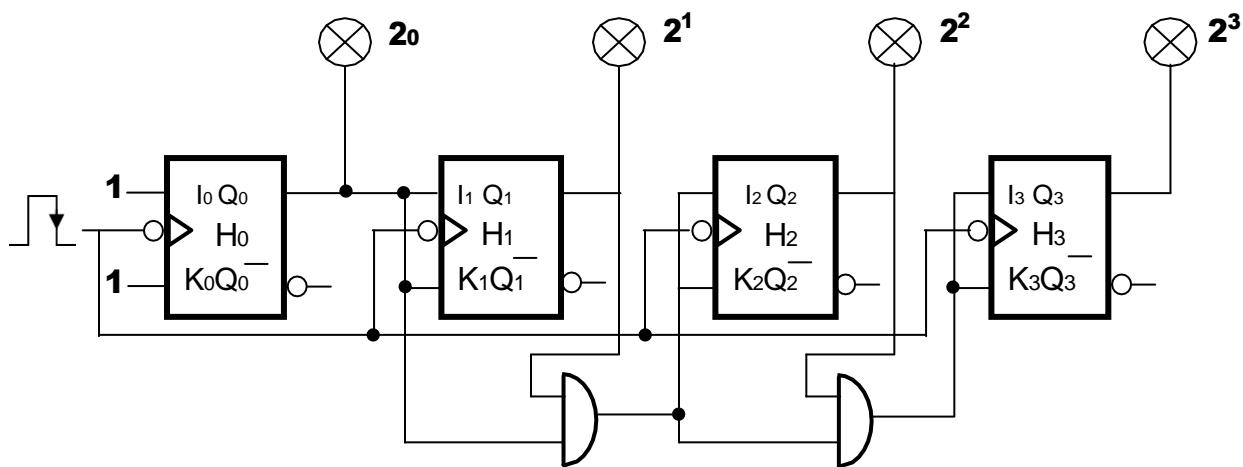
The 74LS93 integrated circuit is an example of an asynchronous counter. It consists of a flip-flop and a 3-bit asynchronous counter. It has reset inputs connected to a NAND gate, designated R0(1) and R0(2). When these two inputs are HIGH, the counter is initialized to 0000.

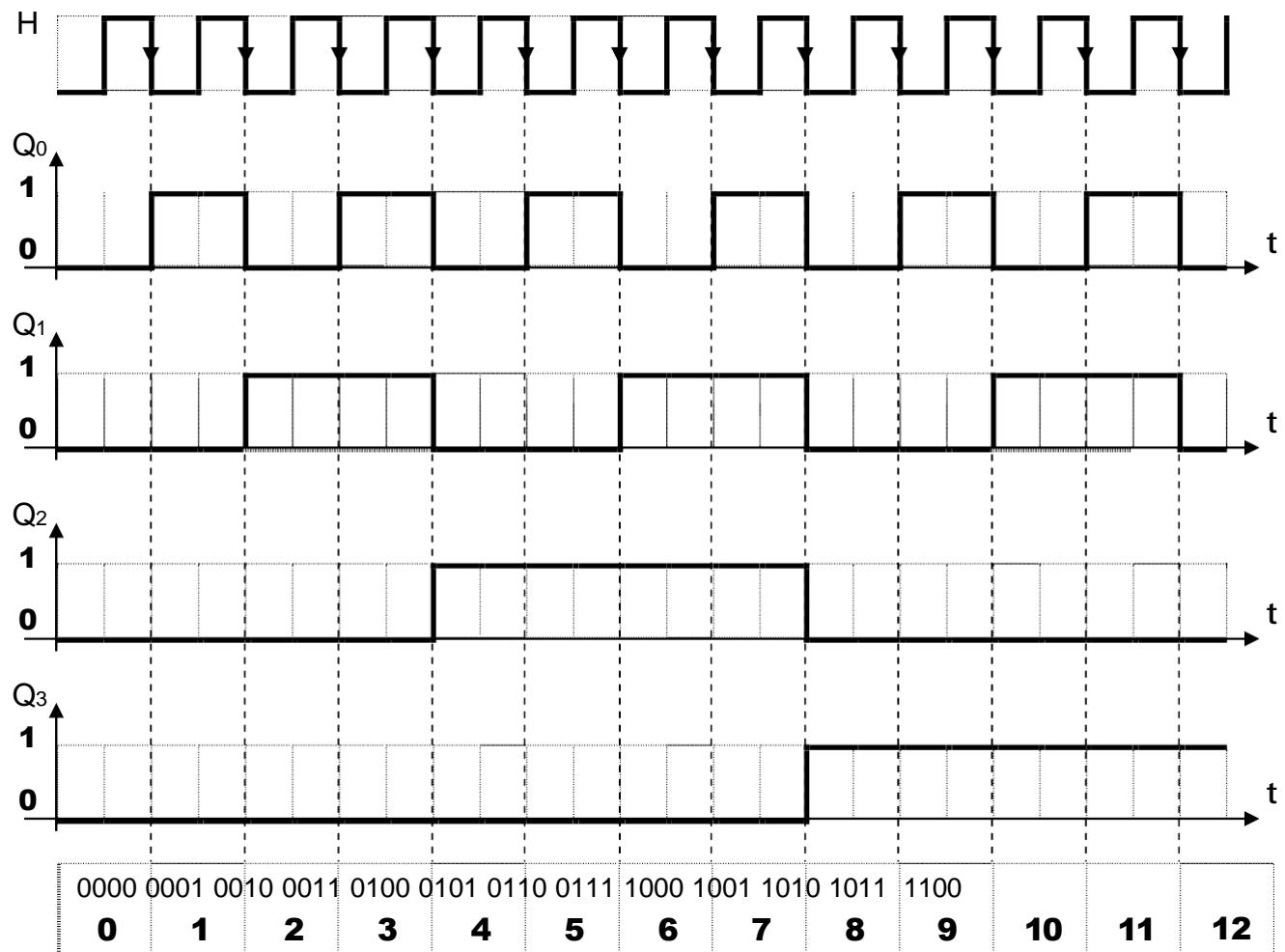
3.5.1 Logic diagram:

3.5.2 Examples of use of the 74LS93 counter:

3.6 Propagation delay:

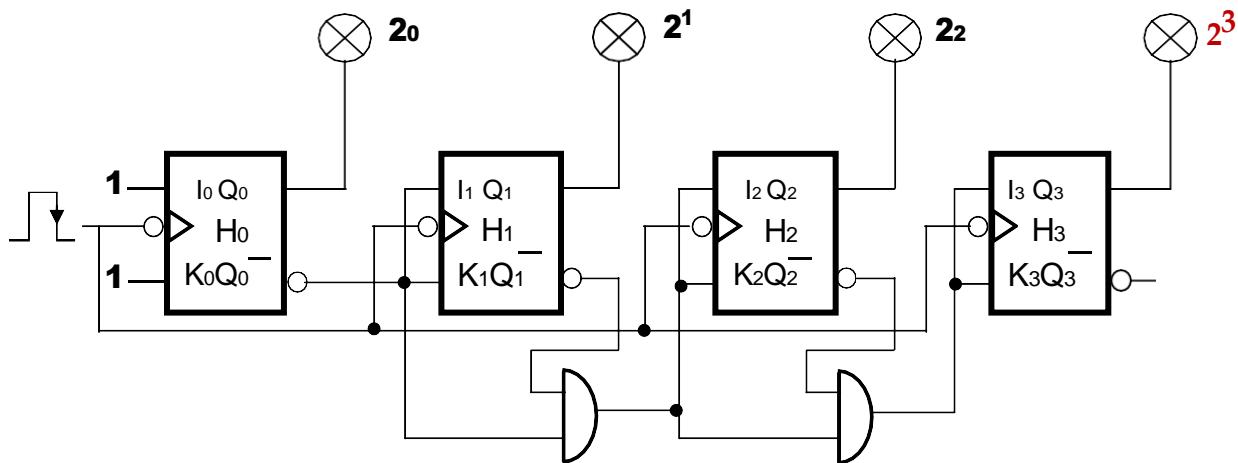
Asynchronous counters are often called propagation counters because the effect of the clock pulse is initially felt only by the first flip-flop. This effect cannot reach the next flip-flop immediately because of the propagation delay of the first flip-flop. This effect is cumulative so that a clock pulse propagates through the counter for some time before reaching the last flip-flop, due to propagation delay.

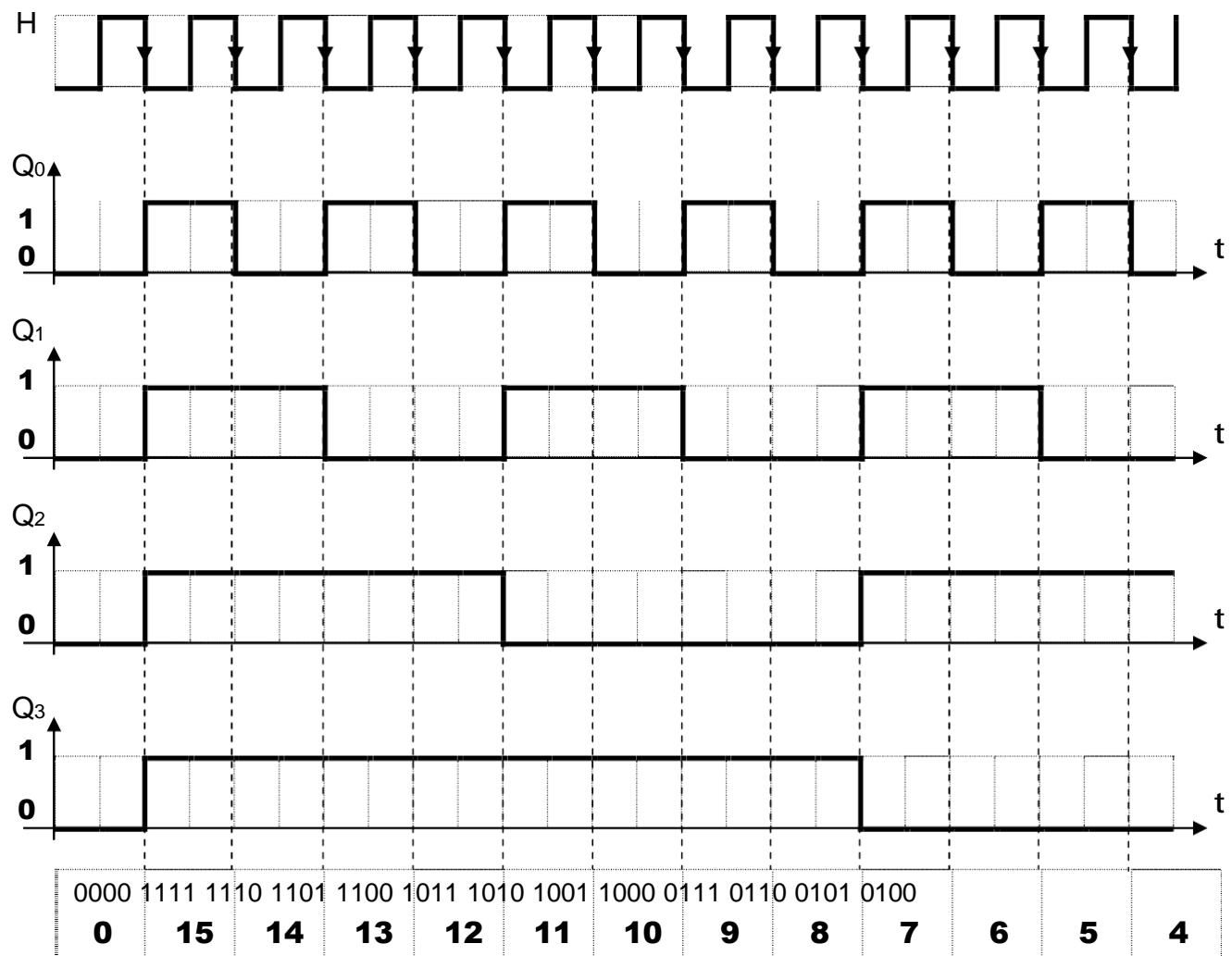

The propagation delay associated with asynchronous counters is one of the major disadvantages for this type of counters because it limits the frequency of use. The propagation delay for a flip-flop is of the order of 5 ns, which is why frequencies lower than 200 MHz must be used.


4. SYNCHRONOUS COUNTERS AND DOWN COUNTERS:

The term synchronous refers to events that have a fixed temporal relationship to each other. In terms of counter operation, the word synchronous means that all flip-flops in the counter are synchronized to the same clock signal. This solves the propagation delay problem.

The flip-flops are associated with each other, in such a way that for the flip-flop of rank i we apply all the outputs of the flip-flops which precede it to the inputs J and K.


4.1 Synchronous counters



- We therefore obtain a **Counter** synchronous **modulo 16** .
- We can achieve the same counter using rising edge synchronized flip-flops and Q outputs instead of Q_i .

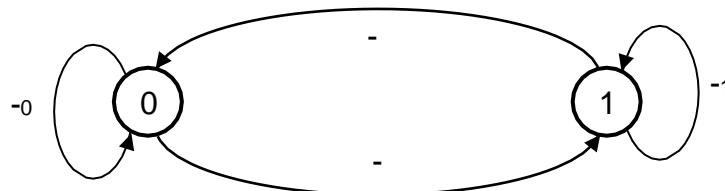
4.2 Synchronous downcounters

>We therefore obtain a Down counter synchronous modulo 16.

The same down counter can be achieved using rising edge synchronized flip-flops and Q_{out} instead of Q_i .

CHAPTER 8
SYNTHESIS OF SYNCHRONOUS COUNTERS

1. OBJECTIVES.


- ⊕ Understanding the synthesis of synchronous counters.
- ⊕ Understanding the synthesis of synchronous downcounters.

2. INTRODUCTION

At each clock pulse, the clock undergoes a transition. There are four possible transitions that can be respected by a transition table or by a state graph.

Transition	Exits		Description	Rating
	Q _n	Q _{n+1}		
0	0	0	Maintain at 0	-0
1	0	1	Engagement	-
2	1	0	Triggering	-
3	1	1	Maintain at 1	-1

Transition table

State graph

The table below gives a summary of the transitions for the different switches:

Transition	Rating	JK rocker		RS rocker		D-Flip	T-toggle
		I	K	S	R	D	T
0	-0	0	-	0	-	0	0
1	-	1	-	1	0	1	1
2	-	-	1	0	1	0	1
3	-1	-	0	-	0	1	0

From the table above we can conclude that if we want to use:

 JK flip-flops

- ✓ We regroup necessarily the interlocks (-) And optionally the triggers (-) and keeps them at 1 (-1) for the equations of the I.
- ✓ We regroup necessarily the triggers (-) And optionally the interlocks (-) and keeps them at 0 (-0) for the equations of the K.

 RS flip-flops

- ✓ We regroup necessarily the interlocks (-) And optionally keeps them at 1 (-1) for the equations of the S.
- ✓ We regroup necessarily the triggers (-) And optionally keeps them at 0 (-0) for the equations of the R.

 D flip-flops

- ✓ We regroup necessarily the interlocks (-) and keeps them at 1 (-1) for the equations of the D.

 T-swings

- ✓ We regroup necessarily the interlocks (-) and the triggers (-) for the equations of the T.

EXAMPLES**Example 1: modulo 12 counter**

We want to make a modulo 12 counter using JK, RS and T flip-flops

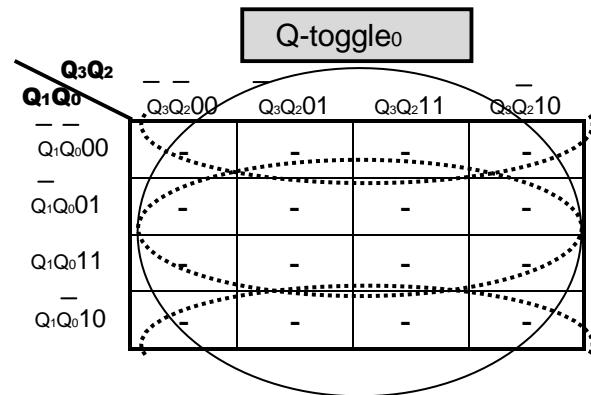
Solution

To design this counter, you need to determine the number of flip-flops and then the equations for each input.

With 3 rockers we can achieve $2^3=8$ combinations and with 4 switches we can achieve $2^4=16$ combinations and a modulo 12 counter therefore requires 4 rockers since the number 2^n which is first greater than or equal to 12 is 16.

Truth table

Transition	Previous state				Next state			
	Q3	Q2	Q1	Q0	Q3	Q2	Q1	Q0
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	0
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	1	0	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0
6	0	1	1	0	0	1	1	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
10	1	0	1	0	1	0	1	1
11	1	0	1	1	0	0	0	0
12	0	0	0	0	0	0	0	1


It can also be presented by the KARNAUGH table below:

		Sequences				
			Q ₃ Q ₂ 00	Q ₃ Q ₂ 01	Q ₃ Q ₂ 11	Q ₃ Q ₂ 10
		Q ₁ Q ₀	Q ₃ Q ₂ 00	Q ₃ Q ₂ 01	Q ₃ Q ₂ 11	Q ₃ Q ₂ 10
Q ₁ Q ₀ 00		0001	0101	-	1001	
Q ₁ Q ₀ 01		0010	0110	-	1010	
Q ₁ Q ₀ 11		0100	1000	-	0000	
Q ₁ Q ₀ 10		0011	0111	-	1011	

JK rocker

RS rocker

T-toggle

$I_0 = K_0 = 1$

$R_0 = Q_0; S_0 = \bar{Q}_0$

$T_0 = 1$

		Q-toggle ₁				
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_0	$\bar{Q}_1\bar{Q}_0$	$Q_1\bar{Q}_0$	$Q_3\bar{Q}_2$
		$\bar{Q}_3\bar{Q}_200$	$\bar{Q}_3\bar{Q}_201$	$Q_3\bar{Q}_211$	$Q_3\bar{Q}_210$	
		-0	-0	-	-0	
	$\bar{Q}_1\bar{Q}_0$	-	-	-	-	
	$Q_1\bar{Q}_0$	-	-	-	-	
	$Q_3\bar{Q}_2$	-1	-1	-	-1	

JK Toggle: $I_1 = K_1 = Q_0$

RS rocker: $R_1 = Q_1\bar{Q}_0$; $S_1 = Q_1Q_0$

T-toggle: $T_1 = Q_0$

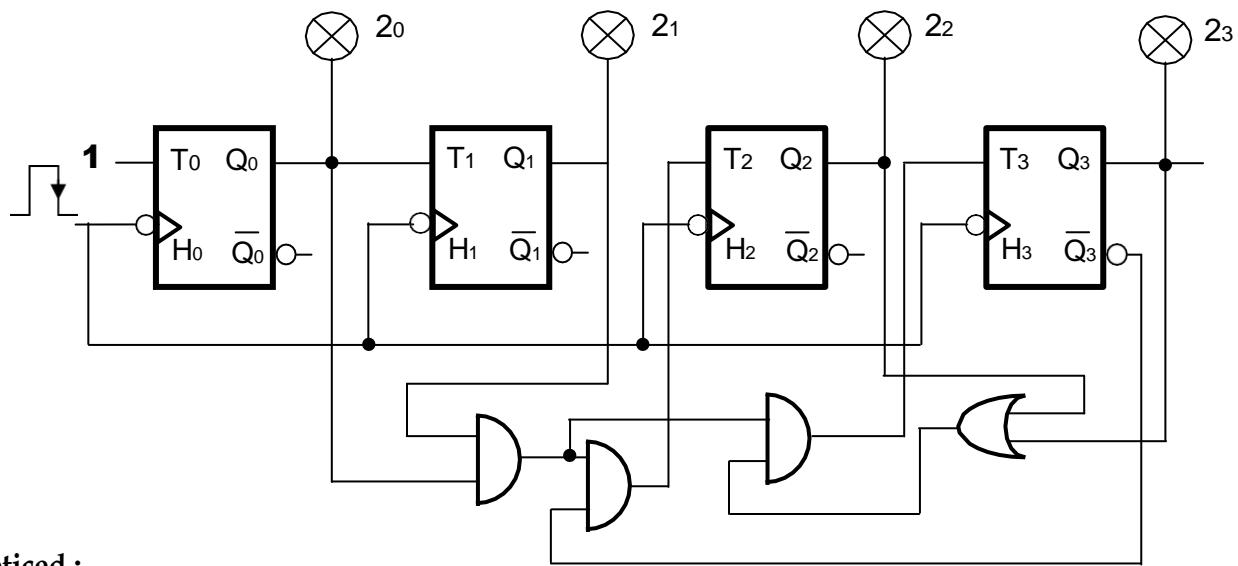
		Q-toggle ₂				
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_0	$\bar{Q}_1\bar{Q}_0$	$Q_1\bar{Q}_0$	$Q_3\bar{Q}_2$
		$\bar{Q}_3\bar{Q}_200$	$\bar{Q}_3\bar{Q}_201$	$Q_3\bar{Q}_211$	$Q_3\bar{Q}_210$	
		-0	-1	-	-0	
	$\bar{Q}_1\bar{Q}_0$	-0	-1	-	-0	
	$Q_1\bar{Q}_0$	-	-	-	-0	
	$Q_3\bar{Q}_2$	-0	-1	-	-0	

JK Toggle: $I_2 = Q_3\bar{Q}_1\bar{Q}_0$; $K_2 = Q_1\bar{Q}_0$

RS rocker: $R_2 = Q_3Q_2Q_1\bar{Q}_0$;
 $S_2 = Q_1\bar{Q}_0$

T-toggle: $T_2 = Q_3Q_1\bar{Q}_0$

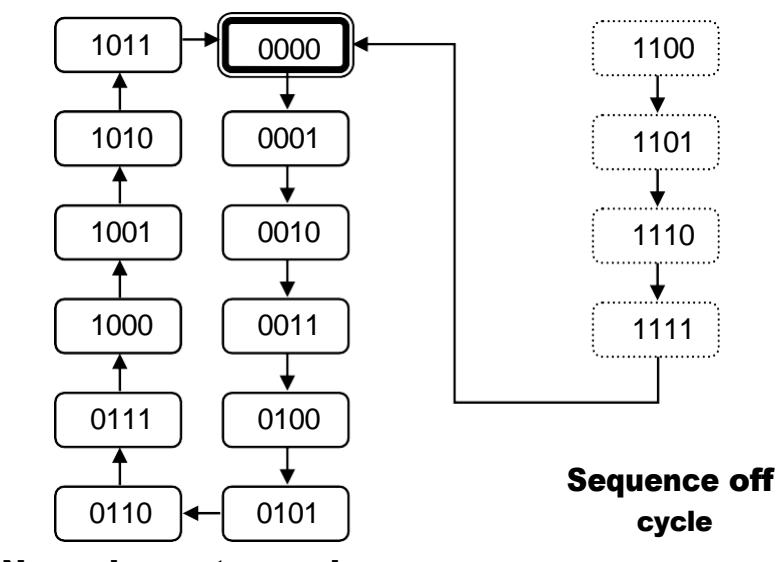
		Q-toggle ₃				
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_0	$\bar{Q}_1\bar{Q}_0$	$Q_1\bar{Q}_0$	$Q_3\bar{Q}_2$
		$\bar{Q}_3\bar{Q}_200$	$\bar{Q}_3\bar{Q}_201$	$Q_3\bar{Q}_211$	$Q_3\bar{Q}_210$	
		-0	-0	-	-1	
	$\bar{Q}_1\bar{Q}_0$	-0	-0	-	-1	
	$Q_1\bar{Q}_0$	-0	-	-	-	
	$Q_3\bar{Q}_2$	-0	-0	-	-1	


JK Toggle: $I_3 = Q_2Q_1\bar{Q}_0$

$K_3 = Q_1\bar{Q}_0$

RS rocker: $R_3 = Q_2Q_1\bar{Q}_0$
 $S_3 = Q_3Q_1\bar{Q}_0$

T-toggle: $T_3 = Q_1\bar{Q}_0(Q_3 + Q_2)$


Implementation using T flip-flops

Noticed :

After the synthesis of the synchronous counter, it is necessary to check whether this counter is self-correcting or not, that is to say that if by any accident we find ourselves in a combination of outputs which is out of cycle, it is necessary to check that this counter can return to the cycle after a few pulses.

For example for the previous counter:

Normal counter cycle

From the modulo 12 meter

Example 2: modulo 16 down-counter

We want to create a modulo 16 up/down counter using JK flip-flops. The operating mode is changed using a control input A (if A=0: up/down mode; if A=1: down/down mode)

Solution

To design this counter, 4 flip-flops are needed, which can be made $2^4 = 16$ combinations. We will use Channon's expansion theorem to use only 4 variables

Truth table of counting (A=0)

Transition	Previous state				Next state			
	Q ₃	Q ₂	Q ₁	Q ₀	Q ₃	Q ₂	Q ₁	Q ₀
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	0
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	1	0	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0
6	0	1	1	0	0	1	1	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
10	1	0	1	0	1	0	1	1
11	1	0	1	1	1	1	0	0
12	1	1	0	0	1	1	0	1
13	1	1	0	1	1	1	1	0
14	1	1	1	0	1	1	1	1
15	1	1	1	1	0	0	0	0

It can also be presented by the KARNAUGH table below

		Sequences					
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2		
$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0	$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0
$\bar{Q}_1\bar{Q}_000$	0001	0101	1101	1001			
\bar{Q}_1Q_001	0010	0110	1110	1010			
$Q_1\bar{Q}_011$	0100	1000	0000	1100			
Q_1Q_010	0011	0111	1111	1011			

		Q-toggle ₀					
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2		
$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0	$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0
$\bar{Q}_1\bar{Q}_000$	-	-	-	-			
\bar{Q}_1Q_001	-	-	-	-			
$Q_1\bar{Q}_011$	-	-	-	-			
Q_1Q_010	-	-	-	-			

Flip 0: $I_0 = K_0 = 1$

		Q-toggle ₁					
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2		
$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0	$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0
$\bar{Q}_1\bar{Q}_000$	-0	-0	-0	-0			
\bar{Q}_1Q_001	-	-	-	-			
$Q_1\bar{Q}_011$	-	-	-	-			
Q_1Q_010	-1	-1	-1	-1			

Flip 1: $I_1 = K_1 = Q_0$

		Q-toggle ₂					
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2		
$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0	$\bar{Q}_1\bar{Q}_0$	\bar{Q}_1Q_0	$Q_1\bar{Q}_0$	Q_1Q_0
$\bar{Q}_1\bar{Q}_000$	-0	-1	-1	-0			
\bar{Q}_1Q_001	-0	-1	-1	-0			
$Q_1\bar{Q}_011$	-	-	-	-			
Q_1Q_010	-0	-1	-1	-0			

Flip 2: $I_2 = Q_1Q_0$;

$$K_2 = Q_1Q_0$$

		Q-toggle ₃			
		Q ₃ Q ₂ 00	Q ₃ Q ₂ 01	Q ₃ Q ₂ 11	Q ₃ Q ₂ 10
Q ₁ Q ₀	Q ₃ Q ₂ 00	Q ₃ Q ₂ 01	Q ₃ Q ₂ 11	Q ₃ Q ₂ 10	
Q ₁ Q ₀ 00	-0	-0	-1	-1	
Q ₁ Q ₀ 01	-0	-0	-1	-1	
Q ₁ Q ₀ 11	-0	-	-	-1	
Q ₁ Q ₀ 10	-0	-0	-1	-1	

Flip 3:I3= Q₂Q₁Q₀

K₃= Q₂Q₁Q₀

Truth table of the countdown (A=1)

Transition	Previous state				Next state			
	Q ₃	Q ₂	Q ₁	Q ₀	Q ₃	Q ₂	Q ₁	Q ₀
0	0	0	0	0	1	1	1	1
1	0	0	0	1	1	1	1	0
2	0	0	1	0	1	1	0	1
3	0	0	1	1	1	1	0	0
4	0	1	0	0	1	0	1	1
5	0	1	0	1	1	0	1	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	0	1	1	1
9	1	0	0	1	0	1	1	0
10	1	0	1	0	0	1	0	1
11	1	0	1	1	0	1	0	0
12	1	1	0	0	0	0	1	1
13	1	1	0	1	0	0	1	0
14	1	1	1	0	0	0	0	1
15	1	1	1	1	0	0	0	0

It can also be presented by the KARNAUGH table below

		Sequences			
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2
$\bar{Q}_1\bar{Q}_0$	$\bar{Q}_3\bar{Q}_200$	\bar{Q}_3Q_201	$Q_3\bar{Q}_211$	Q_3Q_210	
$\bar{Q}_1\bar{Q}_000$	1111	0011	1011	0111	
$\bar{Q}_1\bar{Q}_001$	0000	0100	1100	1000	
$\bar{Q}_1\bar{Q}_011$	0010	0110	1110	1010	
$\bar{Q}_1\bar{Q}_010$	0001	0101	1101	1001	

		Q-toggle ₀			
$\bar{Q}_1\bar{Q}_0$	$\bar{Q}_3\bar{Q}_2$	$\bar{Q}_3\bar{Q}_200$	\bar{Q}_3Q_201	$Q_3\bar{Q}_211$	$Q_3\bar{Q}_210$
$\bar{Q}_1\bar{Q}_000$	-	-	-	-	-
$\bar{Q}_1\bar{Q}_001$	-	-	-	-	-
$\bar{Q}_1\bar{Q}_011$	-	-	-	-	-
$\bar{Q}_1\bar{Q}_010$	-	-	-	-	-

Flip 0: $I_0 = K_0 = 1$

		Q-toggle ₁			
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2
$\bar{Q}_1\bar{Q}_0$	$\bar{Q}_3\bar{Q}_200$	\bar{Q}_3Q_201	$Q_3\bar{Q}_211$	Q_3Q_210	
$\bar{Q}_1\bar{Q}_000$	-	-	-	-	-
$\bar{Q}_1\bar{Q}_001$	-0	-0	-0	-0	-0
$\bar{Q}_1\bar{Q}_011$	-1	-1	-1	-1	-1
$\bar{Q}_1\bar{Q}_010$	-	-	-	-	-

Flip 1: $I_1 = K_1 = Q_0$

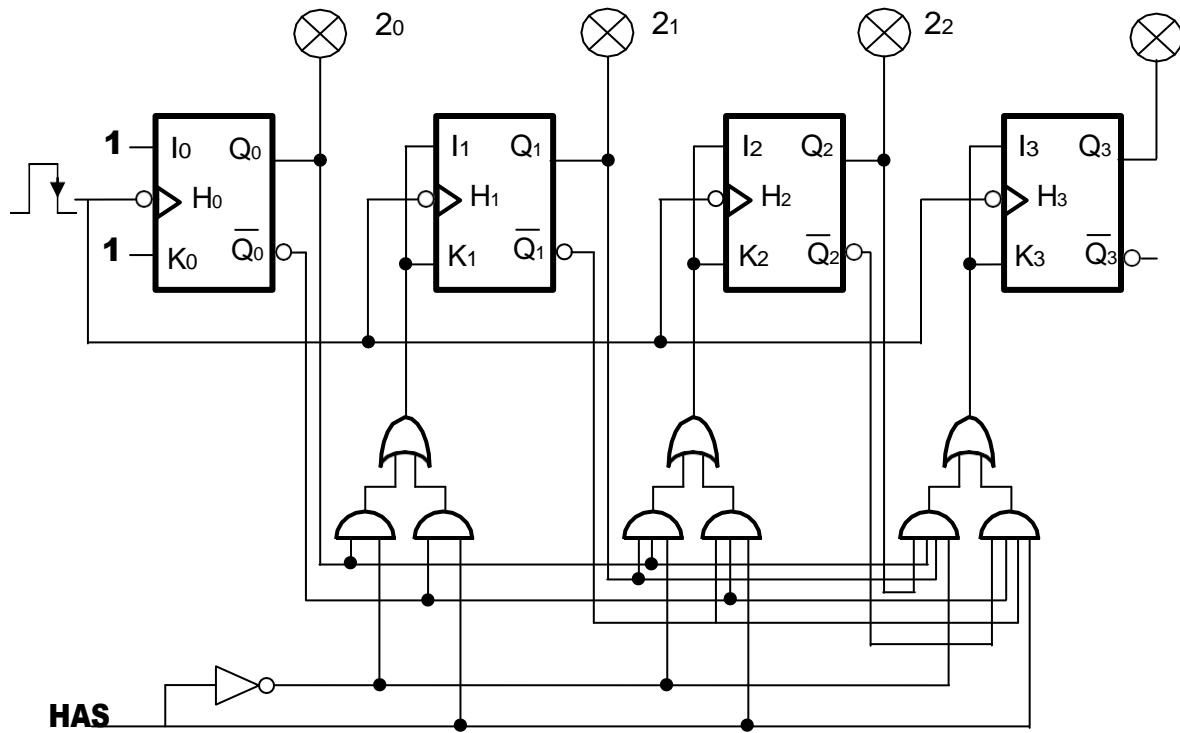
		Q-toggle ₂			
		$\bar{Q}_3\bar{Q}_2$	\bar{Q}_3Q_2	$Q_3\bar{Q}_2$	Q_3Q_2
$\bar{Q}_1\bar{Q}_0$	$\bar{Q}_3\bar{Q}_200$	\bar{Q}_3Q_201	$Q_3\bar{Q}_211$	Q_3Q_210	
$\bar{Q}_1\bar{Q}_000$	-	-	-	-	-
$\bar{Q}_1\bar{Q}_001$	-0	-1	-1	-0	-0
$\bar{Q}_1\bar{Q}_011$	-0	-1	-1	-0	-0
$\bar{Q}_1\bar{Q}_010$	-0	-1	-1	-0	-0

Flip 2: $I_2 = \bar{Q}_1\bar{Q}_0$;
 $K_2 = \bar{Q}_1\bar{Q}_0$

		Q-toggle ₃			
		Q ₃ Q ₂ 00	Q ₃ Q ₂ 01	Q ₃ Q ₂ 11	Q ₃ Q ₂ 10
Q ₁ Q ₀	Q ₃ Q ₂ 00	Q ₃ Q ₂ 01	Q ₃ Q ₂ 11	Q ₃ Q ₂ 10	
Q ₁ Q ₀ 00	-	-0	-1	-	
Q ₁ Q ₀ 01	-0	-0	-1	-1	
Q ₁ Q ₀ 11	-0	-0	-1	-1	
Q ₁ Q ₀ 10	-0	-0	-1	-1	

Flip 3: $I_3 = Q_2 Q_1 Q_0$

$$K_3 = Q_2 Q_1 Q_0$$


Final equations

Flip 0: $I_0 = K_0 = A \cdot 1 + A \cdot 1 = 1$ **Flip**

1: $I_1 = K_1 = A Q_0 + A Q_0$

Flip 2: $I_2 = K_2 = A Q_1 Q_0 + A Q_1 Q_0$

Flip 3: $I_3 = K_3 = A Q_2 Q_1 Q_0 + A Q_2 Q_1 Q_0$

Bibliographic References

- [1] Digital Circuits Theory and Applications, Ronald J. Tocci , Reynald Goulet Inc, Reynald Goulet Inc, ISBN; 2-89377-108-4
- [2] Combinatorial Logic and Technology, Marcel Gindre, Denis Roux, BELIN , 1984, ISBN: 2-7011-0857-8
- [3] Digital Systems, Jaccob Millman, Arvin Grabel, 1989, ISBN: 2-7042-1182-5
- [4] Digital Electronics, Rached Tourki, University Publishing Center, 2005, ISBN: 9973-37-019-8
- [5] Logical Systems course support, Mohamed Habib BOUJAMIL,2005, ISBN:
- [6] Educational Support for Logical Systems, Fedia DOUIRI , 2012
- [7] Digital Electronics Courses and Problems, Jean-Claude Laffont, Jean-Paul Vabre , Marketing Edition , ISBN :1986, 2-7298-8650-8