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1. OBJECTIVES 

 Cover in detail the different number systems: decimal, binary, octal and hexadecimal systems 

as well as the methods of conversion between number systems. 

 Deal with arithmetic operations on numbers. 

 Study several digital codes such as DCB, GRAY and ASCII codes. 

2. NUMBER SYSTEMS 

For digital information to be processed by a circuit, it must be put into a form suitable for it. To do 

this, a base B numbering system must be chosen (B is a natural whole number - 2). 

There are many numbering systems used in digital technology. The most commonly used are: 

Decimal (base 10), Binary (base 2), Tetral (base 4), Octal (base 8) and Hexadecimal (base 16). 

The table below represents a summary of these systems: 
 

Decimal Binary Tetral Octal Hexadecimal 

0 0 0 0 0 
1 1 1 1 1 
2 10 2 2 2 
3 11 3 3 3 
4 100 10 4 4 
5 101 11 5 5 
6 110 12 6 6 
7 111 13 7 7 
8 1000 20 10 8 
9 1001 21 11 9 
10 1010 22 12             HAS 
11 1011 23 13 B 
12 1100 30 14 C 
13 1101 31 15 D 
14 1110 32 16 E 
15 1111 33 17 F 

CHAPTER 1 

NUMBERING SYSTEMS AND CODING OF INFORMAT 
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N=anBn+ an-1Bn-1+ an-2Bn-2+ …+ a2B2+ a1B1+ a0B0 

 
2.1 Polynomial representation 

Any number N can be decomposed into integer powers of the base of its numbering system. This 

decomposition is called the polynomial form of the numberNand which is given by: 

 

 B: The basis of the numbering system, it represents the number of different digits that this 

numbering system uses. 

 hasi:a number (or digit) among the numbers in the base of the numbering system. 

 i: rank of the numberhasi. 

2.2Decimal system (base 10) 

The decimal system consists of 10 digits which are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} it is a system that has 

imposed itself quite naturally on man who has 10 fingers. Let us write some decimal numbers 

in polynomial form: 

Examples: 

(5462)10= 5*103+ 4*102+ 6*101+ 2*100 

(239,537)10= 2*102+ 3*101+ 9*100+ 5*10-1+ 3*10-2+ 7*10-3 

2.3 Binary system (base 2) 

In this number system there are only two possible digits {0, 1} which are often called bits 

"binary digit". As the following examples show, a binary number can be written in polynomial 

form. 

Examples: 

(111011)2= 1*25+ 1*24+ 1*23+0*22+ 1*21+ 1*20 

(10011.1101)2= 1*24+ 0*23+ 0*22+ 1*21+ 1*20+ 1*2-1+ 1*2-2+ 0*2-3+ 1*2-4 

2.4Tetral system (base 4) 

This system, also called base 4, includes four possible digits {0, 1, 2, 3}. A tetral number can be 

written in polynomial form as shown in the following examples: 

Examples: 

(2331)4= 2*43+ 3*42+ 3*41+ 1*40 (130.21)4= 1*42+ 3*41+1*40+ 2*4-1+ 1*4-2 
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 2.5 Octal System (base 8) 

The octal or base 8 system consists of eight digits which are {0, 1, 2, 3, 4, 5, 6, 7}. The digits 8 and 9 do not 

exist in this base. For example, let's write the numbers 45278and 1274,6328: 

Examples: 

(4527)8= 4*83+ 5*82+ 2*81+ 7*80 

(1274,632)8= 1*83+ 2*82+ 7*81+4*80+ 6*8-1+ 3*8-2+ 2*8-3 

       2.6 Hexadecimal system (base 16) 

The Hexadecimal or base 16 system contains sixteen elements which are {0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, A, B, C, D, E, F}. The digits A, B, C, D, E, and represent 10, 11, 12, 

13, 14 and 15 respectively. 

Examples: 

(3256)16= 3*163+ 2*162+ 5*161+ 6*160 (9C4F)16= 9*163+ 12*162+ 4*161+ 15*160 

(A2B.E1)16= 10*162+ 2*161+ 11*160+14*16-1+ 1*16-2 

3. CHANGE OF BASIS 

This is the conversion of a number written in a baseB1to its equivalent in another baseB2 

3.1 Converting a base B number N to a decimal number 

The decimal value of a number N, written in a database B, is obtained by its polynomial form 

described previously. 

Examples: 

(1011101)2= 1*26+ 0*25+ 1*24+ 1*23+ 1*22+ 0*21+ 1*20=(93)10 (231102)4= 2*45+ 3*44+ 1*43+ 1*42+ 0*41+ 
2*40=(2898)10 (7452)8= 7*83+ 4*82+ 5*81+ 2*80=(3882)10 

(D7A)16= 13*162+ 7*161+ 10*160=(3450)10 

 

 3.1.1 Conversion of a decimal whole number 

To convert a whole decimal number to a base numberBany, it is necessary to make successive 

integer divisions by the baseBand keep the remainder of the division each time. We stop when we 

obtain a result less than* the baseB. The number searchedNin the baseBis written from left to right, 

starting with the last result and going to the first remainder. 
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Examples: 
 

- (84)10=( ? )2 

 

 
- (110)10=( ? )8 

 

 
84 2 

0 42 2 
0 21 

1 
 

 
Reading of the 
result 

 
 

 
2 

10 
0 

 
 
 

 
2 

5 
1 

 
 
 
 

 
2 

2 
0 

 
 
 
 
 

 
2 

1 

 
 

 
110 

6 
 

Reading of the 
result 

 
 

 
8 

13 
5 

 
 
 

 
8 

1 

(84)10=(1010100)2 (110)10=(156)8 

 

 
- (105)10=( ? )4 - (827)10=( ? )16 

 
105 4 

1 26 4 
2 6   4 

Reading of the 2 1
 

result 

 

 
827 16 

B 51  16 

3 3 
Reading of the 
result 

(105)10=(1221)4 (827)10=(33B)8 

 
 3.1.3 Converting a decimal number to a comma 

To convert a decimal number to a comma in a base B any, you must: 

 Convert the whole part by performing successive divisions by B(as we saw previously). 

 Convert the fractional part by performing successive multiplications by Band each time 

keeping the number becoming a whole number. 
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1

(58,625)10=(111010.101)2 

Examples: 

Converting the number (58.625) to base 2 
-Conversion of the whole part -Conversion of the fractional part 

 

 

0.625 *2= . 25 
 

 
Reading of the 

0. 25 *2= 0 . 5 
Result of the 
part 
fractional 

0. 5 *2 = . 0 
 
 
 

 

 
Remarks : 

Sometimes by multiplying the fractional part by the base B we cannot convert the entire 

fractional part. This is mainly due to the fact that the number to be converted does not have an 

exact equivalent in the base B and its fractional part is cyclic 

Example :(0.15)10=( ? )2 

0.15 *2 

0.3 *2 

0.6 *2 

0.2 *2 

0.4*2 

0.8*2 

0.6 *2 

0.2 *2 

0.4*2 

0.8*2 

=0 .3 

=0 .6 

=1 .2 

=0 .4 

=0 .8 

=1 .6 

=1 .2 

=0 .4 

=0 .8 

=1 .6 

- (0.15)10=(0.0010011001 )2 

We say that the number (0.15)10is cyclic in the period base 2   1001. 

58 

0 29 
1 14 

0 

2 

7 
1 

Reading of the 
Result of the 
whole part 

2 

3 
1 

2 

1 

12 
2 
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 3.1.4 Other conversions 

To convert a number from any baseB1to another baseB2you have to go through the base10. 

But if the baseB1AndB2are written respectively in the form of a power of 2 we can go through 

the base 2 (binary): 

Tetral base (base 4): 4=22 each tetra digit converts itself to 2 bits. Octal 

base (base 8): 8=23 each octal digit converts itself to 3 bits. 

Hexadecimal base (base 16): 16=24 each hexadecimal digit converts itself to 4 bits. 

Examples: 

 
 

-(1 0 2 2 3)4= (01 00 10 10 11 )2 

 

 
-(6 5 3 0)8= (110 101 011 000 )2 

 

 
-(9 A 2 C)16= (1001 1010 0010 1100 )2 

 

 
-(7 E 9)16= (13 32 21 )4 

 

 
 

 
 

 
 

 
 

4.  OPERATIONS IN THE BASES 

We proceed in the same way as that used in the decimal base. Thus, we must carry out the 

operation in the base 10, then convert the result by column of the baseB. 
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4.1 Addition 

 

Binary Base 

11001001 
 

1101110 

+ 110101 + 100010 
 

= (11111110)2 = (10010000)2 

 
 
 
 

Tetral Base 

 

32210 
 

20031 

+ 1330 + 1302 

= (100200)4 = (21333)4 

 
 
 

Octal Base 

 

63375 
 

5304 
+ 7465 + 6647 

= (73062)8 = (14153)8 

 
 
 

Hexadecimal base 

 

89A27 
 

5 3 0 4 

+ EE54 + CC3B 

= (9887B)16 = (11F3F)16 
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4.2 Subtraction 

 

Binary Base 

1110110 1000001001 

- 110101 - 11110011 
 

=(1000001)2 = (100010110)2 

 

Tetral Base 

 

13021 
 

2210 
- 2103 - 1332 

= (10312)4 = (21333)4 

 
 

Octal Base 
 

52130 
 

145126 

- 6643 - 75543 

= (43265)8 = (47363)8 

 

 

Hexadecimal Base 

 

725B2 
 

45DD3 
- FF29 - 9BF6 
= (62689)16 = (3C1DD)16 



Logical Systems Course  
 

9  

 
4.3 Multiplication 

 

Binary Base 

1110110 1010111 

* 11011 * 10011 

1110110 1010111 
1110110 1010111 

1110110 1010111 
1110110  

= (110001110010)2 

 

= (11001110101)2 

 
 

Tetral Base 

3021 
 

13320 

 * 113 * 210 
21123  13320 
3021 

 3021  
 33300 

= (1020033)4 = (10123200)4 

 
 
 

Octal Base 

7506 
 

4327 
* 243 * 651 

 

26722  4327 
36430  26063 

17214  32412 
 

= (2334622)8 = (3526357)8 
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Hexadecimal Base 

A928 6340 
* 7D3 * B51 

 

1FB78 
 

6340 
89708 1F040 

4A018 443C0 
 

= (52B83F8)16 = (4632740)16 

 
2.1 Division 

 

Binary Base Tetral Base 

 

 
-

 
110000000110 
1110010  
10011100 

- 1110010 
10101011 

- 1110010 
1110010 

 
1110010 

 
11011 

 

 
- 

 
300012 
1302 
10321 

- 3210 
11112 

 
1302 

123 

 
 
 

Octal Base Hexadecimal Base 

 

50064 72 
- 442 

366 542 
- 350 

164 

 

24328 2B 
- 22F 

142 D78 
- 12D 

158 
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5. CODING OF INFORMATION 

Coding of information is necessary for its automatic processing. Among the most commonly 

encountered codes, other than the natural binary code, we cite the code DCB , the codeGRAY, the 

codepamongn, the ASCII code … 

5.1 Digital codes 

 5.1.1 The Natural Binary Code 

It is a numerical representation of numbers in base 2 

 

 
Decimal 

Natural Binary Code 

has3 has2 has1 has0 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 
10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 

     This code has the disadvantage of changing more than a single bit when going from one 

number to an immediately higher one. 

5.1.2 Reflected binary code (GRAY code) 

Its interest lies in incrementation applications where a single bit changes state at each 

increment. 
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Decimal 

Natural Binary Code Reflected Binary Code 

has3 has2 has1 has0 
 

has'3 

 
has'2 

 
has'1 

 
has'0 

0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 

2 0 0 1 0 0 0 1 1 
3 0 0 1 1 0 0 1 0 

4 0 1 0 0 0 1 1 0 
5 0 1 0 1 0 1 1 1 

6 0 1 1 0 0 1 0 1 
7 0 1 1 1 0 1 0 0 

8 1 0 0 0 1 1 0 0 
9 1 0 0 1 1 1 0 1 

10 1 0 1 0 1 1 1 1 
11 1 0 1 1 1 1 1 0 

12 1 1 0 0 1 0 1 0 
13 1 1 0 1 1 0 1 1 

14 1 1 1 0 1 0 0 1 
15 1 1 1 1 1 0 0 0 

Remarks : 

 Conversion from Natural Binary to Reflected Binary: this involves comparing the 

bitsbn+1and the bitbnfrom natural binary, the result isbrof the reflected binary which is 

worth 0 ifbn+1=bnor 1 otherwise. The first bit on the left remains unchanged. 
 

(6)10=(?)BR (10)10=(?)BR 

 
(6)BN= 1 1 0 (10)BN= 1 0 1 0 

(6)BR= 1 0 1 (10)BR= 1 1 1 
 

1 

(6)10=(110)BN=(101)BR (10)10=(1010)BN=(1111)BR 

 

 Conversion from Reflected Binary to Natural Binary: this involves comparing the bitbn+1 

natural binary and bit bn from the reflected binary the result is bn of the natural binary 

which is worth 0 if bn+1=bn or 1 otherwise. The first bit on the left remains unchanged. 
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(10)10=(?)BN (13)10=(?)BN 

(10)BR= 1 1 1 1 (13)BR= 1 0 1 1 

(10)BN= 1 0 1 

 

 

0 

 

   

(13)BN= 1 1 0 

 

 

1 

(10)10=(1111)BR=(1010)BN 

 
(13)10=(1011)BR=(1101)BN 

 

 
 5.1.3 Binary Coded Decimal Code (BCD Code) 

 
Its property is to associate 4 bits representing each digit in natural binary. The most common 

application is that of digital display where each digit is associated with a group of 4 bits 

carrying the DCB code. 

Examples: 
-(9 4 2 7)10= (1001 0100 0010 0111 )DCB 

 

 
-(6 8 0 1)10= (0110 1000 0000 0001 )DCB 

 

 
5.1.4 The P code among N 

 
The P among N code is an N-bit code in which P bits are at 1 and (NP) bits are at 0. Reading 

this code can be associated with checking the number of 1s and 0s in the information, which 

makes it possible to check the information read by detecting the erroneous code. 
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Example : code 2 of 5 
 

 
Decimal 

Code 2 of 5 

has7 has4 has2 has1 has0 

0 1 1 0 0 0 
1 0 0 0 1 1 
2 0 0 1 0 1 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 0 
6 0 1 1 0 0 
7 1 0 0 0 1 
8 1 0 0 1 0 
9 1 0 1 0 0 

 
 5.1.5 ASCII code 
ASII (American Standard Code for Information Interchange) is an alphanumeric code that 

has become an international standard. It is used for transmission between computers or 

between a computer and peripherals. In its standard form, it uses 7 bits. This allows for the 

generation of 27=128 characters. This code represents uppercase and lowercase alphanumeric 

letters, decimal digits, punctuation marks, and control characters. 

Each code is defined by 3 higher order bitsb6b5b4and 4 lower order bits b3b2b1b0. Thus the 

character "A" has the hexadecimal code 41H 

Example : 
 

HAS -(65)ASCII -(01000001)2 -(41)H 

B -(66)ASCII -(01000010)2 -(42)H 

Z -(90)ASCII -(01011010)2 -(5A)H 

has -(97)ASCII -(01100001)2 -(61)H 

b -(98)ASCII -(01100010)2 -(62)H 

z -(122)ASCII -(01111010)2 -(7A)H 

[ -(91)ASCII -(01011011)2 -(5B)H 

{ -(123)ASCII -(01111011)2 -(7B)H 
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Base 10 

Base B1 Base B2 

5.2 Transcoding 

One of the applications related to information coding is the transition from one code to 

another. This operation is called transcoding: 

 

 
 

Coding 
 

Decoding 

 

Transcoding 

 
 The coding of information is done by means of a combinational circuit called Coder. 

 The decoding of information is done by means of a combinational circuit called Decoder. 

 A trans coder is a Decoder associated with a Coder. 

Coding 

Decoding 
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Circuit 
logic 1 

Circuit 
logic 2 

F1(c, b) 

 

 

 

1. OBJECTIVES 

 Study the rules and theorems of Boolean algebra. 

 Understand how logic gates work. 

2. VARIABLES AND LOGICAL FUNCTIONS 

2.1 Logical variables 

A logical variable is a quantity that can only take two logical states. We symbolize them by 0 or 1. 

Examples: 

 A switch can be either closed (logic 1) or open (logic 0). It therefore has 2 possible 
operating states. 

 A lamp also has 2 possible operating states which are off (logic 0) or on (logic 1). 

2.2 Logical functions 

A logical function is a logical variable whose value depends on other variables, 

 The operation of a logical system is described by one or more simple logical propositions 

which have the binary character "TRUE" or "FALSE". 

 A logical function that takes the values 0 or 1 can be thought of as a binary variable for another 

logical function. 

 To describe the operation of a system by looking for the state of the output for all possible 

combinations of inputs, we will use "The truth table". 

EXAMPLE : 

cba 

 

 
F2(F1, a)= F2(c, b, a) 

 
 
 

CHAPTER 2 

BOOLIAN ALGEBRA AND LOGICAL FUNCTIONS 
 



Logical Systems Course  
 

17  

 
3. BASIC OPERATIONS OF BOOLIAN ALGEBRA AND ASSOCIATED PROPERTIES 

Boolean algebra is a set of two-state variables {0 and 1} also called Boolean, equipped with 3 

elementary operators presented in the following table: 

 

Logical operation Addition Multiplication Inversion 
OR AND NO 

Algebraic Notation A OR B = A + B A AND B = AB 
  

No A=A 
 
 
 

Truth table 

   

3.1 Properties of basic operations 

Some remarkable properties are worth knowing: 
 

Functions OR AND Comments 
 
 
 

1 variable 

A+A=A AA=A Idempotence 
A+1=1 A.0=0 Absorbent element 
A+0=A A.1=A Neutral Element 

  
A+A=1 

  
AA=0 

Complement 

 
 

A=A 
Involution 

 

 

Functions OR AND Comments 

2 variables A+B=B+A AB=BA Commutativity 

 
3 variables 

A+(B+C)=(A+B)+C 
=A+B+C 

A.(BC)=(AB).C 
=ABC 

Associativity 

A+BC=(A+B).(A+C) A.(B+C)=A.B+AC Distributivity 

 

 

HAS B A+B 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

HAS B AB 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

HAS NO TO 
0 1 
1 0 
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3.2 Theorems of Boolean algebra 

To perform any Boolean calculation, we use, in addition to the properties, a set of 

theorems: 
 

Theorems OR AND 
 
 

Of 
DEMORGAN 

 
   

A+B =A . B 
 

   

AB=A+B 

This theorem can be generalized to several variables 

 
    

A+B+ …+Z=A . B. … .Z 
 

 
  

AB … .Z=A+B+ … +Z 

Absorption A+AB=A A.(A+B)=A 

 
Of lightening 

 
 

A+AB=A+B 
 

 

A.(A+B)=AB 
 

  

A.B+AC+BC=AB+AC 

 
4. MATERIALIZATION OF LOGICAL OPERATORS 

4.1 Basic logic gates 

Logic gates are electronic circuits whose transfer functions (relationships between inputs  

and outputs) materialize the basic operations applied to electrical variables. 

4.1.1 The AND gate 
 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

HA
S  
B 

 
& 

 
S HA

S 
B 

 
S S=AB 

TTL: 7408 

CMOS: 4081 

If V0 represents the LOW voltage level (state 0) AndV1represents the HIGH level 

(state1), we note at the output of the circuit the voltages given in the operating table and 

we deduce the truth table. 



Logical Systems Course  
 

19  

Operating table 

VHAS VB VS 

V0 V0 V0 

V0 V1 V0 

V1 V0 V0 

V1 V1 V1 

Truth table 

HAS B S 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Operating table 

VHAS VB VS 

V0 V0 V0 

V0 V1 V1 

V1 V0 V1 

V1 V1 V1 

Truth table 

HAS B S 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

4.1.2 The OR (OR) gate 
 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

H
A
S 
B 

 
-1 

 
S 

HAS 

B 

 
S S=A+B 

TTL: 7432 

CMOS: 4071 

 

Noticed :There are 2, 3, 4, 8, and 13 input OR and AND logic gates available in integrated circuit form. 
 

4.1.3 The  NO  gate 

It is a single-entry gate, it materializes the reversing operator. 
 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

HA
S  

 
1  

 
S HAS 

 
S 

 
 

S=A 
TTL: 7404 

CMOS: 4069 
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Operating table 

VHAS VS 
V0 V1 

V1 V0 

Truth table 

HAS S 
0 1 

1 0 

Operating table 

VHAS VB VS 

V0 V0 V0 

V0 V1 V1 

V1 V0 V1 

V1 V1 V0 

Truth table 

HAS B S 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

4.1.4 The exclusive-OR (XOR) gate 

 

 

The exclusive-OR function is1if only one of the inputs is in the state1and the other is the state 0. 
 

Generalizations of the EXCLUSIVE-OR function: The output of the EXCLUSIVE-OR function 

takes the logical state1if an odd number of input variables are in the logical state 1. 

      Example: Three-way exclusive-OR 
 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)  
 

 
S=ABC 

 
 

 
TTL: 74386 

HAS  
B =1 S C

HAS 
B S 
C 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

HAS 
B 

 
=1 

 
S 

HA

S B 

 
S 

S=AB   

=AB*AB 
TTL: 7486 

CMOS: 4070 
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Operating table 

VHAS VB VC VS 
V0 V0 V0 V0 

V0 V0 V1 V1 

V0 V1 V0 V1 

V0 V1 V1 V0 

V1 V0 V0 V1 

V1 V0 V1 V0 

V1 V1 V0 V0 

V1 V1 V1 V1 

Truth table 

HAS B C S 
0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Operating table 

VHAS VB VS 
V0 V0 V1 

V0 V1 V1 

V1 V0 V1 

V1 V1 V0 

Truth table 

HAS B S 
0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

4.2 Universal gates 

Other than basic (or elementary) logic gates, there are gates called universal (complete) logic 
gates such as NAND and NOR gates. 
4.2.1 The NAND gate 
It is equivalent to a gate followed by an inverter. 

 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

HAS  
B 

 
& 

 
S HAS 

B 

 
S 

 
 

S=A|B 

S=AB 

S=A+B 

 

 
TTL: 7400 

CMOS: 4011-4093 
HAS 
B 

-1 S 
HAS 

B  

 

S 
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For the three-input NAND gate we find: 
 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

HAS  
B 
C 

 
& 

 
S 

HAS 
B 
C 

 
S 

 
 

S=A|B|C 

S=ABC 

S=A+B+C 

 
 

 
TTL: 7410 

CMOS: 4023 
HAS 
B 
B 

 
-1 

 
S 

HAS 
B   
B  

 
 
S 

 
 

  

4.2.2 The NOR gate: 
It is equivalent to a gate followed by an inverter. 

 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)   

HAS  
B 

 
-1 

 
S 

HAS 

B 

  
S 

 
S=AB 

S=A+B 

S=AB 

 

 
TTL: 7402 

CMOS: 4001 

HAS 
B 

 
& 

 
S HAS 

B 

 
S 

 

Operating table 

VHAS VB VC VS 

V0 V0 V0 V1 

V0 V0 V1 V1 

V0 V1 V0 V1 

V0 V1 V1 V1 

V1 V0 V0 V1 

V1 V0 V1 V1 

V1 V1 V0 V1 

V1 V1 V1 V0 

Truth table 

HAS B C S 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 
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Operating table 

VHAS VB VS 

V0 V0 V1 

V0 V1 V0 

V1 V0 V0 

V1 V1 V0 

Truth table 

HAS B S 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Operating table 

VHAS VB VC VS 
V0 V0 V0 V1 

V0 V0 V1 V0 

V0 V1 V0 V0 

V0 V1 V1 V0 

V1 V0 V0 V0 

V1 V0 V1 V0 

V1 V1 V0 V0 

V1 V1 V1 V0 

Truth table 

HAS B C S 
0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 

 

 

For the three-input NOR gate we find: 
 

Logical symbol Equation Integrated circuit 

International Symbol (IEC) European symbol (MIL)  

 
S=ABC 

S=A+B+C 

S=ABC 

 
 
 

 
TTL: 7427 

CMOS: 4025 

HAS  
B 
C 

 
-1 

 
S 

HAS 
B 
C 

 
 
S 

HAS 
B 
C 

 
& 

 
S 

HAS 
B 
C  

 
S 
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4.2.3 Exercise 
1) Demonstrate whether universal functions are associative: (A|? ? 

B)|C=A|(B|C)= A|B|C 

(AB)-C=A-
?
(BC)= ABC

?
 

2) Implement the three-input NAND function using the two-input NAND operators. 

Answer : 
 

1) 
 

- (A|B)|C=(AB)|C=(A+B)|C=(A+B).C=(A+B)+C=(AB)+C 
 

A|(B|C)= A|(BC)=A|(B+C)=A.(B+C) =A+(B+C) =A+(BC) 

(A|B)|CA|(B|C) thenthe functionNAND is not associative 
- 

(AB)-C=(A+B)-C=(AB)-C=(AB)+C=(AB).C=(A+B).C 
 

A-(BC)= A-(B+C)=A-(BC)= A+(BC)= A.(BC)=A.(B+C) 

(AB)-CA-(BC) thenthe functionNOR is not associative 

2) 
 

     

-A|B|C=ABC=A+BC= A+BC = ABC=A|[(B|C)|(B|C)] 
 
 

B 
C 

HAS  

S=A|B|C 
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1. OBJECTIVES 

 Study the algebraic representation of a logical function, 

 Understand the algebraic simplification of a logical function, 

 Synthesize combinatorial applications. 

2. REPRESENTATION OF A LOGICAL FUNCTION 

A logical function is a combination of binary variables connected by the operators AND, OR 

and NOT. It can be represented by an algebraic notation or a truth table or a KARNAUGH 

table or a flowchart. 

2.1 Algebraic representation 

A logical function can be represented in two forms: 

  SD P: -(-) sum of products, 

 PDS: - (-) product of sums, 

2.1.1 Sum-of-products form (Disjunctive form) 

It corresponds to a sum of logical products: F=-(-(ei)), or eirepresents a logical variable or its 

complement. 

Example : F1(A, B, C)=AB+BC. If each of the products contains all the input variables in direct or 

complemented form, then the form is called:"first canonical form »or form "disjunctive canonical ». 

Each of the products is called midterm. 

Example :F1(A, B, C)=ABC+ABC+ABC+ABC. 

2.1.2  Product of sums) 

It corresponds to a product of logical sums: F=-(-(ei)), or eirepresents a logical variable or its 
complement. 

CHAPTER 3 
REPRESENTATION AND SIMPLIFICATION OF LOGICAL   

FUNCTIONS  COMBINATORIES 
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Example :F2(A, B, C)=(A+B).(A+B+C). 

If each of the sums contains all the input variables in direct or complemented form, then the 

form is called:"second canonical form »or form "conjunctive canonical". Each of the products is 

calledmaxterm. 

 
Example :F2(A, B, C)=(A+B+C).(A+B+C).(A+B+C) 

2.2 Truth table 

A logical function can be represented by a truth table which gives the values that the function 

can take for each combination of input variables. 

2.2.1 Fully defined function 

It is a logical function whose value is known for all possible combinations of variables. 

Example :The “Majority of 3 variables” function: MAJ(A, B, C) The MAJ function is equal 

to 1 if the majority (2 or 3) of the variables are at state 1. 
 

Truth table 

Combination HAS B C S=SHIFT(A, B, C) 

0 0 0 0 0 

1 0 0 1 0 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 1 

7 1 1 1 1 

2.2.2 Incompletely defined function 

This is a function whose value isunspecified for certain combinations of variables. This is 

indicated by the symbol X or -; that is, the function is indifferent for certain combinations 

of input variables corresponding to situations which are: 
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 Can never follow in the system, Do not change 

 The behavior of the system. 

Example: Consider a keyboard that has 3 push buttons P1, P2and P3which control a 

machine and which have a mechanical lock such that 2 adjacent buttons cannot be pressed 

simultaneously: 

P1- P2- P3- 

Manual Walking Stop Increase speed 

 
It is assumed thatPisupported is worth1and released is worth0. Hence the truth table of the 

function "keyboard»which detects at least one triggered push button: 

 

Truth table 

Combination HAS B C Keyboard 

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 - 

4 1 0 0 1 

5 1 0 1 1 

6 1 1 0 - 

7 1 1 1 - 

 
2.2.3 Equivalence between the truth table and canonical forms 

 To establish the disjunctive canonical expression (the canonical sum) of the function: it is 

sufficient to carry out the logical sum (or union) of the minterms associated with the states 

for which the function is equal to “1”. 

 To establish the conjunctive canonical expression (the canonical product) of the function: it is 

sufficient to carry out the logical product (or intersection) of the maxterms associated with 

the states for which the function is equal to “0”. 
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Example :The “Majority of 3 variables” function: MAJ(A, B, C) 

 

Truth table 

Combination HAS B C S=SHIFT(A, B, C) Minterme Maxterme 

0 0 0 0 0 ABC A+B+C 

1 0 0 1 0 ABC 
 

 

A+B+C 

2 0 1 0 0 ABC 
 

 

A+B+C 

3 0 1 1 1 ABC A+B+C 

4 1 0 0 0 ABC 
 

 

A+B+C 

5 1 0 1 1 ABC A+B+C 

6 1 1 0 1 ABC 
 

  

A+B+C 

7 1 1 1 1 ABC 
 

   

A+B+C 

 
 We notice thatSHIFT(A,B,C)=1for the combinations 3, 5, 6, 7. We write the function thus 

specified in a so-called numerical form:MAJ= R(3,5,6,7), Union of states 3, 5, 6, 7. The first 

canonical form of the function NAJcan be directly deduced from this: 

 
  

UPDATE(A, B, C)=ABC+ABC+ABC+ABC. 

 We notice thatSHIFT(A,B,C)=0for the combinations 0, 1, 2, 4. We write the function thus 

specified in a so-called numerical form:MAJ= I(0,1,2,4), Intersection of states 0, 1, 2, 4. The 

second canonical form of the function NAJ can be directly deduced from this: 

                                                              PDATE(A, B, C)=(A+B+C).(A+B+C).(A+B+C).(A+B+C) 

 NB:We are generally interested in the representation of a function in the form of a sum 

or canonical sum (disjunctive form). 

2.3 Flowchart 

It is a graphical method based on symbols or gates. 

Example : The “Majority of 3 variables” function: MAJ(A,B,C)    UPDATE(ABC)=AB+BC+AC. 
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The function represented by a KARNAUGH table is written as the sum of the products 
associated with the different boxes containing the value 1. 

HAS 
B 

C 

 
 

 
S=SHIFT(A,B,C) 

 
 
 
 

2.4 The painting by KARNAUGH (TK) 

The Karnaugh table method allows you to visualize a function and intuitively derive a 

simplified function. The basic element of this method is the Karnaugh table, which is 

represented as a table formed by rows and columns. 

2.4.1Adjacency of boxes 

Two binary words are said to be adjacent if they differ only by the complement of one and only 

one variable. If two adjacent words are summed, they cannt be merged and the variable that 

differs from them will be eliminated. The words ABC and ABC are adjacent since they differ 

only by the complementarity of the variable C. The adjacency theorem therefore states that 

ABC and ABC = AB. 

2.4.2 Construction of the table 

KARNAUGH's painting was constructed in such a way as to bring out the logical visual adjacency. 

 Each box represents a combination of variables (minterm), 

 The truth table is transported into the array by putting the value of the corresponding 

function in each box. 

2.4.3 Rules to follow for a problem with n variables: (n>2) 

The KARNAUGH table has 2ncases or combinations, The order of the variables is not 

important but it only respects the following rule: 
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 The monomials identifying the rows and columns are assigned in such a way that 2 

consecutive monomials only differ in the state of a variable, it results that 2 

consecutive boxes in row or column identify adjacent combinations, we therefore use 

the GRAY code. 
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AB 
CD 

Painting by KARNAUGH 

Example 

 n=2 
 
 
 
 

 n=3 

 
 
 

 
A(0) 

A(1) 

 
 

 

B(0) 

 

 
B(1) 

 
 
 
 

 n=4 

 
A(0) 

A(1) 
 
 

 
AB(00) 

 

AB(01) 

AB(11) 
 

AB(10) 

 
 

BC(00) 
 
 
 
 

 

CD(00) 

 
  

BC(01) BC(11) BC(10) 
 
 
 
 

 

CD(01) CD(11) CD(10) 

 

 

2.4.4 Example of filling the KARNAUGH table from the truth table: 
 
 
 
 
 
 
 

 

CD(00) CD(01) CD(11) CD(10) 

AB(00) 
 

AB(01) 

AB(11) 
 

AB(10) 
 

NB: The Karnaugh Table has a structure wrapped around the rows and columns.  

It has a spherical shape. 

HAS 
B 

BC 
HAS 

B 
CD 

00 01 

10 11 

000 001 011 010 

100 101 111 110 

0000 0001 0011 0010 

0100 0101 0111 0110 

1100 1101 1111 1110 

1000 1001 1011 1010 

Truth table 

Combination HASB C D F(A,B,C,D) 

0 0 0 0 0 0 
1 0 0 0 1 1 
2 0 0 1 0 0 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 1 
6 0 1 1 0 0 
7 0 1 1 1 1 
8 1 0 0 0 0 
9 1 0 0 1 0 
10 1 0 1 0 0 
11 1 0 1 1 1 
12 1 1 0 0 0 
13 1 1 0 1 1 
14 1 1 1 0 0 
15 1 1 1 1 0 

0 1 0 0 

1 1 1 0 

0 1 0 0 

0 0 1 0 
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3. SIMPLIFICATION OF LOGIC FUNCTIONS 

The goal of simplifying logic functions is to minimize the number of terms in order to obtain a 

simpler hardware implementation, therefore easier to build and troubleshoot and less 

expensive. 

Two simplification methods are used: 

 Algebraic simplification. 

 Graphical simplification by KARNAUGH table. 

3.1 Algebraic simplification of logical expressions 
 

To obtain a simpler expression of the function by this method, one must use: 
 

 Theorems and properties of Boolean algebra (see chapter 2).  

 Multiplication by 1 (X+X).  

 The addition of a zero term (XX). 

Example : Simplification of the “Majority” function: MAJ(A,B,C) 
 

  

AJ(ABC)=ABC+ABC+ABC+ABC. 

AJ(ABC)=ABC+ABC+ABC+ABC+ABC+ABC. 
 

AJ(ABC)=BC(A+A)+AB(C+C)+AC(B+B). 

AJ(ABC)=BC+AB+AC 

NB: The rules and properties of Boolean algebra allow functions to be simplified, but it remains 

a relatively cumbersome method. It never allows us to know whether or not we arrive at a 

minimal expression of the function. 

We can then use the KARNAUGH table method 

3.2 Graphical simplification of logical expressions (by KARNAUGH table) 

The KARNAUGH table allows you to visualize a function and intuitively derive a simplified 

function from it 
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SHIFT(A,B,C)=G1+G2+G3=AB+BC+AC 

 

3.2.1Grouping adjacent boxes 

The method consists of making groups of adjacent squares. These groupings of squares must be of 

maximum size (maximum number of cases) and equal to 2k(i.e. 2, 4, 8, 16, …). We stop grouping 

when all the ones belong to at least one of them. 

NB:Before deriving the equations from the KARNAUGH table, the following rules must be 
observed: 

 Group all together. 

 Group as many of them as possible into a single 

 grouping. A grouping has a rectangular shape. 

 The number of ones in a group is a power of 2 is equal to 2k 

 A 1 can appear in more than one grouping. 

 A grouping must respect the axes of symmetry of the TK 

Grouping of the 2 adjacent boxes 

Simplification of the Majority function of 3 variables (MAJ(A,BC)) 
 

 
A(0) 

A(1) 

 
 

BC(00) 
 

  

BC(01) BC(11) BC(10) 

 
  

G1=ABC+ABC=AC G3=ABC+ABC=AB 
 

G2=ABC+ABC=BC 
 

Ruler: Combining two adjacent squares containing 1 each eliminates one  

only variable that changes state when moving from one box to another. 
 
 
 
 
 
 
 
 

BC 
HAS 

0 0 1 0 

0 1 1 1 
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Grouping of the 4 adjacent boxes 
 

 

CD 
AB  
AB(00) 

 

AB(01) 

AB(11) 
 

AB(10) 

 
 

CD(00) CD(01) CD(11) CD(10) 
 

0 0 0 1 

1 1 0 1 

1 1 0 1 

0 0 0 1 

 

F1(A,B,C,D)=BC+CD F2(A,B,C,D)=AD+BD 
 
 

 

CD 
AB  
AB(00) 

 

AB(01) 

AB(11) 
 

AB(10) 

 
  

CD(00) CD(01) CD(11) CD(10)  
 

1 0 1 1 

1 0 0 0 

1 1 1 1 

1 0 1 1 

 

F3(A,B,C,D)=CD+AB+BC 
 

Function F1 

AB 

Function F2 

CD 
CD(00) CD(01) CD(11) CD(10) 

AB(00) 

AB(01) 

AB(11) 

AB(10) 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

Function F3 
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AB 
CD 

CD(00) 

AB(00) 

AB(01) 

AB(11) 

AB(10) 

1 0 0 1 

1 0 0 1 

1 0 0 1 

1 0 0 1 

Function F4 

 
 

Ruler:2 variables disappear when we group 4 adjacent boxes, we can then replace the sum of the 4 

boxes (4 minterms with 4 variables each) by a single term which only has 2 variables. 

Grouping of 8 adjacent boxes 

 

 
  

CD(01) CD(11) CD(10)  
 

 

F4(A,B,C,D)=D 
 

Ruler:2 variables disappear when we group 8 adjacent boxes, we can then replace the sum of the 8 

boxes (8 minterms with 4 variables each) by a single term which contains only 1 variable. 

Noticed: We will limit ourselves to tables of 4 variables, to solve by example of problems with 5 

variables; we break them down each into two problems with 4 variables. 

3.22 Handling 5-variable problems 

To solve this problem we will break it down into 2 problems with 4 variables by applying the 

expansion theorem (SHANNON). 

 

we have: F(A,B,C,D,E)=EF(A,B,C,D,0)+ EF(A,B,C,D,1) 

NB:SHANNON's expansion theorem remains applicable whatever the number of variables we have: 

 

F(A,B,C, … ,Z)=ZF(A,B,C, … ,0)+ ZF(A,B,C, … ,1) 

 

Example :Simplify the function F(A,B,C,D,E)=-(4, 5, 6, 7, 24, 25, 26, 27) 
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F(A,B,C,D,0) 

 

 

CD 
AB  
AB(00) 

 

AB(01) 

AB(11) 
 

AB(10) 

CD(00) CD(01) CD(11) CD(10)  AB 
CD 

AB(00) 
 

 

AB(01) 

AB(11) 
 

AB(10) 

 
  

CD(00) CD(01) CD(11) CD(10) 

 

   
F(A,B,C,D,0)=CD F(A,B,C,D,1)=CD 

 

What results from this: F(A,B,C,D,E)=ECD+ECD 
 

3.23 Indifferent or undefined values 
The symbol - (or X) can take the value 0 or 1 indifferently: we therefore replace by 1 only those which 
allow us to increase the number of boxes in a grouping and those which reduce the number of 
groupings. 

F(A,B,C,D,1) 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 1 0 0 

0 1 0 0 

0 1 0 0 

0 1 0 0 
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HAS 

F(ABC) 

 

Example  
 

 

BC 
BC(00) BC(01) BC(11) BC(10) 

A(0) 

A(1) 
 

 
F(ABC)=B 

 
 
 

 
4. SUMMARY: SYNTHESIS OF A LOGICAL FUNCTION 

 Step 1: Reading and analysis of the statement of the function. 

 Step 2: writing the function in the canonical form of a truth table. 

 Step 3: Simplification of the function expression by the method algebraic or by the TK method 

  Step 3: Creation of the flowchart: 

 With only one type of operators using universal logical functions. 

 With a minimum of operators using basic logic functions 

Truth table 
Combination HASB C F(A,B,C) 

0 0 0 0 - 

1 0 0 1 0 

2 0 1 0 1 

3 0 1 1 - 

4 1 0 0 0 

5 1 0 1 0 

6 1 1 0 - 

7 1 1 1 1 

- 0 - 1 

0 0 1 - 
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Half- 
Adder 

 

 

 

 

1. OBJECTIVES 

 Study the main combinational logic circuits used in digital systems (such as: arithmetic 

circuits, encoders, transcoders, etc.), 

 Implement logic functions using combinational circuits. 

2. ARITHMETIC CIRCUITS 

2.1 Adders 

An adder is a circuit capable of adding two binary numbers HASAndB. An addition implements two 

outputs: 

 The sum, generally noted S, 

  The restraint, generally noted R(Or C: carry). 

As in decimal, we must take into account the possible carryover, the result of a previous 

calculation. The following figure shows the decomposition of the addition of two 4-bit binary 

numbers. 

S0 

S1 has3has2has1has0Number A 

S2 +    b3b2b1b0                         Number B 
 

 
b 
b0 
b1 
b

3
2 

S3 = 
- 

 
R3 

S3S2S1S0 

r3r2r1r0 

Sum A+B 
Retention 

 
2.1.1 The Half Adder (2 bits) 

    It is a 2-bit adder without taking into account the previous carry. 

has  S 

b R 

HAS h1a 
h 

h 
h 

B 

  
 

4-bit adder 

CI: 74283 

 s s0  
as2 

 as3 

  

 

 

 

 
  

CHAPTER 4 

COMBINATORIAL LOGIC CIRCUITS 
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Half- 
Adder 

Half- 
Adder 

 

Truth table Output equation Flowchart 
  

 
  

S=AB+AB=AB 

R=AB 

HAS S 
B 

R 

2.1.2 The Full Adder (2 bits) 

It has three inputs A, B and Reand two exits S and RS: Rerepresents the carry of rank n-1 and 

Rsthat of rank n. 

 

Truth table Output equation Flowchart 

 
ABReSRS 

  
 

HAS  

B Adder 

Re 

 
Integrated circuit: 

74LS183 

 
S 

 
Rs 

0 
0 
0 

0 0 0 
0 1 1 
1 0 1 

0 
0 
0 

 
    

S=ABRe+ABRe+ABRe+ABRe 

=ABRe 

0 1 1 0 1 
RS= ReA-B+AB 1 0 0 1 0 

1 0 1 0 1  

1 1 0 0 1  

1 1 1 1 1  

 

Flowchart: 

 
HAS 

B 

 
Re 

 

 
AB 

 

 

 
 

 
S= ABRe 

 
RS 

2.2 The subtractors 

A half-subtract or ignores any carry from lower-order bits. D represents the result of the 

difference (AB) and R restraint. 

AB 

HAS B S R 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 
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Half- 
subtractor 

AB 

Half- 
subtractor 

 

Truth table Output equation Flowchart 
  

 
  

D=AB+AB=AB 
 

 

R=AB 

HAS D 
B 

R 

2.2.1 The complete subtractor (2 bits) 

It has three inputs A, B and Reand two exits D and RS: Rerepresents the carry of rank n-1 

and Rsthat of rank n. 

 

Truth table Output equation Flowchart 
  

 

 
    

D=ABRe+ABRe+ABRe+ABRe 

=ABRe 

 
 

RS= ReA-B+AB 

 
 

 
HAS S 
B Subtractor 

Re Rs 

 

Flowchart: 

HAS 

B 

 
Re 

2.3 Adder-subtractors 

 
AB 

 
 

D= ABRe 

 
RS 

 A number coded on n bits can take a value between 0 and 2n-1. 

 The complement of an n-bit word is obtained by taking the complement of each of its n 
bits. Thus, we have:  

 

A+A=2n-1 --A= A+1-2n 

HAS B D R 
0 0 0 0 
0 1 1 1 
1 0 1 0 
1 1 0 0 

ABReDRS   

0 0 0 0  0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 1 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 
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1 

 
0 

 
 
Adder 

n 

n 
n 

HAS n n 

HAS 
h 
h

2
a 

h
. . .

a
 

1 a 

 For a variable coded on n bits: 2n=0. That is to say, it is possible to write a negative 

integer as the "2's complement" of its value 

absolute. - A=A+1 

 We can use this property to write the subtraction of two n-bit words in the following 

form:   
 

AB=A+B+1 
 A single device shown in the figure below can be used for addition and subtraction 

according to the operation codeO: 

 O=0: addition 

 O=1: subtraction 

S 

 
B 

R 
 
 

O 
2.4 Comparator 

It is a circuit that allows you to compare two binary numbers. It indicates whether the first 

number is less than (S2), equal (S0) or higher (S1) to the second number. 

h 
 

 
 
 

 
b 
b0 
b

2
1 

. . . 

3 

S0(A=B) 

S1(A>B) 

S2(A<B) 

 
Basic principle 
The principle is to first compare the most significant bits (MSB). If they are different, there is no point 
in continuing the comparison. On the other hand, if they are equal, the next lowest-order bits must be 
compared, and so on. 

b 

B 

as  
 

Comparator 
to n bits 

74HC85 (4 bits) 

 
s0 

s 
sn  
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Truth table 

b1 b0 has1 has0 S0 S1 S2 

0 0 0 0 1 0 0 
0 0 0 1 0 1 0 
0 0 1 0 0 1 0 
0 0 1 1 0 1 0 
0 1 0 0 0 0 1 
0 1 0 1 1 0 0 
0 1 1 0 0 1 0 
0 1 1 1 0 1 0 

b1 b0 has1 has0 S0 S1 S2 

1 0 0 0 0 0 1 
1 0 0 1 0 0 1 
1 0 1 0 1 0 0 
1 0 1 1 0 1 0 
1 1 0 0 0 0 1 
1 1 0 1 0 0 1 
1 1 1 0 0 0 1 
1 1 1 1 1 0 0 

2.4.1 The 1-bit comparator 
 

Truth table Equation of 
exits Flowchart 

  
 

  

S0=AB+AB=AB 

S1=AB 

S2=AB 

HAS 
B 

 

 
 

 

 

S0 
 

 

S1 

  
S2 

   

2.4.2 The 2-bit comparator 
 

Operating diagram Organizational chart 

 

HAS h S0(A=B) 
h

1
a 

S1(A>B) 
B b S2(A<B) 

b
1
0 

 

 
has1=b1 

 
has1>b1 

 
has0=b0 has0>b0 

 
 
 
 

 

S0=1 S1=1 S2=1 S1=1 S2=1 

 
 

B HASS0 S1 S2 

0 0 1 0 0 
0 1 0 1 0 
1 0 0 0 1 
1 1 1 0 0 

as 
 

Comparator 
2-bit 

 
s0 
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Equations 

We have  S 0 is worth 1 if a1=b1and if a0=b0 

 

S0=(a1-b1).(has0-b0). 

And S1 is worth 1 if a1>b1 or  if (a1=b1 and has 0>b0) 
 

S1=a1b1+(a1-b1)has0b0 

 
And S2 is worth 1 if a1<b1 or if (a1=b1 and has 0<b0) 

 

S2=a1b1+(a1-b1)has0b0 
 

S2=S0+S1 

Logic diagram using basic logic gates 

 
has1has0b1b0 

 

 

S0 

S2 

S1 

Flowchart using the 2 1-bit comparators. 

 

has0 

b0 

If0(A=B) 
If1(A>B) 
If2(A<B) 

has1  

b1 

S ''0 (A=B) 
S''1(A>B) 
S''2(A<B) 

Comparator 
at 1 bit 

 

Comparator 
at 1 bit 
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Comparator 
at 1 bit 

Comparator 
at 1 bit 

S0=(a1-b1).(has0-b0) =S''0If0. 

And S1is worth 1 if a1>b1or if (a1=b1and has0>b0) 
 

S1=a1b1+(a1-b1)has0b0=S''1+S''0If1 

 
And S2is worth 1 if a1<b1or if (a1=b1and has0<b0) 

 

S2=a1b1+(a1-b1)has0b0=S''2+S''0If2 
 

S2=S0+S1 
 

has0  

b0 

 

 
has1 

b1 

If0 

If1 

If2 

 
 
 

 
S''0 

S''1 

S''2 

  S0 

 
  S1 

 
  S2 

 
2.5 Coders and decoders 

2.5.1 The coders 

It is a circuit that translates the values of an input into a chosen code. An encoder (or encoder) 

is a logic circuit that has2ninput channels of which only one is activated andNexit routes. 

 

I0 
1 

I2 
I3 

. . . 

I2n-1 

S0 

S1 

S
.
.2
.
 

Sn-1 

 

 
Coder 
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6 

9 

 
 Example: DCB Encoder 

 
 
 
 
 
 

 
3 

2 

1 

0 

 
 
 
 
 
 
 

 
 Flowchart: 

 
1 

has0 

 
 
 

2 
3 has1 

 

 
4 
5 h

2
as 

7 

 
8 

has3 

   
 

 
Coder 

DCB 

 

  

 
. 

 

 

 

 

 

Truth table Output equation Flowchart 

 
Exits 

Entrances 
has3has2has1has0 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

 
 
 
 
 

 
a0= 1 + 3+5+7+9 

has1=2+3+6+7 

has2=4+5+6+7 

has3=8+9 

 

 
0 has 
1 

has
 

2 
. . 

has 
has 

9 
 
 

Integrated circuit: 

74LS147 
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Decoder 

2.5.2 The decoders 

A decoder is a circuit with N inputs and 2noutputs of which only one is active at a time. It 

detects the presence of a specific combination of bits (code) at these inputs and indicates it by 

a specific output level. 

 

I0 

I1 

I2... 

S0 
S 
S12 
S3 

 
. . . 

In-1 Sn2-1
 

 Example: DCB Decoder 
 

Operating table Output equation Flowchart 
 

Entrances 
Exits

 

has3has2has1has0 

0 0 0 0 S0 

0 0 0 1 S1 

0 0 1 0 S2 

0 0 1 1 S3 

0 1 0 0 S4 

0 1 0 1 S5 

0 1 1 0 S6 

0 1 1 1 S7 

1 0 0 0 S8 

1 0 0 1 S9 

 
    

S0=a3has2has1has0 

S1=a3has2has1has0 

S2=a3has2has1has0 

S3=a3has2has1has0 

S4=a3has2has1has0 

S5=a3has2has1has0 

S6=a3has2has1has0 

S7=a3has2has1has0 

S8=a3has2has1has0 

S9=a3has2has1has0 

 
has3 

S0
 

has2 
S1

 

has  
Decoder S2 

1 DCB 
has0 

. . .
 

S9 
 
 
Integrated circuit: 

74145 

2.5.3 The 7-segment DCB decoder 

The 7-segment decoder accepts 4 BCD bits as input (a0, has1, has2, has3) and activates the 

outputs which will allow a current to pass through the segments of a digital display to 

form the decimal digits (from 0 to 9). 
has 

has3 b 
h c 

d 
e 
f 
g 

has 

f b 

g 

e c 

d 

h 
h 

 
 

Decoder 
DCB 

7 segments 

 

 

 
as2 

as1 

as0 
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has 

f b 

e c 

d 

b 

c 

has 

b 

g 

e 

d 

has 

b 

g 

c 

d 

f b 

g 

c 

has 

f 

g 

c 

d 

f 

g 

e c 

d 

has 

b 

c 

has 

f b 

g 

e c 

d 

has 

f b 

g 

c 

 
 RNote:There are 6 titled combinations10, 11, 12, 13, 14, 15which will be noted -. The other 

figures are displayed as follows: 

 
 

 

 
 
 

Truth table 
 

Display 
Entrances Exits 

has 3has 2has 1has 0ha sb c d e f g 

0 0 0 0 1 1 1 1 1 1 0 0 

0 0 0 1 0 1 1 0 0 0 0 1 

0 0 1 0 1 1 0 1 1 0 1 2 

0 0 1 1 1 1 1 1 0 0 1 3 

0 1 0 0 0 1 1 0 0 1 1 4 

0 1 0 1 1 0 1 1 0 1 1 5 

0 1 1 0 0 0 1 1 1 1 1 6 

0 1 1 1 1 1 1 0 0 0 0 7 

1 0 0 0 1 1 1 1 1 1 1 8 

1 0 0 1 1 1 1 0 0 1 1 9 
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- - 0 1 

- - 1 1 

1 - 1 0 

1 - 0 1 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has001 
 

 

has1has011 

has1has010 - - 0 1 

- - 1 1 

1 - 0 1 

1 - 1 1 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has001 
 

 

has1has011 

has1has010 

- - 1 1 

- - 0 1 

0 - 1 0 

1 - 0 1 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has001 
 

 

has1has011 

has1has010 

- - 1 1 

- - 0 0 

0 - 0 0 

1 - 0 1 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has001 
 

 

has1has011 

has1has010 

- - 1 0 

- - 0 0 

1 - 1 0 

1 - 1 1 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has001 
 

 

has1has011 

has1has010 

Segment a Segment b 

has1has000 has1has000 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has000 

has1has001 
 

 

has1has011 

has1has010 - - 1 0 

- - 1 1 

1 - 1 1 

1 - 1 1 

Segment c Segment d 

has1has000 

Segment e 
Segment f 

has1has000 
has1has000 

 
 Example: DCB Decoder 

 
 

 
 

 
 
 
 

 
   

a=a2has1+a2has0+ a2has0+has3 b=a2+a1has0+a1has0=a2+a1-has0 

 

 

 
 

c=a2+a1+a0 d=a2has0+a3has0+a2has1+a1has0+a2has1has0 

 
 

 

 

 
 
 
 

 

e=a1has0+a2has0  
f=a1has0+a2has1+a2has0+a3 
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g=a2has1+a2has0+a2has1+a3 

 

Noticed : The display is made up of 7 LEDs (segments), a, d, c, d, e, f, g which require a specific 

polarization depending on the type of display (common anode or common cathode): 

 For a common anode display: The anodes are connected together at the high level and the 

decoder outputs are active at the low level (CI: 74LS47) and are connected to the cathodes 

of the display. 

 For a common cathode display: The cathodes are connected together to ground and 

the decoder outputs are active at high level (CI: 74LS48) and are connected to the anodes 

of the display. 

 

+Vcc 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Cathode display 
municipalities 

Anode display 
municipalities 

Segment g 

- - 1 1 

- - 0 1 

1 - 1 0 

1 - 1 0 

has3has2 

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has000 
 

 
has1has001 

 

 

has1has011 
 

 
has1has010 

 
has 

 
b 

c 

d 

e 

f 

g 

has 

b 

 
c 

 
d 

e 

f 

 
g 
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Machine 

 

 
Transcoder 

has'3 

has'2 

has'1 

has'0 

 
Transcoder 

BN/BR has 

2.6Transcoders 

A transcoder is a circuit that allows information written in a C code to be passed1 to a C code2. 

It is usually formed by a decoder cascaded with an encoder. 

has3 

has2 

has1 

has0 

 

 
2.6.1 Natural Binary-Reflected Binary Transcoder 

Example: BN/BR Transcoder (4 bits) 
 
 
 
 
 
 
 
 
 

 
hasn-1 

 

. . . . . . . . . 
2 

has1 

has0 

has'n-1 

. . 
has'2 

has'1 

has'0 

 

 
Operator 

logic 

Truth table D
ecim

al 

BN entries BR releases 

has 3has 2has 1has 0has'3 

 
has'2 

 
has'1 

 
has'0 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 1 

0 0 1 0 0 0 1 1 2 

0 0 1 1 0 0 1 0 3 

0 1 0 0 0 1 1 0 4 

0 1 0 1 0 1 1 1 5 

0 1 1 0 0 1 0 1 6 

0 1 1 1 0 1 0 0 7 

1 0 0 0 1 1 0 0 8 

1 0 0 1 1 1 0 1 9 

1 0 1 0 1 1 1 1 10 

1 0 1 1 1 1 1 0 11 

1 1 0 0 1 0 1 0 12 

1 1 0 1 1 0 1 1 13 

1 1 1 0 1 0 0 1 14 

1 1 1 1 1 0 0 0 15 
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Operating table Output  equation  and  flow chart 

 
Bit a'3 

has3has2 

  

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has000 

 

has1has001 
 

 

has1has011 

 
 

has1has010 
 
 
 
 
 
 

Bit a'2 

has3has2 

   

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has000 

 

has1has001 
 

 

has1has011 

 
 

has1has010 
 
 
 
 
 

 

Bit a'1 

has3has2 

   

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has000 0 1 1 0 

has1has001 0 1 1 0 

has1has011 1 0 0 1 

has1has010 1 0 0 1 
 
 
 
 

 

Bit a'0 

has3has2 

   

has1has0 has3has200 has3has201 has3has211 has3has210 

has1has000 

 

has1has001 
 

 

has1has011 

 
 

has1has010 

 

 
has'3=a3 

has'2=a3-has2 

has'1=a2-has1 

has'0=a1-has0 

 
 
 

has0 
has'0 

 
 
 
 
 
 

 

has1 
has'1 

 
 
 
 
 
 

 

has2 

has'2 

 
 
 
 
 
 

 

has3 has'3 

0 0 1 1 

0 0 1 1 

0 0 1 1 

0 0 1 1 

0 1 0 1 

0 1 0 1 

0 1 0 1 

0 1 0 1 

    

    

    

    

0 0 0 0 

1 1 1 1 

0 0 0 0 

1 1 1 1 
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Trencoder 

BR/BN 

 
2.6.2 Reflected Binary Transcoder - Natural Binary 

Example: BR/BN Transcoder (4 bits) 
 
 
 
 
 
 
 
 
 

 
has'n-1 

 
. . . 

has'2 

has'1 

has'0 

 

 
. . . . . . 

 
hasn-1 

. . 

has2 

has1 

has0 

Decim
al 

Truth table 
 
 
 
 
 

 

s0 

BR entries BN releases 
 

has'3 

 
has'2 

 
has'1 

 
has'0 has3 has2 has1 ha 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 1 

0 0 1 0 0 0 1 1 2 

0 0 1 1 0 0 1 0 3 

0 1 0 0 0 1 1 1 4 

0 1 0 1 0 1 1 0 5 

0 1 1 0 0 1 0 0 6 

0 1 1 1 0 1 0 1 7 

1 0 0 0 1 1 1 1 8 

1 0 0 1 1 1 1 0 9 

1 0 1 0 1 1 0 0 10 

1 0 1 1 1 1 0 1 11 

1 1 0 0 1 0 0 0 12 

1 1 0 1 1 0 0 1 13 

1 1 1 0 1 0 1 1 14 

1 1 1 1 1 0 1 0 15 
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Bit a3 

Bit a0 

 

 

Operating table 
 

has'3has'200 has'3has'201 has'3has'211 has'3has'210 

Output equation and flowchart 

 
has3=a'3 

 has =a' -has' = a -has' 
2 3 2 3 2 

has'1has'000 
 

 
has'1has'001 

 

 
has'1has'011 

 

 
has'1has'010 

 
 
 
 
 
 
 
 
 

 
has'0 

has1=a2-has'1 

has0=a1-has'0 

 
 
 
 

 
has0 

 
 
 
 

 
has'3has'200 has'3has'201 has'3has'211 has'3has'210 

 
has'1has'000 

 

 
has'1has'001 

 

 
has'1has'011 

 

 
has'1has'010 

 
 

 
has'1 

 
 
 
 
 
 
 
 

 
has'2 

 
has1 

 
 
 

 
has2 

 
 
 
 

 
has'1has'000 

 

 
has'1has'001 

 

 
has'1has'011 

 

 
has'1has'010 

 
 
 
 
 
 
 
 
 
 
 
 

 
has'1has'000 

 

 
has'1has'001 

 

 
has'1has'011 

 

 
has'1has'010 

 
has'3has'200 has'3has'201 has'3has'211 has'3has'210 

 

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

 

 

 
has'3has'200 has'3has'201 has'3has'211 has'3has'210 

 

 

 

  

  

 
 
 

 
has'3 

 
has3 

has'3has'2 

has'1has'0 

has'3has'2 

has'1has'0 

has'3has'2 

has'1has'0 

has'3has'2 

has'1has'0 

Bit a1 

Bit a2 

0 0 1 1 

0 0 1 1 

0 0 1 1 

0 0 1 1 

0 1 0 1 

0 1 0 1 

0 1 0 1 

0 1 0 1 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 
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Synchronization 

. . 
Multiplexer 

2ntowards 1 

Demultiplexer 
1 to 2n 

. . . 

… … 

B Y 

2.7 Multiplexers and demultiplexers 

Transmitting information from one station to another requires several lines in parallel, 

which is difficult to achieve and very expensive when the stations are geometrically 

distant from each other. 

The solution is then to transmit serially on a single line, using a parallel/serial converter 

(Multiplexer) at the transmitting station and a serial/parallel converter (Demultiplexer) at the 

receiving station. 
 

D0 

D1 

D2 

D3 

D4 

. . . 

S0 

S1 

S2 

S3 

S4 

. . . 

D2n-1 Sn2-1 
 
 

En-1 E3E2E1E0 En-1 E3E2E1E0 

Transmitting station 

 

2.7.1 Multiplexers 

Receiving station 

A multiplexer (MUX) is a logic circuit that has2nentries (D0, D1, D2, … Dn2-1),n selection 

entries (E0, E1, E2, … En-1) and only one exitY. It is said:MUX 2ntowards 1Or MUX 2nx 1. 

Its function is to switch one of the inputs to the output based on the address code applied to the 

selection inputs. 
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 Truth table 

 

Truth table Flowchart 
 

 

D0 

D1 

D2 Y 
D3 

D4 
Multiplexer 

2ntowards 1 
. . . . . . 

D2n-1 
…

 

En-1 E3E2E1E0 

 
 
 
 
 

Decimal 
Entrances Exits 

En-1 … E 2 E1 E0 Y 
0 0 … 0 0 0 D0 

1 0 … 0 0 1 D1 

2 0 … 0 1 0 D2 

3 0 … 0 1 1 D3 

4 0 … 1 0 0 D4 

5 0 … 1 0 1 D5 

…. … … … … … … 
2n-1 1 … 1 1 1 D2n-1 
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Demultiplexer 

1 to 2n 

B 

… 

Integrated circuit: 
74LS157 MUX 1 of 2 
74LS153 MUX 1 of 4 

74LS151 MUX 1 of 8 
74LS150 MUX 1 of 16 

2.7.2 Demultiplexers 

A demultiplexer (DEMUX) is a logic circuit that has a single inputB,nentries 

selection (E0, E1, E2, … En-1) And2nexits (S0, S1, S2, … Sn 2-1). It is said:DEMUX 1 to 

2nOrDEMUX 1 x 2n. 

It performs the inverse function of a multiplexer, it transmits the input data to one of the outputs 

according to the word written to the selection inputs, it works like a switch. 

 Truth table 
 

Decimal 
Entrances Exits 

En-1 … E2 E1 E0 S0 S1 S2 … Sn2-1 

0 0 … 0 0 0 B 0 0 … 0 
1 0 … 0 0 1 0 B 0 … 0 
2 0 … 0 1 0 0 0 B … 0 
3 0 … 0 1 1 0 0 0 … 0 
4 0 … 1 0 0 0 0 0 … 0 
5 0 … 1 0 1 0 0 0 … 0 

…. … … … … … … … … … … 
2n-1 1 … 1 1 1 0 0 0 … B 

 

 Flowchart  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

En-1 E3E2E1E0 

 
 

 

S0 

S1 

S2 

S3 

S4 
 

 

Sn2-1 

 
 
 

 
Integrated circuit: 

4067 DEMUX 1 to 16 
74LS154 DEMUX 1 to 16 
74LS138 DEMUX 1 to 8 
74LS156 DEMUX 1 to 4 

. . . 
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CS 

MUX 
4 to 1 

1
 E0 

   

CS 

MUX 
4 to 1 

E1 

MUX 
4 to 1 

E0 CS E1 E0 

Decoder 
1 of 4 

MUX 
4 to 1 

CS E1  E0 

D12 

D13 

D14 

D15 

Y 

D BA 

2.7.3 Realization of a 1 of 16 multiplexer using 4 1 of 4 multiplexers and a 1 of 4 decoder 
 

 

D0 

D1 

D2 

D3 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 

2.7.4 Implementation of logic functions using multiplexers 

 Issue 

Let the function F be(A, B, C, D)=-(0, 2, 5, 7, 11, 13, 14, 15). Perform this function using a multiplexer. 

 Solution 

Using a 16 to 1 multiplexer  (number of variables  equal  to the number of selection 

inputs). 

S 

Y 

D4 

D5 

D6 

D7 

Y 

D8 

D9 

D10 

D11 

Y 
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D0 
D1 
D2 
D3 
D4 
D5 
D6 
D7 

D8 

D9 

D10 
D11 
D12 
D13 

D14 
D15 

 
 

 
Multiplexer 

8 to 1 

E2E1E0 

D3 

E3E2E1E0 

Multiplexer 
16 verses 1 

Y=S 

 
 
 

 

+ VCC 
 

DCBA 

 

 
Using an 8 to 1 multiplexer (number of variables less than the number of selection inputs). 

 

D CBACBA(000) CBA(001) CBA(010) CBA(011) CBA(100) CBA(101) CBA(110) CBA(111) 

D(0)  

D(1) 
 

D0=D D1=0 D2=D D3=D D4=0 D5=1 D6=D D7=1 

D + VCC 
 

 
D0 
D1 
D2 

Y=S 
D4 
D5 
D6 
D7 

 
 

 
C B HAS 

 

Decimal 
Entrances Exits 

E3=D E2=C E1=B E0=A Y S 
0 0 0 0 0 D0 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

D10 

D11 

D12 

D13 

D14 

D15 

1 
1 0 0 0 1 0 
2 0 0 1 0 1 
3 0 0 1 1 0 
4 0 1 0 0 0 
5 0 1 0 1 1 
6 0 1 1 0 0 
7 0 1 1 1 1 
8 1 0 0 0 0 
9 1 0 0 1 0 

10 1 0 1 0 0 
11 1 0 1 1 1 
12 1 1 0 0 0 
13 1 1 0 1 1 
14 1 1 1 0 1 
15 1 1 1 1 1 

0 1 2 3 4 5 6 7 

8 9 10 11 12 13 14 15 
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Circuit 

combinatorics 
   

E1   

E 
. . 

2 

. . . 

. 

 

 

1. OBJECTIVES 

 Treat sequential systems in detail. 

 Understanding  flip-flops. 

 
2.INTRODUCTION 

2.1 Reminder on combinational circuits 

In a combinational system, the outputs depend only on the state of the inputs at a 

given time. 

 

E1 

E2 

Entrances E 3 

. . 

En 

 

2.2 Sequential circuits 

 

S0 

S1 

S
. 2 

. . . 

Sk 

 

 
Exits 

The output function of sequential systems depends in addition to the states of the 

inputs (called primary inputs) on the previous states of the outputs (called 

secondary inputs). The sequential circuit is said to have a memory function. 

 

Entrances 

primary 
Exits 

primary 
 
 

 

Entrances 

secondary 

Exits 

secondary 
 

 

Memory 

S0 

S. 1 

. . . . . 

Sk En 

 
 

Circuit 

combinatorics 

 

  

  

 
. . . . . 

  

 

CHAPTER 5 

SEQUENTIAL LOGIC 
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Toggle 

 
Sequential systems are classified into 2 categories: 

 Asynchronous sequential circuits 

In asynchronous sequential circuits, the outputs change states as soon as the input 

states change. 

 Synchronous sequential circuits 

In this type of circuit the outputs change state after having been authorized by a 

synchronization signal often called "Clock" signal noted H or CLK. 

 
3. ASYNCHRONOUS FLIP-FLOATS 

The flip-flop is the most common memory circuit. It also serves to create a 

frequency divider by two. It is a sequential system consisting of one or two inputs 

and two complementary outputs. 

 
E1   Q 

 

E2   Q 

 
The flip-flop is the most common storage circuit. It also serves to create a frequency 

divider by two. It is a sequential system consisting of one or two inputs and two 

complementary outputs. 

It is called a "bistable flip-flop" because it has two stable states. There are 4 types of 

flip-flops:RS,D,JK, AndT. 

3.1 RS rocker 
 

Symbol Explanation 

 
 

 
S Q 

R 
RS 

Q 

 
-S 

 
-R 

 
A pulse onS (set)-Up to 1 ofQ((walk) A pulse on 

R (Reset)-Reset to 0deQ(Stop) 
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Truth table Output equation 

  

 

Qn+1 

RS 

Qn 
00 01 11 10 

0 0 1 - 0 

1 1 1 - 0 
 

 
 

Qn+1=RQn+S 

 
 
 

Flowchart 

Using NAND gates Using NOR gates 

S 

Q 
 
 

 
 

R Q 

 

R Q 
 
 

 
 

Q 

S 

 

 

NB:  The state R=S=1e is a forbidden state since it gives us the two complementary 

outputs Q and Q in the same state which is not logical. 

Entrances Exits Mode of 
nctioning R S Qn Qn+1Q n+1fu 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

0 

0 

- 

- 

1 

0 

0 

0 

1 

1 

- 

- 

Previous state 

Previous state 

Engagement 

Maintain at 1 

Maintain at 0 

Triggering 

Forbidden 

Forbidden 
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3.2 D-Flip 

 

Symbol Explanation 

 

D   
Q 

D 
Q 

 
A press on D-Up to 1 of Q A release of D-

Reset to 0Q 

 

Truth table Output equation 

  

 

Qn+1 

D 

Qn 
0 1 

0 0 1 

1 1 1 

Qn+1=D 

 
 
 

Flowchart 

Using NAND gates Using NOR gates 

 

D Q 
 
 

 
 

Q 

 

Q 
 
 

 
 

Q 

D 

 

Noticed :By putting S=D and R=Din the seesaw equation RSwe will haveQn+1 

=DQn+D=D(1+Qn)=D. 

Entrances Exits Mode of 
functioning 

D Qn Qn+1 Qn+1 

0 0 0 1 Maintain at 0: -0 

Trigger: - 

Engagement: - 

Maintain at 1: -1 

0 1 0 1 

1 0 1 0 

1 1 1 0 
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RS 

 

JK 

S 
   

R 

 

RS 

So we get a flip-flopDby adding an inverter between S And R. 

 
D Q 

 

 

Q 

 
3.3 JK rocker 

Unlike the seesaw RS, the condition J=K=1, does not give rise to an indeterminate 

condition, but on the other hand the flip-flop goes to the opposite state. 

 

Truth table Output equation 

  
 

 

Qn+1 

JK 

Qn 
00 01 11 10 

0 0 0 1 1 

1 1 0 0 1 
 
 

  

Qn+1=JQn+KQn 

 
 

 

I Q 
I 

Q 

 

K Q 
K 

Q 

Entrances Exits Mode of 
functioning 

I KQ n Qn+1 Qn+1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

1 

0 

1 

0 

1 

1 

0 

0 

0 

1 

Previous state 

Previous state 

Maintain at 0: -0 

Trigger: - 

Engagement: - 

Maintain at 0: -1 

Engagement: - 

Trigger: - 
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T 

 

JK 

 

RS 

RA0 

S 
Q 

 
3.4 T-toggle 

The seesaw T is obtained by connecting the inputs I And K of a seesaw JK. 
 

Truth table Output equation 

  

 

Qn+1 

T 

Qn 
0 1 

0 0 1 

1 1 0 

 
  

Qn+1=TQn+TQn=TQn 

Noticed :En refill there cient I And K by T in the seesaw equation JK we will have Q 

n+1=TQn+TQn=TQn. 

 

T   
Q 

 
 

Q 

T Q 
 

 

Q 

 

3.5 Forcing the flip-flops 

Some scales are equipped with special inputs: 

  Reset input: PRESET (RA1), 

 Reset input: RESET (RA0), 

 

 

 
 

 

 
 
 
 
 
 
 

 

RA0 

 

S Q 

 

R Q 
 
 
 

 
 

RA1 RA1 

The same reasoning is applied to the D, T and JK flip-flops. 

R Q 

Entrances Exits Mode of 
functioning T Qn Qn+1 Qn+1 

0 0 0 1 Maintain at 0: -0 

Maintain at 1: -1 

Engagement: - 

Trigger: - 

0 1 1 0 

1 0 1 0 

1 1 0 1 
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RA0 

 

RSH 

 
3.5.1 Truth table 

 

Entrances Exits Mode of 
functioning PRESET CLEAR Qn+1 

 
 

Qn+1 

0 0 Qn 

 
 

Qn Memorization 

0 1 0 1 Force to 1 

1 0 1 0 Force to 0 

1 1 - - Forbidden 

 
4. SYNCHRONOUS FLIP-FLOATS 

A flip-flop is synchronous when its outputs only change state if an additional 

signal is applied to an input, called input clock (noted HOrCLK). 

H 

 

t 
 

4.1 Synchronization on high level 
 
 

 

S 
Q S 

H H 

R 

 
 

RA0 

 

Q 
 

 

Q 
 

 

R 
Q 

 

 

RA1 

 

 

 

RA1 

 
  

 IfH=0:the exitsSAndRare stuck at1whatever they areRAndS, (inputs are hidden 

from outputs) the output keeps the previous state. 

 IfH=1:the seesawRSworks normally the outputs obey the entries. 

  So the switchRSonly works normally ifH=1(High Level). 

 Same thing for the other switches. 
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RSH 

  4.2 Synchronization on high level 

At the lower level, the opposite is true: 

 IfH=1:Qkeeps the previous state. 

 IfH=0:Normal operation of the scale. 

 
 

 

 

 

S 
Q S 

H H 

R 

RA0 

 

Q 
 

 

Q 
 

 

R 
Q 

 

  RA1 

 

 

 

RA1 

 IfH=1:the exitsSAndRare stuck at1whatever they areRAndS, (inputs are hidden 

from outputs) the output keeps the previous state. 

  IfH=0:the flip-flop works normally the outputs obey the inputs. 

 So the switchRSonly works normally ifH=0(Low level). The synchronous  

flip-flop is identical to the asynchronous one. 

 Same thing for the other switches. 

Noticed : 

This type of synchronization (on level) has many disadvantages: the flip-flop is 

sensitive to inputs for the entire duration of the clock state for high level (or 0 for 

low level). If, while H = 1 (or H = 0), parasites appear on the S and R inputs, they 

can cause unexpected state changes on the Q output. 

In order to minimize the duration of this sensitive state as much as possible, we 

arrange for the flip-flop to remain in its memory state except for a brief instant, 

just when the input changes from 0 to 1 (or from 1 to 0). 

The flip-flop is said to be edge-synchronized. 

RA0 
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4.3 Edge synchronization 

A logical variableScan have two levels: high level (True) or low logic level 

(False). When it goes from low level to high level, it sets therising front . 

Otherwise, it defines thefalling edge . 

 
 

 
1 1 

S S 

0 t 0 t 

Rising front Falling edge 

 

 Symbol : 
 

Rising front Falling edge 

 

 

 

H 

 

 

1 

 

0 

 

 

 

 

t 

 

 

H 

 

 

Q 

Q 

 

 

1 

H 

0 

 

 

 

 

t 

 

 

H 

 

 

Q 

Q 

4.4  Operating principle of a JK flip-flop synchronized on rising edge 
 

Operating table Symbol 

 
 
 

 
 

 
 

 

 
 

 
 
 

 
I Q 

H JK 

K Q 

Entrances Exits Mode of operation 

H I K Qn+1 Qn+1  

0 x x Qn Qn Previous state 

Previous state 

Previous state 

Previous state 

Trigger: - 

Engagement: - 

change of state 

1 x x Qn Qn 

- x x Qn Qn 

- 0 0 Qn Qn 

- 0 1 0 1 

- 

- 

1 

1 

0 

1 

1 

Qn 

0 

Qn 
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Ke 

H 

Km 

Qm 

Clear 

 

JKm 

 

JK e 

 

 Timeline: 
H 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5 JK master slave switch 

4.5.1 Synchronization on rising edge 
 

Preset 

 

 

Im 

Qm Ie 
Qe 

Qe 

 
 

 
 

 

Both flip-flops operate normally if PRESET=CLEAR=1 and if H=1 the first flip-flop 

operates normally while the second is blocked and when H=0 the first flip-flop is 

blocked while the second operates 

normally and the two flip-flops only work together at the time of 

passage of H from 1 to 0, that is to say at the moment of the falling edge (-). 

1 

0 

I 

1 

0 

K 

1 

0 

Q 

1 

0 

t 

t 

t 

t 
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H 

Km 

Qm 

Clear 

Ke 

 

JKm 

 

JKe 

Q 

Q 
JK 

 
C 

Q 

Q 

 
C 

JK 

 
So any master-slave flip-flop where the master is working on the high level and the 

slave is working on the low level is a falling-edge synchronized flip-flop. 

P 

 
I 

H 

K 

 
 

 
4.5.2 Synchronization on rising edge 

 

Preset 

 

 

Im 

Qm Ie 
Qe 

Qe 

 
 

 
 

 

The two flip-flops operate normally if PRESET=CLEAR=1 and if H=0 the first flip- flop 

operates normally while the second is blocked and when H=1 the first flip- flop is 

blocked while the second operates normally and the two flip-flops only operate 

together at the moment of passage of H from 0 to 1, that is to say at the moment of the 

rising edge (-). 

So any master-slave flip-flop where the master is working on the low level and the 

slave is working on the high level is a rising-edge synchronized flip-flop. 

 

P 

 
I 

H 

K 
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1 

0 

D 

1 

0 

1 

0 

P 

Q 
D 

t 

t 

t 

 
    Exercise 

 

Let's take the following setup: 
 

 
D 

H 
Q 

C 

Complete the chronogram of D and Q. Deduce the function thus produced. 

H 

 

 
 
 
 

 

 
Q 

 

 

1.1 Summary 

 

Synchronization on 

high level 

Synchronization on 

low level 

Synchronization on 

rising front 

Synchronization on 

falling edge 
 

 

P 

 
I Q 

H JK 

K Q 

 
C 

 
 

P 

 
I Q 

H JK 

K Q 

 
C 

 
 

P 

 
I Q 

H JK 

K Q 

 
C 

 
 

P 

 
I Q 

H JK 

K Q 

 
C 
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1.OBJECTIVES 

 Study the different types of register 

 Know the operating principle of each type. 

2. GENERAL INFORMATION 

 A register is a collection of basic memory cells. 

 Data can be written/read at the same time (parallel) or one after the other (serial). 

 The number of bits in the register corresponds to the number of memory cells (number 

of D or JK flip-flops) in the register. 

 Note that all clock inputs (H) of the cells are connected (write line). 

 The registers are classified by: 

 The number of bits. 

 The operating mode (single or multiple). 

 The classification of operating modes is as follows: 

 Parallel input and parallel output registers:PIPO(Parallel IN-Parallel OUT). 

 Parallel input and serial output registers:PISO(Parallel IN-Serial OUT). 

 Registers with serial inputs and parallel outputs:SIPO(Serial IN - Parallel OUT). 

 Serial input and serial output registers:SISO(Serial IN- Serial OUT). 

 
3. STORAGE REGISTER (Parallel Register) 

A storage register (or data register) is a register in which the different stages are 

independent of each other, however certain signals act on all the stages; such as reset 

to 0 and reset to 1. 

CHAPTER 6 

THE REGISTERS 
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PIPO 

D D D D 

Q Q Q 

C 

P 
D0 D1 D2 D3 

Q Q Q Q 

 
3.1 bit storage register 

 
 
 

 

 
 
 
 
 

 
H 

 
Q0 Q1 Q2 Q3 

In the example below, the 4 flip-flops are loaded in parallel and read in parallel 

synchronously with the write signal H. This type of register is also called a registerPIPO. 

3.2 Functional diagram of a PIPO register. 

 

 
 

 
H 

 
Clear 

E0E1E2 En-1 

… 

 

 

 

… 

 

S0S1S2 Sn 

4. SHIFT REGISTER (Serial Register) 

This type of register is mainly used as dynamic information memory; the shift 

function consists of sliding the information from each elementary cell into 

another adjacent elementary cell. 

This type of register is also called a registerSISO. 
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D0Q0 D1Q1 

D 

D2Q2 

D 

D3Q3 

D 

Q0 Q1 Q2 Q3 

C 

E Q3 

 

4.1 Functional diagram 
 

E 
H 

Clear 

 
S 

4.2Right shift 

The flip-flop of rank i must copy the output of the flip-flop of rank (i-1) so its input 

must be connected to the output (i-1). 
 

 
 
 
 
 

 
H 

 

4.3 Left shift S 

The input of the flip-flop of rank i must copy the output of the flip-flop of rank 

(i+1). 

E 

S 
 
 
 
 
 
 

 
H 

4.4 Reversible shift 

There are reversible shift registers, that is to say registers where the shift is 

carried out to the right and to the left depending on the logic level applied to the 

S input: "shift direction". 

 

SISO 

D0Q0 

D 

D1Q1 

D 

D2Q2 

D 

D3Q3 

D 

Q0 Q1 Q2 Q3 

C 
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Mux D0Q0 

D 

Mux D1Q1 

D 

Mux D2Q2 

D 

Mux D3Q3 

D 
Q3 

Q0 Q1 Q2 Q3 

C 

H 

I0 I1 I2 I3 

D0 Q0 D1 Q1 D2Q2 

D D D 

D3Q3 

D 

Q3 

Q0 Q1 Q2 Q3 

C 

H S 

Q0 I0 

S 

Depending on the value of the input S, we have the following operation: 
 

S Operation 

0 

1 

Left shift 

Right shift 

5. MIXED REGISTER 

We can find mixed registers, so we can write in parallel and read in serial (PISO), or 

vice versa (PISO), or which offer both possibilities “to choose from”. 

5.1PISO Registry E0E1E2 En-1 

… 

H 

 
Clear 

 
S 

5.1.1 Flowchart using D flip-flops 
 

 

PISO 
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SIPO 

 

5.2 SIPO Register 

 

E 
H 

Clear 

 
 

 

… 

 

S0S1S2 Sn-1 

 

 
Flowchart using D flip-flops 

E=D0 

 
 
 
 
 
 

 
H 

Q3 

5.3 Application example 

Two types of registers (PISOAndSIPO) are used in serial connections; they form the 

basis of modems. For example, if we want to transmit information between two 

computers a few dozen meters apart. Transmitting information in parallel requires 

a lot of wires and is very expensive. The solution is then to use a register PISO to 

send the bits on a single line. At the end of which, a register SIPO receives these bits 

and reconstructs bytes which are transmitted to the destination computer. 

D3Q3 

D   

Q3 

D2Q2 

D   

Q2 

D1Q1 

D   
Q1 

D0Q0 

D   

Q0 

C 

Q0 Q1 Q2 
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1. OBJECTIVES 

 Study the different types of meters. 

 Understand the operating principle of each type. 

 Master the steps of synthesizing a counter. 

2. INTRODUCTION 

In many applications we are led to do counting: counting pulses in a given time 

for frequency measurement for example. In one case it is necessary to count in 

other it is necessary to count down from zero or another given number. A 

counter, in the broad sense of the term, will be likely to function as a counter itself 

(up counter) or even in down counter (down counter) and in which we can introduce 

any starting number, that is to say that we can initialize or load. 

Counters can be classified according to their principle as follows: 

 Asynchronous up-down counters.  

 Synchronous up-down counters. 

 The basic element of counters is a clock-input flip-flop (synchronous flip-flop), 

either D, T, or JK type. 

3. ASYNCHRONOUS COUNTERS AND DOWNCOUNTERS: 

The term asynchronous means that the events have no temporal relationship to each 

other. The flip-flops forming an asynchronous counter do not change state at the same 

time, because they are not connected to the same clock signal, the periodic triggering 

only on the first flip-flop of the counter. The triggeringt of the following flip-flops is 

done step by step so that the output Qnor Qnwill be applied to the H 

clockn+1depending on whether we are working on a rising or falling edge and whether 

we want to obtain an up or down counter. 

        CHAPTER 7 

THE COUNTERS 
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22 

I3 Q3 

H3 

K3Q3 

1 

 
1 

I2 Q2 

H2 

K2Q2 

1 

21 

I0 Q0 

H0 

K0Q0 

I1 Q1 

H1 

K1Q1 

1 

20 

1 

H 

Q0 

1 

0 t 

Q1 

1 

0 t 

Q2 

1 

0 t 

Q3 

1 

0 t 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 

0 1 2 3 4 5 6 7 8 9 10 11 12 

 

This type of meter is generally simple to make and has the disadvantage of generating 

operating hazards (propagation delay). 

3.1 Asynchronous counters 

23 

 

 

 

 

1 1 1 
 

 

 We therefore obtain a Counter asynchronous modulo 16 . 

 The same counter can be made using stockingsc ules synchronized on rising edge 

whose clock Hiwill be connected to output Qi-1. 
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1 

I1 Q1 

H1 

K1Q1 

1 

 
1 

I2 Q2 

H2 

K2Q2 

I0 Q0 

H0 

K0Q0 

I3 Q3 

H3 

K3Q3 

22 

1 

 
1 

H 

Q0 

1 

0 t 

Q1 

1 

0 t 

Q2 

1 

0 t 

Q3 

1 

0 t 

0000 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 

0 15 14 13 12 11 10 9 8 7 6 5 4 

3.2 Asynchronous downcounters 

20 21 23 

 

 

1 1 

 
1 

 

 

 

 We therefore obtain a Down counter asynchronous modulo 16 . 

 The same counter can be made using stockingsc ules synchronized on rising edge 

whose clock Hiwill be connected to output Qi-1. 
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I2Q2 

H2 

K2Q2 

I1Q1 

H1 

K1Q1 

C C C C 

I0Q0 

H0 

K0Q0 

I3Q3 

H3 

K3Q3 

20 21 
22 23 

1 1 1 1 

1 1 1 1 

3.4 Using other toggles 

 

3.3 Truncated sequence: 
 

The modulo is the number of distinct states occupied by a counter before it is 

recycled to the initial state. The maximum number of possible states, or maximum 

modulo, of a counter is equal to2n, where n represents the number of flip-flops in 

the counter. 

We can construct counters to obtain a sequence whose number of states is less 

than2n. The sequence is then called a truncated sequence. 

To obtain a truncated sequence, it is necessary to force the recycling of the counter 

before the latter has occupied all the states. It is necessary to have flip- flops 

equipped with reset predisposition inputs.0 RA0(also known RESET). 

Example of a modulo 10 counter (decade counter) 
 

 

 

 

 

 

 

 

 

 

Other types of flip-flops can be used to make up/down counters. asynchronous: 

3.4.1T-toggle:  

C 

Q 

H Q 

T 
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T 

Qn 

Qn+1 

1 T0  Q0 T1 Q1 T2 Q2 T3 Q3 

H0 Q0 H1 Q1 H2 Q2 H3 Q3 

C C C C 

1 1 1 

 

This type of flip-flops change states at each clock pulse, 

if the input T=1, so we can build asynchronous 

up/down counters based on T flip-flops using the 

assembly below. 

 
 

 
0 1 

0 

1 
 
 

 

23 

 

 

 
 
 
 
 

 
3.4.2 Flip-flop D: 

 

 

1 

 

 

 

 

This type of flip-flops change state at each clock pulse. The 

trigger is performed if D=1 and the trigger is performed if 

the D input=0, so if we connect D to Q, we obtain a change 

of state at each clock pulse. We can build asynchronous 

up/down counters based on D flip-flops using the circuit 

below: 

1 0 

1 0 

Qn+1 

D 

Qn 

0 

1 

0 1 

C 

Q 
H 

D Q 

20 21 22 

0 1 

1 0 
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D3  Q3 

 
H3 Q3 

D2  Q2 

 
H2 Q2 

D1  Q1 

 
H1 Q1 

D0  Q0 

 
H0 Q0 

1 1 

C C C C 

Clock B 

1) 

2) 

 

74LS93 

Modulo 16 counter 

Clock B 

1) 

2) 

 

74LS93 

Decade counter 

Q3 

Q3 I3 

H3 

K3 Q2 K2 

I2 Q2 

H2 

I1 Q1 

H1   

K1 Q1 Q0 K0 

I0 Q0 

H0 

(12)Q0 (8)Q2 (11)Q3 

Clock B 

(14) 

R0(1) 

(2) 

(3) 

R0(2) 

1 1 

Clock A 1) 
(9) Q1 

Reset Reset Reset Reset 

 

23 

 

 

 
 
 
 
 

 

3.5 Integrated counter 7493: 
 

The 74LS93 integrated circuit is an example of an asynchronous counter. It consists of a 

flip-flop and a 3-bit asynchronous counter. It has reset inputs connected to a NAND 

gate, designated R0(1) and R0(2). When these two inputs are HIGH, the counter is 

initialized to 0000. 

3.5.1 Logic diagram: 

 

 
 
 
 
 
 
 

 

 
 

 
3.5.2 Examples of use of the 74LS93 counter: 

 
 
 

 
R0( 

R0( 

Clock A 
 
 

 
R0( 

R0( 

Clock A 

 
 
 

 

Q0 Q1 Q2Q3 Q0 Q1 Q2Q3 

20 21 22 
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3.6 Propagation delay: 

Asynchronous counters are often called propagation counters because the effect of 

the clock pulse is initially felt only by the first flip-flop. This effect cannot reach the 

next flip-flop immediately because of the propagation delay of the first flip-flop. This 

effect is cumulative so that a clock pulse propagates through the counter for some 

time before reaching the last flip-flop, due to propagation delay. 

The propagation delay associated with asynchronous counters is one of the major 

disadvantages for this type of counters because it limits the frequency of use. The 

propagation delay for a flip-flop is of the order of 5 ns, which is why frequencies 

lower than 200 MHz must be used. 

4. SYNCHRONOUS COUNTERS AND DOWN COUNTERS: 

The term synchronous refers to events that have a fixed temporal relationship to each 

other. In terms of counter operation, the word synchronous means that all flip-flops in 

the counter are synchronized to the same clock signal. This solves the propagation 

delay problem. 

The flip-flops are associated with each other, in such a way that for the flip-flop of 

rank i we apply all the outputs of the flip-flops which precede it to the inputs J and K. 

4.1 Synchronous counters 

23 

I0 Q0 

H0 

K0Q0 

1 

 

1 

I1 Q1 

H1 

K1Q1 

I3 Q3 

H3 

K3Q3 

I2 Q2 

H2 

K2Q2 

20 21 22 
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 We therefore obtain aCounter synchronousmodulo 16 . 

  We can achieve the same compt eur using rising edge synchronized flip- 

flops and Q outputsiinstead of Qi. 

4.2 Synchronous downcounters 

23 
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 We therefore obtain a Down   counter  synchronous modulo 16 . 

 The same down counter can be achieved using rising edge synchronized flip- flops and Q out 

putsiinstead of Qi. 

H 
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- 

0 1 

- 

 
 
 
 
 

1. OBJECTIVES. 

 Understanding the synthesis of synchronous counters. 

 Understanding the synthesis of synchronous downcounters. 

2.INTRODUCTION 

At each clock pulse, the clock undergoes a transition. There are four possible 

transitions that can be respected by a transition table or by a state graph. 

 

Transition 
Exits 

Description Rating 
Qn Qn+1 

0 0 0 Maintain at 0 

Engagement 

Triggering 

Maintain at 1 

-0 

1 0 1 - 

2 1 0 - 

3 1 1 -1 

Transition table 
 

 

 

-0 
-1 

 

State graph 

The table below gives a summary of the transitions for the different 

switches: 

 

Transition Rating 
JK rocker RS rocker D-Flip T-toggle 

I K S R D T 

0 

1 

2 

3 

-0 

- 

- 

-1 

0 

1 

- 

- 

- 

- 

1 

0 

0 

1 

0 

- 

- 

0 

1 

0 

0 

1 

0 

1 

0 

1 

1 

0 

From the table above we can conclude that if we want to use: 

CHAPTER 8 

SYNTHESIS OF SYNCHRONOUS COUNTERS 
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 JK flip-flops 

 We regroup necessarily the interlocks (-) And optionally the triggers (-) and 

keeps them at 1 (-1) for the equations of theI. 

 e regroup necessarily the triggers (-) And optionally the interlocks (-) and 

keeps them at 0 (-0) for the equations of theK. 

 RS flip-flops 

 We regroup necessarily the interlocks (-) And optionally keeps them at 1 (-1) 

for the equations of the S. 

 We regroup necessarily the triggers (-) And optionally keeps them at 0 (-0) for the 

equations of the R. 

 D flip-flops 

 We regroup necessarily the interlocks (-) and keeps them at 1 (-1) for the 

equations of the D. 

 T-swings 

 We regroup necessarily the interlocks (-) and the triggers (-) for the equations of the 

T. 

EXAMPLES 

Example 1: modulo 12 counter 

We want to make a modulo 12 counter using JK, RS and T flip-flops 

Solution 

To design this counter, you need to determine the number of flip-flops and then 

the equations for each input. 

With 3 rockers we can achieve23=8combinations and with 4 switches we can 

achieve24=16combinations and a modulo 12 counter therefore requires 4 rockers 

since the number 2nwhich is first greater than or equal to 12 is 16. 
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Q3Q2 

Q1Q0 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

 
Truth table 

 
 

 

Transition 
Previous state Next state 

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 

0 

1 

2 

3 
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10 
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12 
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0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

 
It can also be presented by the KARNAUGH table below: 

 

 

  
 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

   
 

 
 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

  
 
 
 

 

JK rocker I0=K0=1 

 
 

RS rocker 

T-toggle 

R0=Q0; S0=Q0 

 

T0=1 

Sequences Q-toggle0 

0001 0101 - 1001 

0010 0110 - 1010 

0100 1000 - 0000 

0011 0111 - 1011 

 

- - - - 

- - - - 

- - - - 

- - - - 

 

Q3Q2 

Q1Q0 



Logic System Course  
 

88  

Q-toggle2 

Q-toggle3 

 
 

 

 
 

 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
 
 
 
 
 
 
 
 
 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
 
 
 
 
 
 
 
 
 
 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
   

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

-0 -0 - -0 

- - - - 

- - - - 

-1 -1 - -1 

 
 
 

 

 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

-0 -1 - -0 

-0 -1 - -0 

- - - -0 

-0 -1 - -0 

 
 
 
 

 

   
 

 
 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

 

JK Toggle:I1=K1=Q0 
 

RS rocker:R1=Q1Q0; S1=Q1Q0 

T-toggle:T1=Q0 

 
 
 
 
 
 
 
 
 

 

JK Toggle:I2= Q3Q1Q0 ;K2=Q1Q0 
 

RS rocker:R2=Q3Q2Q1Q0; 

S2=Q1Q0 
 

T-toggle:T2= Q3Q1Q0 

 
 
 
 

 

JK Toggle:I3= Q2Q1Q0 

K3=Q1Q0 

RS rocker:R3=Q2Q1Q0 

S3=Q3Q1Q0 

T-toggle:T3= Q1Q0(Q3+Q2) 

Q-toggle1 

Q3Q2 

Q1Q0 

Q3Q2 

Q1Q0 

Q3Q2 

Q1Q0 

-0 -0 - -1 

-0 -0 - -1 

-0 - - - 

-0 -0 - -1 
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0110 0101 
Sequence 

cycle 

 

Implementation using T flip-flops 

 

23 

 
 
 
 
 
 
 
 
 
 
 
 
 

Noticed : 

After the synthesis of the synchronous counter, it is necessary to check whether this 

counter is self-correcting or not, that is to say that if by any accident we find ourselves 

in a combination of outputs which is out of cycle, it is necessary to check that this 

counter can return to the cycle after a few pulses. 

For example for the previous counter: 

 
 

 

1011 0000 1100 

1010 0001 1101 

1001 0010 1110 

1000 0011 1111 

0111 0100 
 

off 

 

Normal counter cycle 

From the modulo 12 meter 

T1 Q1 

 
H1 Q1 

T0  Q0 

 
H0 Q0 

1 T2 Q2 T3 Q3 

H2 Q2 H3 Q3 

20 21 22 
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Example 2: modulo 16 down-counter 

We want to create a modulo 16 up/down counter using JK flip-flops. The operating 

mode is changed using a control input A (if A=0: up/down mode; if A=1: 

down/down mode) 

Solution 

To design this counter, 4 flip-flops are needed, which can be made24=16 combinations. We 

will use Channon's expansion theorem to use only 4 variables 

Truth table of counting (A=0) 
 

Transition 
Previous state Next state 

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 
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Q3Q2 

Q1Q0 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

 
It can also be presented by the KARNAUGH table below 

 

 

  
 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

   
 

 
 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

0001 0101 1101 1001 

0010 0110 1110 1010 

0100 1000 0000 1100 

0011 0111 1111 1011 
 

 

- - - - 

- - - - 

- - - - 

- - - - 

 

Flip 0:I0=K0=1 
 

 

 
 

 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
   

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

 

 
 

 
 

 

Flip 1:I1=K1=Q0 

 
 
 

 

 
 

 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
   

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

 
 

 

 

 

 

Flip 2:I2=Q1Q0 ; 

K2=Q1Q0 

Sequences Q-toggle0 

Q-toggle1 

Q-toggle2 

Q3Q2 

Q1Q0 

Q3Q2 

Q1Q0 

Q3Q2 

Q1Q0 

-0 -0 -0 -0 

- - - - 

- - - - 

-1 -1 -1 -1 

 

-0 -1 -1 -0 

-0 -1 -1 -0 

- - - - 

-0 -1 -1 -0 
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Q3Q200  Q3Q201   Q3Q211  Q3Q210 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
 

Truth table of the countdown (A=1) 

 
Flip 3:I3= Q2Q1Q0 

K3= Q2Q1Q0 

 

Transition 
Previous state Next state 

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

Q-toggle3 

Q3Q2 

Q1Q0 

-0 -0 -1 -1 

-0 -0 -1 -1 

-0 - - -1 

-0 -0 -1 -1 
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Q3Q2 

Q1Q0 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

Q3Q2 

Q1Q0 

Q-toggle2 

 

 

It can also be presented by the KARNAUGH table below 
 

 

  
 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

   
 

 
 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

1111 0011 1011 0111 

0000 0100 1100 1000 

0010 0110 1110 1010 

0001 0101 1101 1001 
 

 

- - - - 

- - - - 

- - - - 

- - - - 

 

Flip 0:I0=K0=1 
 

 

 
 

 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
 
 
 
 
 
 
 
 
 

 

Q1Q000 

Q1Q001 

Q1Q011 

Q1Q010 

 
   

Q3Q200 Q3Q201 Q3Q211 Q3Q210 

- - - - 

-0 -0 -0 -0 

-1 -1 -1 -1 

- - - - 

 
 
 

 

 

Q3Q200 Q3Q201 Q3Q211 Q3Q210 
 

 

 
 

Flip 1:I1=K1=Q0 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Flip 2:I2=Q1Q0 ; 

 

 

K2=Q1Q0 

Sequences Q-toggle0 

Q-toggle1 

Q3Q2 

Q1Q0 

Q3Q2 

Q1Q0 

- - - - 

-0 -1 -1 -0 

-0 -1 -1 -0 

-0 -1 -1 -0 
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Q1Q001 

Q1Q011 

Q1Q010 

 
 

Q3Q201 Q3Q211  
  

 

Flip 3:I3= Q2Q1Q0 
 

K3= Q2Q1Q0 

 

 Final equations 

Flip 0:I0=K0=A.1+A.1=1 Flip 

1:I1=K1=AQ0+AQ0 

 

Flip 2:I2=K2=AQ1Q0+AQ1Q0 

 

Flip 3:I2=K2=AQ2Q1Q0+AQ2Q1Q0 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q-toggle3 

Q3Q2 

Q1Q0 

Q1Q000 

Q3Q200 Q3Q210 

Q3 

Q3 I3 

H3 

 

K3 Q1 

Q1 I1 

H1 

 

K1 Q0 

Q0 I0 

H0 

 

K0 

1 

 

1 

I2 

H2 

 

K2 

Q2 

Q2 

HAS 

20 21 22 

- -0 -1 - 

-0 -0 -1 -1 

-0 -0 -1 -1 

-0 -0 -1 -1 
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