
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

IBN-KHALDOUN UNIVERSITY IN TIARET

FACULTY OF APPLIED SCIENCES

ELECTRICAL ENGINEERING DEPARTMENT

COURSE HANDOUT

COMBINATORIAL AND SEQUENTIAL LOGIC

(Course)

Prepared by: BERKANI Abderrahmane

Promotion : 2nd year engineer, electrical
engineering specialty

 Reviewed by:

Pr : SAHLI Belguacem

Pr : NASRI Djilali
Semester: 03

 Academic year: 2024/2025

Table of Contents

Chapter 1: Numbering system and coding of information
1. Objectives: ..1

2. Numbering systems ...1

3. Change of base ..3

4. Operations in the bases ...6

5. Coding of information ..11

Chapter 2: BOOLE Algebra and Logical Functions

1. Objectives ...16

2. Variables and logical functions ..16

3. Basic operations of BOOLE algebra and associated properties ..17

4. Materialization of logical operators ..18

Chapter 3: Representation and simplification of combinatorial logic functions

1. Objectives ...25

2. Representation of a logical function ...25

3. Simplification of logical functions ..32

4. Summary: Synthesis of a logical function ..37

Chapter 4: Combinational Logic Circuits

1. Objectives ...38

2. Arithmetic circuits ..38

Chapter 5: : Sequential Logic

1. Objectives ...59

2. Introduction ..59

3. Asynchronous Switches ...60

4. Synchronous Flip-flops ..65

Chapter 6: : The Registers

1. Objectives ...71

2. General information ..71

3. Storage register ...71

4. Shift register ...72

5. Mixed register...74

Chapter 7: The Counters

1. Objectives ...76

2. Introduction ...76

3. Asynchronous counters and downcounters ..76

4. Synchronous counters and downcounters ..82

Chapter 7: The Counters

1. Objectives ...85

2. Introduction ...85

3. Examples ..86

Bibliographic References ...95

Logical Systems Course

1

1. OBJECTIVES

 Cover in detail the different number systems: decimal, binary, octal and hexadecimal systems

as well as the methods of conversion between number systems.

 Deal with arithmetic operations on numbers.

 Study several digital codes such as DCB, GRAY and ASCII codes.

2. NUMBER SYSTEMS

For digital information to be processed by a circuit, it must be put into a form suitable for it. To do

this, a base B numbering system must be chosen (B is a natural whole number - 2).

There are many numbering systems used in digital technology. The most commonly used are:

Decimal (base 10), Binary (base 2), Tetral (base 4), Octal (base 8) and Hexadecimal (base 16).

The table below represents a summary of these systems:

Decimal Binary Tetral Octal Hexadecimal

0 0 0 0 0
1 1 1 1 1
2 10 2 2 2
3 11 3 3 3
4 100 10 4 4
5 101 11 5 5
6 110 12 6 6
7 111 13 7 7
8 1000 20 10 8
9 1001 21 11 9
10 1010 22 12 HAS
11 1011 23 13 B
12 1100 30 14 C
13 1101 31 15 D
14 1110 32 16 E
15 1111 33 17 F

CHAPTER 1

NUMBERING SYSTEMS AND CODING OF INFORMAT

Logical Systems Course

2

N=anBn+ an-1Bn-1+ an-2Bn-2+ …+ a2B2+ a1B1+ a0B0

2.1 Polynomial representation

Any number N can be decomposed into integer powers of the base of its numbering system. This

decomposition is called the polynomial form of the numberNand which is given by:

 B: The basis of the numbering system, it represents the number of different digits that this

numbering system uses.

 hasi:a number (or digit) among the numbers in the base of the numbering system.

 i: rank of the numberhasi.

2.2Decimal system (base 10)

The decimal system consists of 10 digits which are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} it is a system that has

imposed itself quite naturally on man who has 10 fingers. Let us write some decimal numbers

in polynomial form:

Examples:

(5462)10= 5*103+ 4*102+ 6*101+ 2*100

(239,537)10= 2*102+ 3*101+ 9*100+ 5*10-1+ 3*10-2+ 7*10-3

2.3 Binary system (base 2)

In this number system there are only two possible digits {0, 1} which are often called bits

"binary digit". As the following examples show, a binary number can be written in polynomial

form.

Examples:

(111011)2= 1*25+ 1*24+ 1*23+0*22+ 1*21+ 1*20

(10011.1101)2= 1*24+ 0*23+ 0*22+ 1*21+ 1*20+ 1*2-1+ 1*2-2+ 0*2-3+ 1*2-4

2.4Tetral system (base 4)

This system, also called base 4, includes four possible digits {0, 1, 2, 3}. A tetral number can be

written in polynomial form as shown in the following examples:

Examples:

(2331)4= 2*43+ 3*42+ 3*41+ 1*40 (130.21)4= 1*42+ 3*41+1*40+ 2*4-1+ 1*4-2

Logical Systems Course

3

 2.5 Octal System (base 8)

The octal or base 8 system consists of eight digits which are {0, 1, 2, 3, 4, 5, 6, 7}. The digits 8 and 9 do not

exist in this base. For example, let's write the numbers 45278and 1274,6328:

Examples:

(4527)8= 4*83+ 5*82+ 2*81+ 7*80

(1274,632)8= 1*83+ 2*82+ 7*81+4*80+ 6*8-1+ 3*8-2+ 2*8-3

 2.6 Hexadecimal system (base 16)

The Hexadecimal or base 16 system contains sixteen elements which are {0, 1, 2, 3, 4, 5, 6, 7, 8,

9, A, B, C, D, E, F}. The digits A, B, C, D, E, and represent 10, 11, 12,

13, 14 and 15 respectively.

Examples:

(3256)16= 3*163+ 2*162+ 5*161+ 6*160 (9C4F)16= 9*163+ 12*162+ 4*161+ 15*160

(A2B.E1)16= 10*162+ 2*161+ 11*160+14*16-1+ 1*16-2

3. CHANGE OF BASIS

This is the conversion of a number written in a baseB1to its equivalent in another baseB2

3.1 Converting a base B number N to a decimal number

The decimal value of a number N, written in a database B, is obtained by its polynomial form

described previously.

Examples:

(1011101)2= 1*26+ 0*25+ 1*24+ 1*23+ 1*22+ 0*21+ 1*20=(93)10 (231102)4= 2*45+ 3*44+ 1*43+ 1*42+ 0*41+
2*40=(2898)10 (7452)8= 7*83+ 4*82+ 5*81+ 2*80=(3882)10

(D7A)16= 13*162+ 7*161+ 10*160=(3450)10

 3.1.1 Conversion of a decimal whole number

To convert a whole decimal number to a base numberBany, it is necessary to make successive

integer divisions by the baseBand keep the remainder of the division each time. We stop when we

obtain a result less than* the baseB. The number searchedNin the baseBis written from left to right,

starting with the last result and going to the first remainder.

Logical Systems Course

4

Examples:

- (84)10=(?)2

- (110)10=(?)8

84 2

0 42 2
0 21

1

Reading of the
result

2

10
0

2

5
1

2

2
0

2

1

110

6

Reading of the
result

8

13
5

8

1

(84)10=(1010100)2 (110)10=(156)8

- (105)10=(?)4 - (827)10=(?)16

105 4

1 26 4
2 6 4

Reading of the 2 1

result

827 16

B 51 16

3 3
Reading of the
result

(105)10=(1221)4 (827)10=(33B)8

 3.1.3 Converting a decimal number to a comma

To convert a decimal number to a comma in a base B any, you must:

 Convert the whole part by performing successive divisions by B(as we saw previously).

 Convert the fractional part by performing successive multiplications by Band each time

keeping the number becoming a whole number.

Logical Systems Course

5

1

(58,625)10=(111010.101)2

Examples:

Converting the number (58.625) to base 2
-Conversion of the whole part -Conversion of the fractional part

0.625 *2= . 25

Reading of the

0. 25 *2= 0 . 5
Result of the
part
fractional

0. 5 *2 = . 0

Remarks :

Sometimes by multiplying the fractional part by the base B we cannot convert the entire

fractional part. This is mainly due to the fact that the number to be converted does not have an

exact equivalent in the base B and its fractional part is cyclic

Example :(0.15)10=(?)2

0.15 *2

0.3 *2

0.6 *2

0.2 *2

0.4*2

0.8*2

0.6 *2

0.2 *2

0.4*2

0.8*2

=0 .3

=0 .6

=1 .2

=0 .4

=0 .8

=1 .6

=1 .2

=0 .4

=0 .8

=1 .6

- (0.15)10=(0.0010011001)2

We say that the number (0.15)10is cyclic in the period base 2 1001.

58

0 29
1 14

0

2

7
1

Reading of the
Result of the
whole part

2

3
1

2

1

12
2

Logical Systems Course

6

 3.1.4 Other conversions

To convert a number from any baseB1to another baseB2you have to go through the base10.

But if the baseB1AndB2are written respectively in the form of a power of 2 we can go through

the base 2 (binary):

Tetral base (base 4): 4=22 each tetra digit converts itself to 2 bits. Octal

base (base 8): 8=23 each octal digit converts itself to 3 bits.

Hexadecimal base (base 16): 16=24 each hexadecimal digit converts itself to 4 bits.

Examples:

-(1 0 2 2 3)4= (01 00 10 10 11)2

-(6 5 3 0)8= (110 101 011 000)2

-(9 A 2 C)16= (1001 1010 0010 1100)2

-(7 E 9)16= (13 32 21)4

4. OPERATIONS IN THE BASES

We proceed in the same way as that used in the decimal base. Thus, we must carry out the

operation in the base 10, then convert the result by column of the baseB.

Logical Systems Course

7

4.1 Addition

Binary Base

11001001

1101110

+ 110101 + 100010

= (11111110)2 = (10010000)2

Tetral Base

32210

20031

+ 1330 + 1302

= (100200)4 = (21333)4

Octal Base

63375

5304
+ 7465 + 6647

= (73062)8 = (14153)8

Hexadecimal base

89A27

5 3 0 4

+ EE54 + CC3B

= (9887B)16 = (11F3F)16

Logical Systems Course

8

4.2 Subtraction

Binary Base

1110110 1000001001

- 110101 - 11110011

=(1000001)2 = (100010110)2

Tetral Base

13021

2210
- 2103 - 1332

= (10312)4 = (21333)4

Octal Base

52130

145126

- 6643 - 75543

= (43265)8 = (47363)8

Hexadecimal Base

725B2

45DD3
- FF29 - 9BF6
= (62689)16 = (3C1DD)16

Logical Systems Course

9

4.3 Multiplication

Binary Base

1110110 1010111

* 11011 * 10011

1110110 1010111
1110110 1010111

1110110 1010111
1110110

= (110001110010)2

= (11001110101)2

Tetral Base

3021

13320

 * 113 * 210
21123 13320
3021

 3021
 33300

= (1020033)4 = (10123200)4

Octal Base

7506

4327
* 243 * 651

26722 4327
36430 26063

17214 32412

= (2334622)8 = (3526357)8

Logical Systems Course

10

Hexadecimal Base

A928 6340
* 7D3 * B51

1FB78

6340
89708 1F040

4A018 443C0

= (52B83F8)16 = (4632740)16

2.1 Division

Binary Base Tetral Base

-

110000000110
1110010
10011100

- 1110010
10101011

- 1110010
1110010

1110010

11011

-

300012
1302
10321

- 3210
11112

1302

123

Octal Base Hexadecimal Base

50064 72
- 442

366 542
- 350

164

24328 2B
- 22F

142 D78
- 12D

158

Logical Systems Course

11

5. CODING OF INFORMATION

Coding of information is necessary for its automatic processing. Among the most commonly

encountered codes, other than the natural binary code, we cite the code DCB , the codeGRAY, the

codepamongn, the ASCII code …

5.1 Digital codes

 5.1.1 The Natural Binary Code

It is a numerical representation of numbers in base 2

Decimal

Natural Binary Code

has3 has2 has1 has0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

 This code has the disadvantage of changing more than a single bit when going from one

number to an immediately higher one.

5.1.2 Reflected binary code (GRAY code)

Its interest lies in incrementation applications where a single bit changes state at each

increment.

Logical Systems Course

12

Decimal

Natural Binary Code Reflected Binary Code

has3 has2 has1 has0

has'3

has'2

has'1

has'0

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

Remarks :

 Conversion from Natural Binary to Reflected Binary: this involves comparing the

bitsbn+1and the bitbnfrom natural binary, the result isbrof the reflected binary which is

worth 0 ifbn+1=bnor 1 otherwise. The first bit on the left remains unchanged.

(6)10=(?)BR (10)10=(?)BR

(6)BN= 1 1 0 (10)BN= 1 0 1 0

(6)BR= 1 0 1 (10)BR= 1 1 1

1

(6)10=(110)BN=(101)BR (10)10=(1010)BN=(1111)BR

 Conversion from Reflected Binary to Natural Binary: this involves comparing the bitbn+1

natural binary and bit bn from the reflected binary the result is bn of the natural binary

which is worth 0 if bn+1=bn or 1 otherwise. The first bit on the left remains unchanged.

Logical Systems Course

13

(10)10=(?)BN (13)10=(?)BN

(10)BR= 1 1 1 1 (13)BR= 1 0 1 1

(10)BN= 1 0 1

0

(13)BN= 1 1 0

1

(10)10=(1111)BR=(1010)BN

(13)10=(1011)BR=(1101)BN

 5.1.3 Binary Coded Decimal Code (BCD Code)

Its property is to associate 4 bits representing each digit in natural binary. The most common

application is that of digital display where each digit is associated with a group of 4 bits

carrying the DCB code.

Examples:
-(9 4 2 7)10= (1001 0100 0010 0111)DCB

-(6 8 0 1)10= (0110 1000 0000 0001)DCB

5.1.4 The P code among N

The P among N code is an N-bit code in which P bits are at 1 and (NP) bits are at 0. Reading

this code can be associated with checking the number of 1s and 0s in the information, which

makes it possible to check the information read by detecting the erroneous code.

Logical Systems Course

14

Example : code 2 of 5

Decimal

Code 2 of 5

has7 has4 has2 has1 has0

0 1 1 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 1 0 0 0 1
8 1 0 0 1 0
9 1 0 1 0 0

 5.1.5 ASCII code
ASII (American Standard Code for Information Interchange) is an alphanumeric code that

has become an international standard. It is used for transmission between computers or

between a computer and peripherals. In its standard form, it uses 7 bits. This allows for the

generation of 27=128 characters. This code represents uppercase and lowercase alphanumeric

letters, decimal digits, punctuation marks, and control characters.

Each code is defined by 3 higher order bitsb6b5b4and 4 lower order bits b3b2b1b0. Thus the

character "A" has the hexadecimal code 41H

Example :

HAS -(65)ASCII -(01000001)2 -(41)H

B -(66)ASCII -(01000010)2 -(42)H

Z -(90)ASCII -(01011010)2 -(5A)H

has -(97)ASCII -(01100001)2 -(61)H

b -(98)ASCII -(01100010)2 -(62)H

z -(122)ASCII -(01111010)2 -(7A)H

[-(91)ASCII -(01011011)2 -(5B)H

{ -(123)ASCII -(01111011)2 -(7B)H

Logical Systems Course

15

Base 10

Base B1 Base B2

5.2 Transcoding

One of the applications related to information coding is the transition from one code to

another. This operation is called transcoding:

Coding

Decoding

Transcoding

 The coding of information is done by means of a combinational circuit called Coder.

 The decoding of information is done by means of a combinational circuit called Decoder.

 A trans coder is a Decoder associated with a Coder.

Coding

Decoding

Logical Systems Course

16

Circuit
logic 1

Circuit
logic 2

F1(c, b)

1. OBJECTIVES

 Study the rules and theorems of Boolean algebra.

 Understand how logic gates work.

2. VARIABLES AND LOGICAL FUNCTIONS

2.1 Logical variables

A logical variable is a quantity that can only take two logical states. We symbolize them by 0 or 1.

Examples:

 A switch can be either closed (logic 1) or open (logic 0). It therefore has 2 possible
operating states.

 A lamp also has 2 possible operating states which are off (logic 0) or on (logic 1).

2.2 Logical functions

A logical function is a logical variable whose value depends on other variables,

 The operation of a logical system is described by one or more simple logical propositions

which have the binary character "TRUE" or "FALSE".

 A logical function that takes the values 0 or 1 can be thought of as a binary variable for another

logical function.

 To describe the operation of a system by looking for the state of the output for all possible

combinations of inputs, we will use "The truth table".

EXAMPLE :

cba

F2(F1, a)= F2(c, b, a)

CHAPTER 2

BOOLIAN ALGEBRA AND LOGICAL FUNCTIONS

Logical Systems Course

17

3. BASIC OPERATIONS OF BOOLIAN ALGEBRA AND ASSOCIATED PROPERTIES

Boolean algebra is a set of two-state variables {0 and 1} also called Boolean, equipped with 3

elementary operators presented in the following table:

Logical operation Addition Multiplication Inversion
OR AND NO

Algebraic Notation A OR B = A + B A AND B = AB

No A=A

Truth table

3.1 Properties of basic operations

Some remarkable properties are worth knowing:

Functions OR AND Comments

1 variable

A+A=A AA=A Idempotence
A+1=1 A.0=0 Absorbent element
A+0=A A.1=A Neutral Element

A+A=1

AA=0

Complement

A=A
Involution

Functions OR AND Comments

2 variables A+B=B+A AB=BA Commutativity

3 variables

A+(B+C)=(A+B)+C
=A+B+C

A.(BC)=(AB).C
=ABC

Associativity

A+BC=(A+B).(A+C) A.(B+C)=A.B+AC Distributivity

HAS B A+B
0 0 0
0 1 1
1 0 1
1 1 1

HAS B AB
0 0 0
0 1 0
1 0 0
1 1 1

HAS NO TO
0 1
1 0

Logical Systems Course

18

3.2 Theorems of Boolean algebra

To perform any Boolean calculation, we use, in addition to the properties, a set of

theorems:

Theorems OR AND

Of
DEMORGAN

A+B =A . B

AB=A+B

This theorem can be generalized to several variables

A+B+ …+Z=A . B. … .Z

AB … .Z=A+B+ … +Z

Absorption A+AB=A A.(A+B)=A

Of lightening

A+AB=A+B

A.(A+B)=AB

A.B+AC+BC=AB+AC

4. MATERIALIZATION OF LOGICAL OPERATORS

4.1 Basic logic gates

Logic gates are electronic circuits whose transfer functions (relationships between inputs

and outputs) materialize the basic operations applied to electrical variables.

4.1.1 The AND gate

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

HA
S
B

&

S HA

S
B

S S=AB

TTL: 7408

CMOS: 4081

If V0 represents the LOW voltage level (state 0) AndV1represents the HIGH level

(state1), we note at the output of the circuit the voltages given in the operating table and

we deduce the truth table.

Logical Systems Course

19

Operating table

VHAS VB VS

V0 V0 V0

V0 V1 V0

V1 V0 V0

V1 V1 V1

Truth table

HAS B S

0 0 0

0 1 0

1 0 0

1 1 1

Operating table

VHAS VB VS

V0 V0 V0

V0 V1 V1

V1 V0 V1

V1 V1 V1

Truth table

HAS B S

0 0 0

0 1 1

1 0 1

1 1 1

4.1.2 The OR (OR) gate

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

H
A
S
B

-1

S

HAS

B

S S=A+B

TTL: 7432

CMOS: 4071

Noticed :There are 2, 3, 4, 8, and 13 input OR and AND logic gates available in integrated circuit form.

4.1.3 The NO gate

It is a single-entry gate, it materializes the reversing operator.

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

HA
S

1

S HAS

S

S=A
TTL: 7404

CMOS: 4069

Logical Systems Course

20

Operating table

VHAS VS
V0 V1

V1 V0

Truth table

HAS S
0 1

1 0

Operating table

VHAS VB VS

V0 V0 V0

V0 V1 V1

V1 V0 V1

V1 V1 V0

Truth table

HAS B S

0 0 0

0 1 1

1 0 1

1 1 0

4.1.4 The exclusive-OR (XOR) gate

The exclusive-OR function is1if only one of the inputs is in the state1and the other is the state 0.

Generalizations of the EXCLUSIVE-OR function: The output of the EXCLUSIVE-OR function

takes the logical state1if an odd number of input variables are in the logical state 1.

 Example: Three-way exclusive-OR

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

S=ABC

TTL: 74386

HAS
B =1 S C

HAS
B S
C

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

HAS
B

=1

S

HA

S B

S

S=AB

=AB*AB
TTL: 7486

CMOS: 4070

Logical Systems Course

21

Operating table

VHAS VB VC VS
V0 V0 V0 V0

V0 V0 V1 V1

V0 V1 V0 V1

V0 V1 V1 V0

V1 V0 V0 V1

V1 V0 V1 V0

V1 V1 V0 V0

V1 V1 V1 V1

Truth table

HAS B C S
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Operating table

VHAS VB VS
V0 V0 V1

V0 V1 V1

V1 V0 V1

V1 V1 V0

Truth table

HAS B S
0 0 1

0 1 1

1 0 1

1 1 0

4.2 Universal gates

Other than basic (or elementary) logic gates, there are gates called universal (complete) logic
gates such as NAND and NOR gates.
4.2.1 The NAND gate
It is equivalent to a gate followed by an inverter.

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

HAS
B

&

S HAS

B

S

S=A|B

S=AB

S=A+B

TTL: 7400

CMOS: 4011-4093
HAS
B

-1 S
HAS

B

S

Logical Systems Course

22

For the three-input NAND gate we find:

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

HAS
B
C

&

S

HAS
B
C

S

S=A|B|C

S=ABC

S=A+B+C

TTL: 7410

CMOS: 4023
HAS
B
B

-1

S

HAS
B
B

S

4.2.2 The NOR gate:
It is equivalent to a gate followed by an inverter.

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

HAS
B

-1

S

HAS

B

S

S=AB

S=A+B

S=AB

TTL: 7402

CMOS: 4001

HAS
B

&

S HAS

B

S

Operating table

VHAS VB VC VS

V0 V0 V0 V1

V0 V0 V1 V1

V0 V1 V0 V1

V0 V1 V1 V1

V1 V0 V0 V1

V1 V0 V1 V1

V1 V1 V0 V1

V1 V1 V1 V0

Truth table

HAS B C S

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Logical Systems Course

23

Operating table

VHAS VB VS

V0 V0 V1

V0 V1 V0

V1 V0 V0

V1 V1 V0

Truth table

HAS B S

0 0 1

0 1 0

1 0 0

1 1 0

Operating table

VHAS VB VC VS
V0 V0 V0 V1

V0 V0 V1 V0

V0 V1 V0 V0

V0 V1 V1 V0

V1 V0 V0 V0

V1 V0 V1 V0

V1 V1 V0 V0

V1 V1 V1 V0

Truth table

HAS B C S
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

For the three-input NOR gate we find:

Logical symbol Equation Integrated circuit

International Symbol (IEC) European symbol (MIL)

S=ABC

S=A+B+C

S=ABC

TTL: 7427

CMOS: 4025

HAS
B
C

-1

S

HAS
B
C

S

HAS
B
C

&

S

HAS
B
C

S

Logical Systems Course

24

4.2.3 Exercise
1) Demonstrate whether universal functions are associative: (A|? ?

B)|C=A|(B|C)= A|B|C

(AB)-C=A-
?
(BC)= ABC

?

2) Implement the three-input NAND function using the two-input NAND operators.

Answer :

1)

- (A|B)|C=(AB)|C=(A+B)|C=(A+B).C=(A+B)+C=(AB)+C

A|(B|C)= A|(BC)=A|(B+C)=A.(B+C) =A+(B+C) =A+(BC)

(A|B)|CA|(B|C) thenthe functionNAND is not associative
-

(AB)-C=(A+B)-C=(AB)-C=(AB)+C=(AB).C=(A+B).C

A-(BC)= A-(B+C)=A-(BC)= A+(BC)= A.(BC)=A.(B+C)

(AB)-CA-(BC) thenthe functionNOR is not associative

2)

-A|B|C=ABC=A+BC= A+BC = ABC=A|[(B|C)|(B|C)]

B
C

HAS

S=A|B|C

Logical Systems Course

25

1. OBJECTIVES

 Study the algebraic representation of a logical function,

 Understand the algebraic simplification of a logical function,

 Synthesize combinatorial applications.

2. REPRESENTATION OF A LOGICAL FUNCTION

A logical function is a combination of binary variables connected by the operators AND, OR

and NOT. It can be represented by an algebraic notation or a truth table or a KARNAUGH

table or a flowchart.

2.1 Algebraic representation

A logical function can be represented in two forms:

 SD P: -(-) sum of products,

 PDS: - (-) product of sums,

2.1.1 Sum-of-products form (Disjunctive form)

It corresponds to a sum of logical products: F=-(-(ei)), or eirepresents a logical variable or its

complement.

Example : F1(A, B, C)=AB+BC. If each of the products contains all the input variables in direct or

complemented form, then the form is called:"first canonical form »or form "disjunctive canonical ».

Each of the products is called midterm.

Example :F1(A, B, C)=ABC+ABC+ABC+ABC.

2.1.2 Product of sums)

It corresponds to a product of logical sums: F=-(-(ei)), or eirepresents a logical variable or its
complement.

CHAPTER 3
REPRESENTATION AND SIMPLIFICATION OF LOGICAL

FUNCTIONS COMBINATORIES

Logical Systems Course

26

Example :F2(A, B, C)=(A+B).(A+B+C).

If each of the sums contains all the input variables in direct or complemented form, then the

form is called:"second canonical form »or form "conjunctive canonical". Each of the products is

calledmaxterm.

Example :F2(A, B, C)=(A+B+C).(A+B+C).(A+B+C)

2.2 Truth table

A logical function can be represented by a truth table which gives the values that the function

can take for each combination of input variables.

2.2.1 Fully defined function

It is a logical function whose value is known for all possible combinations of variables.

Example :The “Majority of 3 variables” function: MAJ(A, B, C) The MAJ function is equal

to 1 if the majority (2 or 3) of the variables are at state 1.

Truth table

Combination HAS B C S=SHIFT(A, B, C)

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

2.2.2 Incompletely defined function

This is a function whose value isunspecified for certain combinations of variables. This is

indicated by the symbol X or -; that is, the function is indifferent for certain combinations

of input variables corresponding to situations which are:

Logical Systems Course

27

 Can never follow in the system, Do not change

 The behavior of the system.

Example: Consider a keyboard that has 3 push buttons P1, P2and P3which control a

machine and which have a mechanical lock such that 2 adjacent buttons cannot be pressed

simultaneously:

P1- P2- P3-

Manual Walking Stop Increase speed

It is assumed thatPisupported is worth1and released is worth0. Hence the truth table of the

function "keyboard»which detects at least one triggered push button:

Truth table

Combination HAS B C Keyboard

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 -

4 1 0 0 1

5 1 0 1 1

6 1 1 0 -

7 1 1 1 -

2.2.3 Equivalence between the truth table and canonical forms

 To establish the disjunctive canonical expression (the canonical sum) of the function: it is

sufficient to carry out the logical sum (or union) of the minterms associated with the states

for which the function is equal to “1”.

 To establish the conjunctive canonical expression (the canonical product) of the function: it is

sufficient to carry out the logical product (or intersection) of the maxterms associated with

the states for which the function is equal to “0”.

Logical Systems Course

28

Example :The “Majority of 3 variables” function: MAJ(A, B, C)

Truth table

Combination HAS B C S=SHIFT(A, B, C) Minterme Maxterme

0 0 0 0 0 ABC A+B+C

1 0 0 1 0 ABC

A+B+C

2 0 1 0 0 ABC

A+B+C

3 0 1 1 1 ABC A+B+C

4 1 0 0 0 ABC

A+B+C

5 1 0 1 1 ABC A+B+C

6 1 1 0 1 ABC

A+B+C

7 1 1 1 1 ABC

A+B+C

 We notice thatSHIFT(A,B,C)=1for the combinations 3, 5, 6, 7. We write the function thus

specified in a so-called numerical form:MAJ= R(3,5,6,7), Union of states 3, 5, 6, 7. The first

canonical form of the function NAJcan be directly deduced from this:

UPDATE(A, B, C)=ABC+ABC+ABC+ABC.

 We notice thatSHIFT(A,B,C)=0for the combinations 0, 1, 2, 4. We write the function thus

specified in a so-called numerical form:MAJ= I(0,1,2,4), Intersection of states 0, 1, 2, 4. The

second canonical form of the function NAJ can be directly deduced from this:

 PDATE(A, B, C)=(A+B+C).(A+B+C).(A+B+C).(A+B+C)

 NB:We are generally interested in the representation of a function in the form of a sum

or canonical sum (disjunctive form).

2.3 Flowchart

It is a graphical method based on symbols or gates.

Example : The “Majority of 3 variables” function: MAJ(A,B,C) UPDATE(ABC)=AB+BC+AC.

Logical Systems Course

29

The function represented by a KARNAUGH table is written as the sum of the products
associated with the different boxes containing the value 1.

HAS
B

C

S=SHIFT(A,B,C)

2.4 The painting by KARNAUGH (TK)

The Karnaugh table method allows you to visualize a function and intuitively derive a

simplified function. The basic element of this method is the Karnaugh table, which is

represented as a table formed by rows and columns.

2.4.1Adjacency of boxes

Two binary words are said to be adjacent if they differ only by the complement of one and only

one variable. If two adjacent words are summed, they cannt be merged and the variable that

differs from them will be eliminated. The words ABC and ABC are adjacent since they differ

only by the complementarity of the variable C. The adjacency theorem therefore states that

ABC and ABC = AB.

2.4.2 Construction of the table

KARNAUGH's painting was constructed in such a way as to bring out the logical visual adjacency.

 Each box represents a combination of variables (minterm),

 The truth table is transported into the array by putting the value of the corresponding

function in each box.

2.4.3 Rules to follow for a problem with n variables: (n>2)

The KARNAUGH table has 2ncases or combinations, The order of the variables is not

important but it only respects the following rule:

Logical Systems Course

30

 The monomials identifying the rows and columns are assigned in such a way that 2

consecutive monomials only differ in the state of a variable, it results that 2

consecutive boxes in row or column identify adjacent combinations, we therefore use

the GRAY code.

Logical Systems Course

31

AB
CD

Painting by KARNAUGH

Example

 n=2

 n=3

A(0)

A(1)

B(0)

B(1)

 n=4

A(0)

A(1)

AB(00)

AB(01)

AB(11)

AB(10)

BC(00)

CD(00)

BC(01) BC(11) BC(10)

CD(01) CD(11) CD(10)

2.4.4 Example of filling the KARNAUGH table from the truth table:

CD(00) CD(01) CD(11) CD(10)

AB(00)

AB(01)

AB(11)

AB(10)

NB: The Karnaugh Table has a structure wrapped around the rows and columns.

It has a spherical shape.

HAS
B

BC
HAS

B
CD

00 01

10 11

000 001 011 010

100 101 111 110

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

Truth table

Combination HASB C D F(A,B,C,D)

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0
10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0

0 1 0 0

1 1 1 0

0 1 0 0

0 0 1 0

Logical Systems Course

32

3. SIMPLIFICATION OF LOGIC FUNCTIONS

The goal of simplifying logic functions is to minimize the number of terms in order to obtain a

simpler hardware implementation, therefore easier to build and troubleshoot and less

expensive.

Two simplification methods are used:

 Algebraic simplification.

 Graphical simplification by KARNAUGH table.

3.1 Algebraic simplification of logical expressions

To obtain a simpler expression of the function by this method, one must use:

 Theorems and properties of Boolean algebra (see chapter 2).

 Multiplication by 1 (X+X).

 The addition of a zero term (XX).

Example : Simplification of the “Majority” function: MAJ(A,B,C)

AJ(ABC)=ABC+ABC+ABC+ABC.

AJ(ABC)=ABC+ABC+ABC+ABC+ABC+ABC.

AJ(ABC)=BC(A+A)+AB(C+C)+AC(B+B).

AJ(ABC)=BC+AB+AC

NB: The rules and properties of Boolean algebra allow functions to be simplified, but it remains

a relatively cumbersome method. It never allows us to know whether or not we arrive at a

minimal expression of the function.

We can then use the KARNAUGH table method

3.2 Graphical simplification of logical expressions (by KARNAUGH table)

The KARNAUGH table allows you to visualize a function and intuitively derive a simplified

function from it

Logical Systems Course

33

SHIFT(A,B,C)=G1+G2+G3=AB+BC+AC

3.2.1Grouping adjacent boxes

The method consists of making groups of adjacent squares. These groupings of squares must be of

maximum size (maximum number of cases) and equal to 2k(i.e. 2, 4, 8, 16, …). We stop grouping

when all the ones belong to at least one of them.

NB:Before deriving the equations from the KARNAUGH table, the following rules must be
observed:

 Group all together.

 Group as many of them as possible into a single

 grouping. A grouping has a rectangular shape.

 The number of ones in a group is a power of 2 is equal to 2k

 A 1 can appear in more than one grouping.

 A grouping must respect the axes of symmetry of the TK

Grouping of the 2 adjacent boxes

Simplification of the Majority function of 3 variables (MAJ(A,BC))

A(0)

A(1)

BC(00)

BC(01) BC(11) BC(10)

G1=ABC+ABC=AC G3=ABC+ABC=AB

G2=ABC+ABC=BC

Ruler: Combining two adjacent squares containing 1 each eliminates one

only variable that changes state when moving from one box to another.

BC
HAS

0 0 1 0

0 1 1 1

Logical Systems Course

34

Grouping of the 4 adjacent boxes

CD
AB
AB(00)

AB(01)

AB(11)

AB(10)

CD(00) CD(01) CD(11) CD(10)

0 0 0 1

1 1 0 1

1 1 0 1

0 0 0 1

F1(A,B,C,D)=BC+CD F2(A,B,C,D)=AD+BD

CD
AB
AB(00)

AB(01)

AB(11)

AB(10)

CD(00) CD(01) CD(11) CD(10)

1 0 1 1

1 0 0 0

1 1 1 1

1 0 1 1

F3(A,B,C,D)=CD+AB+BC

Function F1

AB

Function F2

CD
CD(00) CD(01) CD(11) CD(10)

AB(00)

AB(01)

AB(11)

AB(10)

1

0

1

1

0

0

0

0

0

0

0

0

1

0

1

1

Function F3

Logical Systems Course

35

AB
CD

CD(00)

AB(00)

AB(01)

AB(11)

AB(10)

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

Function F4

Ruler:2 variables disappear when we group 4 adjacent boxes, we can then replace the sum of the 4

boxes (4 minterms with 4 variables each) by a single term which only has 2 variables.

Grouping of 8 adjacent boxes

CD(01) CD(11) CD(10)

F4(A,B,C,D)=D

Ruler:2 variables disappear when we group 8 adjacent boxes, we can then replace the sum of the 8

boxes (8 minterms with 4 variables each) by a single term which contains only 1 variable.

Noticed: We will limit ourselves to tables of 4 variables, to solve by example of problems with 5

variables; we break them down each into two problems with 4 variables.

3.22 Handling 5-variable problems

To solve this problem we will break it down into 2 problems with 4 variables by applying the

expansion theorem (SHANNON).

we have: F(A,B,C,D,E)=EF(A,B,C,D,0)+ EF(A,B,C,D,1)

NB:SHANNON's expansion theorem remains applicable whatever the number of variables we have:

F(A,B,C, … ,Z)=ZF(A,B,C, … ,0)+ ZF(A,B,C, … ,1)

Example :Simplify the function F(A,B,C,D,E)=-(4, 5, 6, 7, 24, 25, 26, 27)

Logical Systems Course

36

F(A,B,C,D,0)

CD
AB
AB(00)

AB(01)

AB(11)

AB(10)

CD(00) CD(01) CD(11) CD(10) AB
CD

AB(00)

AB(01)

AB(11)

AB(10)

CD(00) CD(01) CD(11) CD(10)

F(A,B,C,D,0)=CD F(A,B,C,D,1)=CD

What results from this: F(A,B,C,D,E)=ECD+ECD

3.23 Indifferent or undefined values
The symbol - (or X) can take the value 0 or 1 indifferently: we therefore replace by 1 only those which
allow us to increase the number of boxes in a grouping and those which reduce the number of
groupings.

F(A,B,C,D,1)

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

Logical Systems Course

37

HAS

F(ABC)

Example

BC
BC(00) BC(01) BC(11) BC(10)

A(0)

A(1)

F(ABC)=B

4. SUMMARY: SYNTHESIS OF A LOGICAL FUNCTION

 Step 1: Reading and analysis of the statement of the function.

 Step 2: writing the function in the canonical form of a truth table.

 Step 3: Simplification of the function expression by the method algebraic or by the TK method

 Step 3: Creation of the flowchart:

 With only one type of operators using universal logical functions.

 With a minimum of operators using basic logic functions

Truth table
Combination HASB C F(A,B,C)

0 0 0 0 -

1 0 0 1 0

2 0 1 0 1

3 0 1 1 -

4 1 0 0 0

5 1 0 1 0

6 1 1 0 -

7 1 1 1 1

- 0 - 1

0 0 1 -

Logical Systems Course

38

Half-
Adder

1. OBJECTIVES

 Study the main combinational logic circuits used in digital systems (such as: arithmetic

circuits, encoders, transcoders, etc.),

 Implement logic functions using combinational circuits.

2. ARITHMETIC CIRCUITS

2.1 Adders

An adder is a circuit capable of adding two binary numbers HASAndB. An addition implements two

outputs:

 The sum, generally noted S,

 The restraint, generally noted R(Or C: carry).

As in decimal, we must take into account the possible carryover, the result of a previous

calculation. The following figure shows the decomposition of the addition of two 4-bit binary

numbers.

S0

S1 has3has2has1has0Number A

S2 + b3b2b1b0 Number B

b
b0
b1
b

3
2

S3 =
-

R3

S3S2S1S0

r3r2r1r0

Sum A+B
Retention

2.1.1 The Half Adder (2 bits)

 It is a 2-bit adder without taking into account the previous carry.

has S

b R

HAS h1a
h

h
h

B

4-bit adder

CI: 74283

 s s0
as2

 as3

CHAPTER 4

COMBINATORIAL LOGIC CIRCUITS

Logical Systems Course

39

Half-
Adder

Half-
Adder

Truth table Output equation Flowchart

S=AB+AB=AB

R=AB

HAS S
B

R

2.1.2 The Full Adder (2 bits)

It has three inputs A, B and Reand two exits S and RS: Rerepresents the carry of rank n-1 and

Rsthat of rank n.

Truth table Output equation Flowchart

ABReSRS

HAS

B Adder

Re

Integrated circuit:

74LS183

S

Rs

0
0
0

0 0 0
0 1 1
1 0 1

0
0
0

S=ABRe+ABRe+ABRe+ABRe

=ABRe

0 1 1 0 1
RS= ReA-B+AB 1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Flowchart:

HAS

B

Re

AB

S= ABRe

RS

2.2 The subtractors

A half-subtract or ignores any carry from lower-order bits. D represents the result of the

difference (AB) and R restraint.

AB

HAS B S R
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Logical Systems Course

40

Half-
subtractor

AB

Half-
subtractor

Truth table Output equation Flowchart

D=AB+AB=AB

R=AB

HAS D
B

R

2.2.1 The complete subtractor (2 bits)

It has three inputs A, B and Reand two exits D and RS: Rerepresents the carry of rank n-1

and Rsthat of rank n.

Truth table Output equation Flowchart

D=ABRe+ABRe+ABRe+ABRe

=ABRe

RS= ReA-B+AB

HAS S
B Subtractor

Re Rs

Flowchart:

HAS

B

Re

2.3 Adder-subtractors

AB

D= ABRe

RS

 A number coded on n bits can take a value between 0 and 2n-1.

 The complement of an n-bit word is obtained by taking the complement of each of its n
bits. Thus, we have:

A+A=2n-1 --A= A+1-2n

HAS B D R
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

ABReDRS

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Logical Systems Course

41

1

0

Adder

n

n
n

HAS n n

HAS
h
h

2
a

h
. . .

a

1 a

 For a variable coded on n bits: 2n=0. That is to say, it is possible to write a negative

integer as the "2's complement" of its value

absolute. - A=A+1

 We can use this property to write the subtraction of two n-bit words in the following

form:

AB=A+B+1
 A single device shown in the figure below can be used for addition and subtraction

according to the operation codeO:

 O=0: addition

 O=1: subtraction

S

B

R

O
2.4 Comparator

It is a circuit that allows you to compare two binary numbers. It indicates whether the first

number is less than (S2), equal (S0) or higher (S1) to the second number.

h

b
b0
b

2
1

. . .

3

S0(A=B)

S1(A>B)

S2(A<B)

Basic principle
The principle is to first compare the most significant bits (MSB). If they are different, there is no point
in continuing the comparison. On the other hand, if they are equal, the next lowest-order bits must be
compared, and so on.

b

B

as

Comparator
to n bits

74HC85 (4 bits)

s0

s
sn

Logical Systems Course

42

Truth table

b1 b0 has1 has0 S0 S1 S2

0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0

b1 b0 has1 has0 S0 S1 S2

1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

2.4.1 The 1-bit comparator

Truth table Equation of
exits Flowchart

S0=AB+AB=AB

S1=AB

S2=AB

HAS
B

S0

S1

S2

2.4.2 The 2-bit comparator

Operating diagram Organizational chart

HAS h S0(A=B)
h

1
a

S1(A>B)
B b S2(A<B)

b
1
0

has1=b1

has1>b1

has0=b0 has0>b0

S0=1 S1=1 S2=1 S1=1 S2=1

B HASS0 S1 S2

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 0 0

as

Comparator
2-bit

s0

Logical Systems Course

43

Equations

We have S 0 is worth 1 if a1=b1and if a0=b0

S0=(a1-b1).(has0-b0).

And S1 is worth 1 if a1>b1 or if (a1=b1 and has 0>b0)

S1=a1b1+(a1-b1)has0b0

And S2 is worth 1 if a1<b1 or if (a1=b1 and has 0<b0)

S2=a1b1+(a1-b1)has0b0

S2=S0+S1

Logic diagram using basic logic gates

has1has0b1b0

S0

S2

S1

Flowchart using the 2 1-bit comparators.

has0

b0

If0(A=B)
If1(A>B)
If2(A<B)

has1

b1

S ''0 (A=B)
S''1(A>B)
S''2(A<B)

Comparator
at 1 bit

Comparator
at 1 bit

Logical Systems Course

44

Comparator
at 1 bit

Comparator
at 1 bit

S0=(a1-b1).(has0-b0) =S''0If0.

And S1is worth 1 if a1>b1or if (a1=b1and has0>b0)

S1=a1b1+(a1-b1)has0b0=S''1+S''0If1

And S2is worth 1 if a1<b1or if (a1=b1and has0<b0)

S2=a1b1+(a1-b1)has0b0=S''2+S''0If2

S2=S0+S1

has0

b0

has1

b1

If0

If1

If2

S''0

S''1

S''2

 S0

 S1

 S2

2.5 Coders and decoders

2.5.1 The coders

It is a circuit that translates the values of an input into a chosen code. An encoder (or encoder)

is a logic circuit that has2ninput channels of which only one is activated andNexit routes.

I0
1

I2
I3

. . .

I2n-1

S0

S1

S
.
.2
.

Sn-1

Coder

Logical Systems Course

45

6

9

 Example: DCB Encoder

3

2

1

0

 Flowchart:

1

has0

2
3 has1

4
5 h

2
as

7

8

has3

Coder

DCB

.

Truth table Output equation Flowchart

Exits

Entrances
has3has2has1has0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

a0= 1 + 3+5+7+9

has1=2+3+6+7

has2=4+5+6+7

has3=8+9

0 has
1

has

2
. .

has
has

9

Integrated circuit:

74LS147

Logical Systems Course

46

Decoder

2.5.2 The decoders

A decoder is a circuit with N inputs and 2noutputs of which only one is active at a time. It

detects the presence of a specific combination of bits (code) at these inputs and indicates it by

a specific output level.

I0

I1

I2...

S0
S
S12
S3

. . .

In-1 Sn2-1

 Example: DCB Decoder

Operating table Output equation Flowchart

Entrances
Exits

has3has2has1has0

0 0 0 0 S0

0 0 0 1 S1

0 0 1 0 S2

0 0 1 1 S3

0 1 0 0 S4

0 1 0 1 S5

0 1 1 0 S6

0 1 1 1 S7

1 0 0 0 S8

1 0 0 1 S9

S0=a3has2has1has0

S1=a3has2has1has0

S2=a3has2has1has0

S3=a3has2has1has0

S4=a3has2has1has0

S5=a3has2has1has0

S6=a3has2has1has0

S7=a3has2has1has0

S8=a3has2has1has0

S9=a3has2has1has0

has3

S0

has2
S1

has
Decoder S2

1 DCB
has0

. . .

S9

Integrated circuit:

74145

2.5.3 The 7-segment DCB decoder

The 7-segment decoder accepts 4 BCD bits as input (a0, has1, has2, has3) and activates the

outputs which will allow a current to pass through the segments of a digital display to

form the decimal digits (from 0 to 9).
has

has3 b
h c

d
e
f
g

has

f b

g

e c

d

h
h

Decoder
DCB

7 segments

as2

as1

as0

Logical Systems Course

47

has

f b

e c

d

b

c

has

b

g

e

d

has

b

g

c

d

f b

g

c

has

f

g

c

d

f

g

e c

d

has

b

c

has

f b

g

e c

d

has

f b

g

c

 RNote:There are 6 titled combinations10, 11, 12, 13, 14, 15which will be noted -. The other

figures are displayed as follows:

Truth table

Display
Entrances Exits

has 3has 2has 1has 0ha sb c d e f g

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 1 0 1 1 0 0 0 0 1

0 0 1 0 1 1 0 1 1 0 1 2

0 0 1 1 1 1 1 1 0 0 1 3

0 1 0 0 0 1 1 0 0 1 1 4

0 1 0 1 1 0 1 1 0 1 1 5

0 1 1 0 0 0 1 1 1 1 1 6

0 1 1 1 1 1 1 0 0 0 0 7

1 0 0 0 1 1 1 1 1 1 1 8

1 0 0 1 1 1 1 0 0 1 1 9

Logical Systems Course

48

- - 0 1

- - 1 1

1 - 1 0

1 - 0 1

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has001

has1has011

has1has010 - - 0 1

- - 1 1

1 - 0 1

1 - 1 1

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has001

has1has011

has1has010

- - 1 1

- - 0 1

0 - 1 0

1 - 0 1

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has001

has1has011

has1has010

- - 1 1

- - 0 0

0 - 0 0

1 - 0 1

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has001

has1has011

has1has010

- - 1 0

- - 0 0

1 - 1 0

1 - 1 1

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has001

has1has011

has1has010

Segment a Segment b

has1has000 has1has000

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has000

has1has001

has1has011

has1has010 - - 1 0

- - 1 1

1 - 1 1

1 - 1 1

Segment c Segment d

has1has000

Segment e
Segment f

has1has000
has1has000

 Example: DCB Decoder

a=a2has1+a2has0+ a2has0+has3 b=a2+a1has0+a1has0=a2+a1-has0

c=a2+a1+a0 d=a2has0+a3has0+a2has1+a1has0+a2has1has0

e=a1has0+a2has0
f=a1has0+a2has1+a2has0+a3

Logical Systems Course

49

g=a2has1+a2has0+a2has1+a3

Noticed : The display is made up of 7 LEDs (segments), a, d, c, d, e, f, g which require a specific

polarization depending on the type of display (common anode or common cathode):

 For a common anode display: The anodes are connected together at the high level and the

decoder outputs are active at the low level (CI: 74LS47) and are connected to the cathodes

of the display.

 For a common cathode display: The cathodes are connected together to ground and

the decoder outputs are active at high level (CI: 74LS48) and are connected to the anodes

of the display.

+Vcc

Cathode display
municipalities

Anode display
municipalities

Segment g

- - 1 1

- - 0 1

1 - 1 0

1 - 1 0

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has000

has1has001

has1has011

has1has010

has

b

c

d

e

f

g

has

b

c

d

e

f

g

Logical Systems Course

50

Machine

Transcoder

has'3

has'2

has'1

has'0

Transcoder

BN/BR has

2.6Transcoders

A transcoder is a circuit that allows information written in a C code to be passed1 to a C code2.

It is usually formed by a decoder cascaded with an encoder.

has3

has2

has1

has0

2.6.1 Natural Binary-Reflected Binary Transcoder

Example: BN/BR Transcoder (4 bits)

hasn-1

.
2

has1

has0

has'n-1

. .
has'2

has'1

has'0

Operator

logic

Truth table D
ecim

al

BN entries BR releases

has 3has 2has 1has 0has'3

has'2

has'1

has'0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1 2

0 0 1 1 0 0 1 0 3

0 1 0 0 0 1 1 0 4

0 1 0 1 0 1 1 1 5

0 1 1 0 0 1 0 1 6

0 1 1 1 0 1 0 0 7

1 0 0 0 1 1 0 0 8

1 0 0 1 1 1 0 1 9

1 0 1 0 1 1 1 1 10

1 0 1 1 1 1 1 0 11

1 1 0 0 1 0 1 0 12

1 1 0 1 1 0 1 1 13

1 1 1 0 1 0 0 1 14

1 1 1 1 1 0 0 0 15

Logical Systems Course

51

Operating table Output equation and flow chart

Bit a'3

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has000

has1has001

has1has011

has1has010

Bit a'2

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has000

has1has001

has1has011

has1has010

Bit a'1

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has000 0 1 1 0

has1has001 0 1 1 0

has1has011 1 0 0 1

has1has010 1 0 0 1

Bit a'0

has3has2

has1has0 has3has200 has3has201 has3has211 has3has210

has1has000

has1has001

has1has011

has1has010

has'3=a3

has'2=a3-has2

has'1=a2-has1

has'0=a1-has0

has0
has'0

has1
has'1

has2

has'2

has3 has'3

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

Logical Systems Course

52

Trencoder

BR/BN

2.6.2 Reflected Binary Transcoder - Natural Binary

Example: BR/BN Transcoder (4 bits)

has'n-1

. . .

has'2

has'1

has'0

.

hasn-1

. .

has2

has1

has0

Decim
al

Truth table

s0

BR entries BN releases

has'3

has'2

has'1

has'0 has3 has2 has1 ha

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1 2

0 0 1 1 0 0 1 0 3

0 1 0 0 0 1 1 1 4

0 1 0 1 0 1 1 0 5

0 1 1 0 0 1 0 0 6

0 1 1 1 0 1 0 1 7

1 0 0 0 1 1 1 1 8

1 0 0 1 1 1 1 0 9

1 0 1 0 1 1 0 0 10

1 0 1 1 1 1 0 1 11

1 1 0 0 1 0 0 0 12

1 1 0 1 1 0 0 1 13

1 1 1 0 1 0 1 1 14

1 1 1 1 1 0 1 0 15

Logical Systems Course

53

Bit a3

Bit a0

Operating table

has'3has'200 has'3has'201 has'3has'211 has'3has'210

Output equation and flowchart

has3=a'3

 has =a' -has' = a -has'
2 3 2 3 2

has'1has'000

has'1has'001

has'1has'011

has'1has'010

has'0

has1=a2-has'1

has0=a1-has'0

has0

has'3has'200 has'3has'201 has'3has'211 has'3has'210

has'1has'000

has'1has'001

has'1has'011

has'1has'010

has'1

has'2

has1

has2

has'1has'000

has'1has'001

has'1has'011

has'1has'010

has'1has'000

has'1has'001

has'1has'011

has'1has'010

has'3has'200 has'3has'201 has'3has'211 has'3has'210

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

has'3has'200 has'3has'201 has'3has'211 has'3has'210

has'3

has3

has'3has'2

has'1has'0

has'3has'2

has'1has'0

has'3has'2

has'1has'0

has'3has'2

has'1has'0

Bit a1

Bit a2

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

Logical Systems Course

54

Synchronization

. .
Multiplexer

2ntowards 1

Demultiplexer
1 to 2n

. . .

… …

B Y

2.7 Multiplexers and demultiplexers

Transmitting information from one station to another requires several lines in parallel,

which is difficult to achieve and very expensive when the stations are geometrically

distant from each other.

The solution is then to transmit serially on a single line, using a parallel/serial converter

(Multiplexer) at the transmitting station and a serial/parallel converter (Demultiplexer) at the

receiving station.

D0

D1

D2

D3

D4

. . .

S0

S1

S2

S3

S4

. . .

D2n-1 Sn2-1

En-1 E3E2E1E0 En-1 E3E2E1E0

Transmitting station

2.7.1 Multiplexers

Receiving station

A multiplexer (MUX) is a logic circuit that has2nentries (D0, D1, D2, … Dn2-1),n selection

entries (E0, E1, E2, … En-1) and only one exitY. It is said:MUX 2ntowards 1Or MUX 2nx 1.

Its function is to switch one of the inputs to the output based on the address code applied to the

selection inputs.

Logical Systems Course

55

 Truth table

Truth table Flowchart

D0

D1

D2 Y
D3

D4
Multiplexer

2ntowards 1
.

D2n-1
…

En-1 E3E2E1E0

Decimal
Entrances Exits

En-1 … E 2 E1 E0 Y
0 0 … 0 0 0 D0

1 0 … 0 0 1 D1

2 0 … 0 1 0 D2

3 0 … 0 1 1 D3

4 0 … 1 0 0 D4

5 0 … 1 0 1 D5

…. … … … … … …
2n-1 1 … 1 1 1 D2n-1

Logical Systems Course

56

Demultiplexer

1 to 2n

B

…

Integrated circuit:
74LS157 MUX 1 of 2
74LS153 MUX 1 of 4

74LS151 MUX 1 of 8
74LS150 MUX 1 of 16

2.7.2 Demultiplexers

A demultiplexer (DEMUX) is a logic circuit that has a single inputB,nentries

selection (E0, E1, E2, … En-1) And2nexits (S0, S1, S2, … Sn 2-1). It is said:DEMUX 1 to

2nOrDEMUX 1 x 2n.

It performs the inverse function of a multiplexer, it transmits the input data to one of the outputs

according to the word written to the selection inputs, it works like a switch.

 Truth table

Decimal
Entrances Exits

En-1 … E2 E1 E0 S0 S1 S2 … Sn2-1

0 0 … 0 0 0 B 0 0 … 0
1 0 … 0 0 1 0 B 0 … 0
2 0 … 0 1 0 0 0 B … 0
3 0 … 0 1 1 0 0 0 … 0
4 0 … 1 0 0 0 0 0 … 0
5 0 … 1 0 1 0 0 0 … 0

…. … … … … … … … … … …
2n-1 1 … 1 1 1 0 0 0 … B

 Flowchart

En-1 E3E2E1E0

S0

S1

S2

S3

S4

Sn2-1

Integrated circuit:

4067 DEMUX 1 to 16
74LS154 DEMUX 1 to 16
74LS138 DEMUX 1 to 8
74LS156 DEMUX 1 to 4

. . .

Logical Systems Course

57

CS

MUX
4 to 1

1
 E0

CS

MUX
4 to 1

E1

MUX
4 to 1

E0 CS E1 E0

Decoder
1 of 4

MUX
4 to 1

CS E1 E0

D12

D13

D14

D15

Y

D BA

2.7.3 Realization of a 1 of 16 multiplexer using 4 1 of 4 multiplexers and a 1 of 4 decoder

D0

D1

D2

D3

2.7.4 Implementation of logic functions using multiplexers

 Issue

Let the function F be(A, B, C, D)=-(0, 2, 5, 7, 11, 13, 14, 15). Perform this function using a multiplexer.

 Solution

Using a 16 to 1 multiplexer (number of variables equal to the number of selection

inputs).

S

Y

D4

D5

D6

D7

Y

D8

D9

D10

D11

Y

Logical Systems Course

58

D0
D1
D2
D3
D4
D5
D6
D7

D8

D9

D10
D11
D12
D13

D14
D15

Multiplexer

8 to 1

E2E1E0

D3

E3E2E1E0

Multiplexer
16 verses 1

Y=S

+ VCC

DCBA

Using an 8 to 1 multiplexer (number of variables less than the number of selection inputs).

D CBACBA(000) CBA(001) CBA(010) CBA(011) CBA(100) CBA(101) CBA(110) CBA(111)

D(0)

D(1)

D0=D D1=0 D2=D D3=D D4=0 D5=1 D6=D D7=1

D + VCC

D0
D1
D2

Y=S
D4
D5
D6
D7

C B HAS

Decimal
Entrances Exits

E3=D E2=C E1=B E0=A Y S
0 0 0 0 0 D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Logic System Course

59

Circuit

combinatorics

E1

E
. .

2

. . .

.

1. OBJECTIVES

 Treat sequential systems in detail.

 Understanding flip-flops.

2.INTRODUCTION

2.1 Reminder on combinational circuits

In a combinational system, the outputs depend only on the state of the inputs at a

given time.

E1

E2

Entrances E 3

. .

En

2.2 Sequential circuits

S0

S1

S
. 2

. . .

Sk

Exits

The output function of sequential systems depends in addition to the states of the

inputs (called primary inputs) on the previous states of the outputs (called

secondary inputs). The sequential circuit is said to have a memory function.

Entrances

primary
Exits

primary

Entrances

secondary

Exits

secondary

Memory

S0

S. 1

.

Sk En

Circuit

combinatorics

.

CHAPTER 5

SEQUENTIAL LOGIC

Logic System Course

60

Toggle

Sequential systems are classified into 2 categories:

 Asynchronous sequential circuits

In asynchronous sequential circuits, the outputs change states as soon as the input

states change.

 Synchronous sequential circuits

In this type of circuit the outputs change state after having been authorized by a

synchronization signal often called "Clock" signal noted H or CLK.

3. ASYNCHRONOUS FLIP-FLOATS

The flip-flop is the most common memory circuit. It also serves to create a

frequency divider by two. It is a sequential system consisting of one or two inputs

and two complementary outputs.

E1 Q

E2 Q

The flip-flop is the most common storage circuit. It also serves to create a frequency

divider by two. It is a sequential system consisting of one or two inputs and two

complementary outputs.

It is called a "bistable flip-flop" because it has two stable states. There are 4 types of

flip-flops:RS,D,JK, AndT.

3.1 RS rocker

Symbol Explanation

S Q

R
RS

Q

-S

-R

A pulse onS (set)-Up to 1 ofQ((walk) A pulse on

R (Reset)-Reset to 0deQ(Stop)

Logic System Course

61

Truth table Output equation

Qn+1

RS

Qn
00 01 11 10

0 0 1 - 0

1 1 1 - 0

Qn+1=RQn+S

Flowchart

Using NAND gates Using NOR gates

S

Q

R Q

R Q

Q

S

NB: The state R=S=1e is a forbidden state since it gives us the two complementary

outputs Q and Q in the same state which is not logical.

Entrances Exits Mode of
nctioning R S Qn Qn+1Q n+1fu

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

-

-

1

0

0

0

1

1

-

-

Previous state

Previous state

Engagement

Maintain at 1

Maintain at 0

Triggering

Forbidden

Forbidden

Logic System Course

62

3.2 D-Flip

Symbol Explanation

D
Q

D
Q

A press on D-Up to 1 of Q A release of D-

Reset to 0Q

Truth table Output equation

Qn+1

D

Qn
0 1

0 0 1

1 1 1

Qn+1=D

Flowchart

Using NAND gates Using NOR gates

D Q

Q

Q

Q

D

Noticed :By putting S=D and R=Din the seesaw equation RSwe will haveQn+1

=DQn+D=D(1+Qn)=D.

Entrances Exits Mode of
functioning

D Qn Qn+1 Qn+1

0 0 0 1 Maintain at 0: -0

Trigger: -

Engagement: -

Maintain at 1: -1

0 1 0 1

1 0 1 0

1 1 1 0

Logic System Course

63

RS

JK

S

R

RS

So we get a flip-flopDby adding an inverter between S And R.

D Q

Q

3.3 JK rocker

Unlike the seesaw RS, the condition J=K=1, does not give rise to an indeterminate

condition, but on the other hand the flip-flop goes to the opposite state.

Truth table Output equation

Qn+1

JK

Qn
00 01 11 10

0 0 0 1 1

1 1 0 0 1

Qn+1=JQn+KQn

I Q
I

Q

K Q
K

Q

Entrances Exits Mode of
functioning

I KQ n Qn+1 Qn+1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

1

0

1

0

1

1

0

0

0

1

Previous state

Previous state

Maintain at 0: -0

Trigger: -

Engagement: -

Maintain at 0: -1

Engagement: -

Trigger: -

Logic System Course

64

T

JK

RS

RA0

S
Q

3.4 T-toggle

The seesaw T is obtained by connecting the inputs I And K of a seesaw JK.

Truth table Output equation

Qn+1

T

Qn
0 1

0 0 1

1 1 0

Qn+1=TQn+TQn=TQn

Noticed :En refill there cient I And K by T in the seesaw equation JK we will have Q

n+1=TQn+TQn=TQn.

T
Q

Q

T Q

Q

3.5 Forcing the flip-flops

Some scales are equipped with special inputs:

 Reset input: PRESET (RA1),

 Reset input: RESET (RA0),

RA0

S Q

R Q

RA1 RA1

The same reasoning is applied to the D, T and JK flip-flops.

R Q

Entrances Exits Mode of
functioning T Qn Qn+1 Qn+1

0 0 0 1 Maintain at 0: -0

Maintain at 1: -1

Engagement: -

Trigger: -

0 1 1 0

1 0 1 0

1 1 0 1

Logic System Course

65

RA0

RSH

3.5.1 Truth table

Entrances Exits Mode of
functioning PRESET CLEAR Qn+1

Qn+1

0 0 Qn

Qn Memorization

0 1 0 1 Force to 1

1 0 1 0 Force to 0

1 1 - - Forbidden

4. SYNCHRONOUS FLIP-FLOATS

A flip-flop is synchronous when its outputs only change state if an additional

signal is applied to an input, called input clock (noted HOrCLK).

H

t

4.1 Synchronization on high level

S
Q S

H H

R

RA0

Q

Q

R
Q

RA1

RA1

 IfH=0:the exitsSAndRare stuck at1whatever they areRAndS, (inputs are hidden

from outputs) the output keeps the previous state.

 IfH=1:the seesawRSworks normally the outputs obey the entries.

 So the switchRSonly works normally ifH=1(High Level).

 Same thing for the other switches.

Logic System Course

66

RSH

 4.2 Synchronization on high level

At the lower level, the opposite is true:

 IfH=1:Qkeeps the previous state.

 IfH=0:Normal operation of the scale.

S
Q S

H H

R

RA0

Q

Q

R
Q

 RA1

RA1

 IfH=1:the exitsSAndRare stuck at1whatever they areRAndS, (inputs are hidden

from outputs) the output keeps the previous state.

 IfH=0:the flip-flop works normally the outputs obey the inputs.

 So the switchRSonly works normally ifH=0(Low level). The synchronous

flip-flop is identical to the asynchronous one.

 Same thing for the other switches.

Noticed :

This type of synchronization (on level) has many disadvantages: the flip-flop is

sensitive to inputs for the entire duration of the clock state for high level (or 0 for

low level). If, while H = 1 (or H = 0), parasites appear on the S and R inputs, they

can cause unexpected state changes on the Q output.

In order to minimize the duration of this sensitive state as much as possible, we

arrange for the flip-flop to remain in its memory state except for a brief instant,

just when the input changes from 0 to 1 (or from 1 to 0).

The flip-flop is said to be edge-synchronized.

RA0

Logic System Course

67

4.3 Edge synchronization

A logical variableScan have two levels: high level (True) or low logic level

(False). When it goes from low level to high level, it sets therising front .

Otherwise, it defines thefalling edge .

1 1

S S

0 t 0 t

Rising front Falling edge

 Symbol :

Rising front Falling edge

H

1

0

t

H

Q

Q

1

H

0

t

H

Q

Q

4.4 Operating principle of a JK flip-flop synchronized on rising edge

Operating table Symbol

I Q

H JK

K Q

Entrances Exits Mode of operation

H I K Qn+1 Qn+1

0 x x Qn Qn Previous state

Previous state

Previous state

Previous state

Trigger: -

Engagement: -

change of state

1 x x Qn Qn

- x x Qn Qn

- 0 0 Qn Qn

- 0 1 0 1

-

-

1

1

0

1

1

Qn

0

Qn

Logic System Course

68

Ke

H

Km

Qm

Clear

JKm

JK e

 Timeline:
H

4.5 JK master slave switch

4.5.1 Synchronization on rising edge

Preset

Im

Qm Ie
Qe

Qe

Both flip-flops operate normally if PRESET=CLEAR=1 and if H=1 the first flip-flop

operates normally while the second is blocked and when H=0 the first flip-flop is

blocked while the second operates

normally and the two flip-flops only work together at the time of

passage of H from 1 to 0, that is to say at the moment of the falling edge (-).

1

0

I

1

0

K

1

0

Q

1

0

t

t

t

t

Logic System Course

69

H

Km

Qm

Clear

Ke

JKm

JKe

Q

Q
JK

C

Q

Q

C

JK

So any master-slave flip-flop where the master is working on the high level and the

slave is working on the low level is a falling-edge synchronized flip-flop.

P

I

H

K

4.5.2 Synchronization on rising edge

Preset

Im

Qm Ie
Qe

Qe

The two flip-flops operate normally if PRESET=CLEAR=1 and if H=0 the first flip- flop

operates normally while the second is blocked and when H=1 the first flip- flop is

blocked while the second operates normally and the two flip-flops only operate

together at the moment of passage of H from 0 to 1, that is to say at the moment of the

rising edge (-).

So any master-slave flip-flop where the master is working on the low level and the

slave is working on the high level is a rising-edge synchronized flip-flop.

P

I

H

K

Logic System Course

70

1

0

D

1

0

1

0

P

Q
D

t

t

t

 Exercise

Let's take the following setup:

D

H
Q

C

Complete the chronogram of D and Q. Deduce the function thus produced.

H

Q

1.1 Summary

Synchronization on

high level

Synchronization on

low level

Synchronization on

rising front

Synchronization on

falling edge

P

I Q

H JK

K Q

C

P

I Q

H JK

K Q

C

P

I Q

H JK

K Q

C

P

I Q

H JK

K Q

C

Logic System Course

71

1.OBJECTIVES

 Study the different types of register

 Know the operating principle of each type.

2. GENERAL INFORMATION

 A register is a collection of basic memory cells.

 Data can be written/read at the same time (parallel) or one after the other (serial).

 The number of bits in the register corresponds to the number of memory cells (number

of D or JK flip-flops) in the register.

 Note that all clock inputs (H) of the cells are connected (write line).

 The registers are classified by:

 The number of bits.

 The operating mode (single or multiple).

 The classification of operating modes is as follows:

 Parallel input and parallel output registers:PIPO(Parallel IN-Parallel OUT).

 Parallel input and serial output registers:PISO(Parallel IN-Serial OUT).

 Registers with serial inputs and parallel outputs:SIPO(Serial IN - Parallel OUT).

 Serial input and serial output registers:SISO(Serial IN- Serial OUT).

3. STORAGE REGISTER (Parallel Register)

A storage register (or data register) is a register in which the different stages are

independent of each other, however certain signals act on all the stages; such as reset

to 0 and reset to 1.

CHAPTER 6

THE REGISTERS

Logic System Course

72

PIPO

D D D D

Q Q Q

C

P
D0 D1 D2 D3

Q Q Q Q

3.1 bit storage register

H

Q0 Q1 Q2 Q3

In the example below, the 4 flip-flops are loaded in parallel and read in parallel

synchronously with the write signal H. This type of register is also called a registerPIPO.

3.2 Functional diagram of a PIPO register.

H

Clear

E0E1E2 En-1

…

…

S0S1S2 Sn

4. SHIFT REGISTER (Serial Register)

This type of register is mainly used as dynamic information memory; the shift

function consists of sliding the information from each elementary cell into

another adjacent elementary cell.

This type of register is also called a registerSISO.

Logic System Course

73

D0Q0 D1Q1

D

D2Q2

D

D3Q3

D

Q0 Q1 Q2 Q3

C

E Q3

4.1 Functional diagram

E
H

Clear

S

4.2Right shift

The flip-flop of rank i must copy the output of the flip-flop of rank (i-1) so its input

must be connected to the output (i-1).

H

4.3 Left shift S

The input of the flip-flop of rank i must copy the output of the flip-flop of rank

(i+1).

E

S

H

4.4 Reversible shift

There are reversible shift registers, that is to say registers where the shift is

carried out to the right and to the left depending on the logic level applied to the

S input: "shift direction".

SISO

D0Q0

D

D1Q1

D

D2Q2

D

D3Q3

D

Q0 Q1 Q2 Q3

C

Logic System Course

74

Mux D0Q0

D

Mux D1Q1

D

Mux D2Q2

D

Mux D3Q3

D
Q3

Q0 Q1 Q2 Q3

C

H

I0 I1 I2 I3

D0 Q0 D1 Q1 D2Q2

D D D

D3Q3

D

Q3

Q0 Q1 Q2 Q3

C

H S

Q0 I0

S

Depending on the value of the input S, we have the following operation:

S Operation

0

1

Left shift

Right shift

5. MIXED REGISTER

We can find mixed registers, so we can write in parallel and read in serial (PISO), or

vice versa (PISO), or which offer both possibilities “to choose from”.

5.1PISO Registry E0E1E2 En-1

…

H

Clear

S

5.1.1 Flowchart using D flip-flops

PISO

Logic System Course

75

SIPO

5.2 SIPO Register

E
H

Clear

…

S0S1S2 Sn-1

Flowchart using D flip-flops

E=D0

H

Q3

5.3 Application example

Two types of registers (PISOAndSIPO) are used in serial connections; they form the

basis of modems. For example, if we want to transmit information between two

computers a few dozen meters apart. Transmitting information in parallel requires

a lot of wires and is very expensive. The solution is then to use a register PISO to

send the bits on a single line. At the end of which, a register SIPO receives these bits

and reconstructs bytes which are transmitted to the destination computer.

D3Q3

D

Q3

D2Q2

D

Q2

D1Q1

D
Q1

D0Q0

D

Q0

C

Q0 Q1 Q2

Logic System Course

76

1. OBJECTIVES

 Study the different types of meters.

 Understand the operating principle of each type.

 Master the steps of synthesizing a counter.

2. INTRODUCTION

In many applications we are led to do counting: counting pulses in a given time

for frequency measurement for example. In one case it is necessary to count in

other it is necessary to count down from zero or another given number. A

counter, in the broad sense of the term, will be likely to function as a counter itself

(up counter) or even in down counter (down counter) and in which we can introduce

any starting number, that is to say that we can initialize or load.

Counters can be classified according to their principle as follows:

 Asynchronous up-down counters.

 Synchronous up-down counters.

 The basic element of counters is a clock-input flip-flop (synchronous flip-flop),

either D, T, or JK type.

3. ASYNCHRONOUS COUNTERS AND DOWNCOUNTERS:

The term asynchronous means that the events have no temporal relationship to each

other. The flip-flops forming an asynchronous counter do not change state at the same

time, because they are not connected to the same clock signal, the periodic triggering

only on the first flip-flop of the counter. The triggeringt of the following flip-flops is

done step by step so that the output Qnor Qnwill be applied to the H

clockn+1depending on whether we are working on a rising or falling edge and whether

we want to obtain an up or down counter.

 CHAPTER 7

THE COUNTERS

Logic System Course

77

22

I3 Q3

H3

K3Q3

1

1

I2 Q2

H2

K2Q2

1

21

I0 Q0

H0

K0Q0

I1 Q1

H1

K1Q1

1

20

1

H

Q0

1

0 t

Q1

1

0 t

Q2

1

0 t

Q3

1

0 t

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

0 1 2 3 4 5 6 7 8 9 10 11 12

This type of meter is generally simple to make and has the disadvantage of generating

operating hazards (propagation delay).

3.1 Asynchronous counters

23

1 1 1

 We therefore obtain a Counter asynchronous modulo 16 .

 The same counter can be made using stockingsc ules synchronized on rising edge

whose clock Hiwill be connected to output Qi-1.

Logic System Course

78

1

I1 Q1

H1

K1Q1

1

1

I2 Q2

H2

K2Q2

I0 Q0

H0

K0Q0

I3 Q3

H3

K3Q3

22

1

1

H

Q0

1

0 t

Q1

1

0 t

Q2

1

0 t

Q3

1

0 t

0000 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100

0 15 14 13 12 11 10 9 8 7 6 5 4

3.2 Asynchronous downcounters

20 21 23

1 1

1

 We therefore obtain a Down counter asynchronous modulo 16 .

 The same counter can be made using stockingsc ules synchronized on rising edge

whose clock Hiwill be connected to output Qi-1.

Logic System Course

79

I2Q2

H2

K2Q2

I1Q1

H1

K1Q1

C C C C

I0Q0

H0

K0Q0

I3Q3

H3

K3Q3

20 21
22 23

1 1 1 1

1 1 1 1

3.4 Using other toggles

3.3 Truncated sequence:

The modulo is the number of distinct states occupied by a counter before it is

recycled to the initial state. The maximum number of possible states, or maximum

modulo, of a counter is equal to2n, where n represents the number of flip-flops in

the counter.

We can construct counters to obtain a sequence whose number of states is less

than2n. The sequence is then called a truncated sequence.

To obtain a truncated sequence, it is necessary to force the recycling of the counter

before the latter has occupied all the states. It is necessary to have flip- flops

equipped with reset predisposition inputs.0 RA0(also known RESET).

Example of a modulo 10 counter (decade counter)

Other types of flip-flops can be used to make up/down counters. asynchronous:

3.4.1T-toggle:

C

Q

H Q

T

Logic System Course

80

T

Qn

Qn+1

1 T0 Q0 T1 Q1 T2 Q2 T3 Q3

H0 Q0 H1 Q1 H2 Q2 H3 Q3

C C C C

1 1 1

This type of flip-flops change states at each clock pulse,

if the input T=1, so we can build asynchronous

up/down counters based on T flip-flops using the

assembly below.

0 1

0

1

23

3.4.2 Flip-flop D:

1

This type of flip-flops change state at each clock pulse. The

trigger is performed if D=1 and the trigger is performed if

the D input=0, so if we connect D to Q, we obtain a change

of state at each clock pulse. We can build asynchronous

up/down counters based on D flip-flops using the circuit

below:

1 0

1 0

Qn+1

D

Qn

0

1

0 1

C

Q
H

D Q

20 21 22

0 1

1 0

Logic System Course

81

D3 Q3

H3 Q3

D2 Q2

H2 Q2

D1 Q1

H1 Q1

D0 Q0

H0 Q0

1 1

C C C C

Clock B

1)

2)

74LS93

Modulo 16 counter

Clock B

1)

2)

74LS93

Decade counter

Q3

Q3 I3

H3

K3 Q2 K2

I2 Q2

H2

I1 Q1

H1

K1 Q1 Q0 K0

I0 Q0

H0

(12)Q0 (8)Q2 (11)Q3

Clock B

(14)

R0(1)

(2)

(3)

R0(2)

1 1

Clock A 1)
(9) Q1

Reset Reset Reset Reset

23

3.5 Integrated counter 7493:

The 74LS93 integrated circuit is an example of an asynchronous counter. It consists of a

flip-flop and a 3-bit asynchronous counter. It has reset inputs connected to a NAND

gate, designated R0(1) and R0(2). When these two inputs are HIGH, the counter is

initialized to 0000.

3.5.1 Logic diagram:

3.5.2 Examples of use of the 74LS93 counter:

R0(

R0(

Clock A

R0(

R0(

Clock A

Q0 Q1 Q2Q3 Q0 Q1 Q2Q3

20 21 22

Logic System Course

82

3.6 Propagation delay:

Asynchronous counters are often called propagation counters because the effect of

the clock pulse is initially felt only by the first flip-flop. This effect cannot reach the

next flip-flop immediately because of the propagation delay of the first flip-flop. This

effect is cumulative so that a clock pulse propagates through the counter for some

time before reaching the last flip-flop, due to propagation delay.

The propagation delay associated with asynchronous counters is one of the major

disadvantages for this type of counters because it limits the frequency of use. The

propagation delay for a flip-flop is of the order of 5 ns, which is why frequencies

lower than 200 MHz must be used.

4. SYNCHRONOUS COUNTERS AND DOWN COUNTERS:

The term synchronous refers to events that have a fixed temporal relationship to each

other. In terms of counter operation, the word synchronous means that all flip-flops in

the counter are synchronized to the same clock signal. This solves the propagation

delay problem.

The flip-flops are associated with each other, in such a way that for the flip-flop of

rank i we apply all the outputs of the flip-flops which precede it to the inputs J and K.

4.1 Synchronous counters

23

I0 Q0

H0

K0Q0

1

1

I1 Q1

H1

K1Q1

I3 Q3

H3

K3Q3

I2 Q2

H2

K2Q2

20 21 22

Logic System Course

83

 We therefore obtain aCounter synchronousmodulo 16 .

 We can achieve the same compt eur using rising edge synchronized flip-

flops and Q outputsiinstead of Qi.

4.2 Synchronous downcounters

23

H

Q0

1

0 t

Q1

1

0 t

Q2

1

0 t

Q3

1

0 t

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011

0 1 2 3 4 5 6 7 8 10 11 12

1100

9

I3 Q3

H3

K3Q3

1

1

22 21
20

I0 Q0

H0

K0Q0

I1 Q1

H1

K1Q1

I2 Q2

H2

K2Q2

Logic System Course

84

 We therefore obtain a Down counter synchronous modulo 16 .

 The same down counter can be achieved using rising edge synchronized flip- flops and Q out

putsiinstead of Qi.

H

Q0

1

0 t

Q1

1

0 t

Q2

1

0 t

Q3

1

0 t

0000 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100

0 15 14 13 12 11 10 9 8 7 6 5 4

Logic System Course

85

-

0 1

-

1. OBJECTIVES.

 Understanding the synthesis of synchronous counters.

 Understanding the synthesis of synchronous downcounters.

2.INTRODUCTION

At each clock pulse, the clock undergoes a transition. There are four possible

transitions that can be respected by a transition table or by a state graph.

Transition
Exits

Description Rating
Qn Qn+1

0 0 0 Maintain at 0

Engagement

Triggering

Maintain at 1

-0

1 0 1 -

2 1 0 -

3 1 1 -1

Transition table

-0
-1

State graph

The table below gives a summary of the transitions for the different

switches:

Transition Rating
JK rocker RS rocker D-Flip T-toggle

I K S R D T

0

1

2

3

-0

-

-

-1

0

1

-

-

-

-

1

0

0

1

0

-

-

0

1

0

0

1

0

1

0

1

1

0

From the table above we can conclude that if we want to use:

CHAPTER 8

SYNTHESIS OF SYNCHRONOUS COUNTERS

Logic System Course

86

 JK flip-flops

 We regroup necessarily the interlocks (-) And optionally the triggers (-) and

keeps them at 1 (-1) for the equations of theI.

 e regroup necessarily the triggers (-) And optionally the interlocks (-) and

keeps them at 0 (-0) for the equations of theK.

 RS flip-flops

 We regroup necessarily the interlocks (-) And optionally keeps them at 1 (-1)

for the equations of the S.

 We regroup necessarily the triggers (-) And optionally keeps them at 0 (-0) for the

equations of the R.

 D flip-flops

 We regroup necessarily the interlocks (-) and keeps them at 1 (-1) for the

equations of the D.

 T-swings

 We regroup necessarily the interlocks (-) and the triggers (-) for the equations of the

T.

EXAMPLES

Example 1: modulo 12 counter

We want to make a modulo 12 counter using JK, RS and T flip-flops

Solution

To design this counter, you need to determine the number of flip-flops and then

the equations for each input.

With 3 rockers we can achieve23=8combinations and with 4 switches we can

achieve24=16combinations and a modulo 12 counter therefore requires 4 rockers

since the number 2nwhich is first greater than or equal to 12 is 16.

Logic System Course

87

Q3Q2

Q1Q0

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

Truth table

Transition
Previous state Next state

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0

1

2

3

4

5

6

7

8

9

10

11

12

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

It can also be presented by the KARNAUGH table below:

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

JK rocker I0=K0=1

RS rocker

T-toggle

R0=Q0; S0=Q0

T0=1

Sequences Q-toggle0

0001 0101 - 1001

0010 0110 - 1010

0100 1000 - 0000

0011 0111 - 1011

- - - -

- - - -

- - - -

- - - -

Q3Q2

Q1Q0

Logic System Course

88

Q-toggle2

Q-toggle3

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

-0 -0 - -0

- - - -

- - - -

-1 -1 - -1

Q3Q200 Q3Q201 Q3Q211 Q3Q210

-0 -1 - -0

-0 -1 - -0

- - - -0

-0 -1 - -0

Q3Q200 Q3Q201 Q3Q211 Q3Q210

JK Toggle:I1=K1=Q0

RS rocker:R1=Q1Q0; S1=Q1Q0

T-toggle:T1=Q0

JK Toggle:I2= Q3Q1Q0 ;K2=Q1Q0

RS rocker:R2=Q3Q2Q1Q0;

S2=Q1Q0

T-toggle:T2= Q3Q1Q0

JK Toggle:I3= Q2Q1Q0

K3=Q1Q0

RS rocker:R3=Q2Q1Q0

S3=Q3Q1Q0

T-toggle:T3= Q1Q0(Q3+Q2)

Q-toggle1

Q3Q2

Q1Q0

Q3Q2

Q1Q0

Q3Q2

Q1Q0

-0 -0 - -1

-0 -0 - -1

-0 - - -

-0 -0 - -1

Logic System Course

89

0110 0101
Sequence

cycle

Implementation using T flip-flops

23

Noticed :

After the synthesis of the synchronous counter, it is necessary to check whether this

counter is self-correcting or not, that is to say that if by any accident we find ourselves

in a combination of outputs which is out of cycle, it is necessary to check that this

counter can return to the cycle after a few pulses.

For example for the previous counter:

1011 0000 1100

1010 0001 1101

1001 0010 1110

1000 0011 1111

0111 0100

off

Normal counter cycle

From the modulo 12 meter

T1 Q1

H1 Q1

T0 Q0

H0 Q0

1 T2 Q2 T3 Q3

H2 Q2 H3 Q3

20 21 22

Logic System Course

90

Example 2: modulo 16 down-counter

We want to create a modulo 16 up/down counter using JK flip-flops. The operating

mode is changed using a control input A (if A=0: up/down mode; if A=1:

down/down mode)

Solution

To design this counter, 4 flip-flops are needed, which can be made24=16 combinations. We

will use Channon's expansion theorem to use only 4 variables

Truth table of counting (A=0)

Transition
Previous state Next state

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Logic System Course

91

Q3Q2

Q1Q0

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

It can also be presented by the KARNAUGH table below

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

0001 0101 1101 1001

0010 0110 1110 1010

0100 1000 0000 1100

0011 0111 1111 1011

- - - -

- - - -

- - - -

- - - -

Flip 0:I0=K0=1

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

Flip 1:I1=K1=Q0

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

Flip 2:I2=Q1Q0 ;

K2=Q1Q0

Sequences Q-toggle0

Q-toggle1

Q-toggle2

Q3Q2

Q1Q0

Q3Q2

Q1Q0

Q3Q2

Q1Q0

-0 -0 -0 -0

- - - -

- - - -

-1 -1 -1 -1

-0 -1 -1 -0

-0 -1 -1 -0

- - - -

-0 -1 -1 -0

Logic System Course

92

Q3Q200 Q3Q201 Q3Q211 Q3Q210

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Truth table of the countdown (A=1)

Flip 3:I3= Q2Q1Q0

K3= Q2Q1Q0

Transition
Previous state Next state

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Q-toggle3

Q3Q2

Q1Q0

-0 -0 -1 -1

-0 -0 -1 -1

-0 - - -1

-0 -0 -1 -1

Logic System Course

93

Q3Q2

Q1Q0

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

Q3Q2

Q1Q0

Q-toggle2

It can also be presented by the KARNAUGH table below

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

1111 0011 1011 0111

0000 0100 1100 1000

0010 0110 1110 1010

0001 0101 1101 1001

- - - -

- - - -

- - - -

- - - -

Flip 0:I0=K0=1

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q1Q000

Q1Q001

Q1Q011

Q1Q010

Q3Q200 Q3Q201 Q3Q211 Q3Q210

- - - -

-0 -0 -0 -0

-1 -1 -1 -1

- - - -

Q3Q200 Q3Q201 Q3Q211 Q3Q210

Flip 1:I1=K1=Q0

Flip 2:I2=Q1Q0 ;

K2=Q1Q0

Sequences Q-toggle0

Q-toggle1

Q3Q2

Q1Q0

Q3Q2

Q1Q0

- - - -

-0 -1 -1 -0

-0 -1 -1 -0

-0 -1 -1 -0

Logic System Course

94

Q1Q001

Q1Q011

Q1Q010

Q3Q201 Q3Q211

Flip 3:I3= Q2Q1Q0

K3= Q2Q1Q0

 Final equations

Flip 0:I0=K0=A.1+A.1=1 Flip

1:I1=K1=AQ0+AQ0

Flip 2:I2=K2=AQ1Q0+AQ1Q0

Flip 3:I2=K2=AQ2Q1Q0+AQ2Q1Q0

Q-toggle3

Q3Q2

Q1Q0

Q1Q000

Q3Q200 Q3Q210

Q3

Q3 I3

H3

K3 Q1

Q1 I1

H1

K1 Q0

Q0 I0

H0

K0

1

1

I2

H2

K2

Q2

Q2

HAS

20 21 22

- -0 -1 -

-0 -0 -1 -1

-0 -0 -1 -1

-0 -0 -1 -1

 Bibliographic References

 95

Bibliographic References

[1] Digital Circuits Theory and Applications, Ronald J. Tocci , Reynald Goulet Inc, Reynald Goulet

Inc, ISBN; 2-89377-108-4

[2] Combinatorial Logic and Technology, Marcel Gindre, Denis Roux, BELIN , 1984, ISBN:

2-7011-0857-8

[3] Digital Systems, Jaccob Millman, Arvin Grabel, 1989, ISBN: 2-7042-1182-5

[4] Digital Electronics, Rached Tourki, University Publishing Center, 2005, ISBN: 9973-37-019-8

[5] Logical Systems course support, Mohamed Habib BOUJMIL,2005, ISBN:

[6] Educational Support for Logical Systems, Fedia DOUIRI , 2012

[7] Digital Electronics Courses and Problems, Jean-Claude Laffont, Jean-Paul Vabre , Marketing

Edition , ISBN :1986, 2-7298-8650-8

