République Algérienne Démocratique et Populaire
Ministere de I’Enseignement Supérieur et de la Recherche Scientifique

Université Ibn Khaldoun — Tiaret

Faculté des Sciences Appliquées

Département de Génie Electrique

IBN KHALDOUN
LMNIWERSITY

Support de cours

Programmation en C++

Réalisé par

Mr. MAASKRI Moustafa

Ezxpertise réalisée par
e Dr. MOSTEFAOUI Sidahmed Mokhtar MCA Univ de Tiaret
e« Dr. DAOUD Mohamed Amine MCA Univ de Tiaret

Année universitaire 2024/2025

Avant-Propos (Introduction)

Ce polycopié est le fruit de plusieurs années d’enseignement de la matiere « Informa-
tique et Programmation» au sein du département de Génie Electrique de I’Université
Ibn Khaldoun de Tiaret.

L’objectif de ce support pédagogique est d’offrir aux futurs ingénieurs en élec-
trotechnique, automatique et électronique les bases solides nécessaires pour maitriser
le développement logiciel. Sil'ingénieur en génie électrique est avant tout un spécialiste
du matériel (Hardware), la frontiere avec le logiciel (Software) est aujourd’hui inexis-
tante : systemes embarqués, microcontroleurs, simulation numérique et traitement du
signal exigent une maitrise rigoureuse de la programmation.

Le langage C++ a été choisi pour sa performance, sa gestion précise de la mémoire
et son paradigme Orienté Objet, indispensables pour I'industrie moderne.

Ce manuel est structuré de maniere progressive :
1. Il débute par les fondamentaux (architecture machine et syntaxe de base).
2. 11 aborde ensuite 1'algorithmique procédurale (boucles, fonctions, pointeurs).

3. Il se termine par une introduction & la Programmation Orientée Objet (POO),
concept clé des systémes complexes.

Chaque chapitre est accompagné d’exemples concrets et d’exercices corrigés, congus
pour consolider les acquis théoriques et préparer I’étudiant aux travaux pratiques.

Table des matiéeres

Avant-Propos

1 Introduction et Syntaxe Elémentaire

1.1

1.2

1.3

Notions Elémentaires d’Informatique
1.1.1 Le Matériel (Hardware)
1.1.2 Le Logiciel (Software)
Présentation du Langage C++
1.2.1 Le processus de compilation
1.2.2 Structure d'un programme C++.
Syntaxe et Instructions de Base
1.3.1 Les Variables et Types
1.3.2 Les Entrées / Sorties (I/O)
1.3.3 Les Opérateurs
1.3.4 Les Commentaires

Exercices Corrigés

2 Structures de Controle

2.1
2.2

2.3

24

Introduction Lo
Les Structures Conditionnelles
2.2.1 L’alternative simple : if /else
2.2.2 Le choix multiple : switch
Les Boucles (Structures Itératives)
2.3.1 Laboucle for (Pour)
2.3.2 La boucle while (Tant que)
2.3.3 La boucle do...while (Faire... Tant que)
Instructions de Saut (Rupture de Séquence)
241 break
242 continue

Exercices Corrigés L

3 Les Fonctions

3.1
3.2

3.3
3.4

Introduction et Utilité o000
Structure d'une Fonctiono 0oL
3.2.1 Le Prototype (Déclaration)
3.2.2 La Définition (Le corps)
Appel d'une Fonction oL
Portée des Variables (Locales vs Globales)

[y

© 00 0000~~~ O ot ot ot Ot

TABLE DES MATIERES

3.5 Les Modes de Passage de Parametres
3.5.1 Passage par Valeur (Par défaut)
3.5.2 Passage par Référence (L'opérateur &)

Exercices Corrigés

4 Tableaux et Pointeurs

4.1 Les Tableaux (Arrays)
4.1.1 Définitiono
4.1.2 Les Tableaux Unidimensionnels (Vecteurs)
4.1.3 Les Tableaux Multidimensionnels (Matrices)
4.2 Les Pointeurs
421 Concept
4.2.2 Les Opérateurs
4.3 Relation entre Tableaux et Pointeurs
4.4 Allocation Dynamique de Mémoire
4.4.1 LDlopérateur new
4.4.2 L’opérateur deleteo

Exercices Corrigés

5 Les Fichiers

5.1 Introduction
5.2 La Bibliotheque <fstream>
5.3 Ecrire dans un fichier
54 Lire un fichier
Exercices Corrigés L

6 Programmation Orientée Objet (POO)

6.1 Changement de Paradigme
6.2 Classes et Objets

6.2.1 Structure d'une classe L.
6.3 Encapsulation (Private / Public)
6.4 Exemple Complet : La Classe Point
Exercices Corrigés

Références et Bibliographie

23
23
23
23
23
24
24
24
24
25
25
25
25

28
28
28
28
29
30

33
33
33
33
34
34
35

39

Liste des figures

1.1 Architecture de Von Neumann

2.1 Diagramme de flux de la structure if-else-if
2.2 Diagramme de flux d'une boucle

Chapitre 1

Introduction et Syntaxe
Elémentaire

1.1. Notions Elémentaires d’Informatique

L’informatique (contraction d’Information et automatique) repose sur l'interaction
entre deux composantes indissociables : le matériel et le logiciel.

1.1.1 Le Matériel (Hardware)

Selon l'architecture de Von Neumann, une machine de traitement de l'information se
compose essentiellement de trois parties :

1. Le Processeur (CPU) : Le « cerveau» de l'ordinateur. Il contient 'Unité
Arithmétique et Logique (UAL) pour les calculs et I'Unité de Commande pour
gérer les instructions.

2. La Mémoire Vive (RAM) : Une zone de stockage temporaire et rapide. Elle
contient les données et les programmes en cours d’exécution. Son contenu est
perdu lorsque l'ordinateur est éteint (mémoire volatile).

3. Les Périphériques d’Entrée/Sortie (E/S) :
o FEntrée : Clavier, souris, micro (pour envoyer des données a la machine).

e Sortie : Ecran, imprimante, haut-parleurs (pour recevoir les résultats).

1.1.2 Le Logiciel (Software)

Le matériel seul est inerte. Il a besoin d’instructions pour fonctionner. Ces instructions
sont regroupées sous forme de programmes ou logiciels. On distingue :

« Le Systéme d’Exploitation (OS) : Geére les ressources matérielles (ex: Win-
dows, Linux, macOS).

CHAPITRE 1. INTRODUCTION ET SYNTAXE ELEMENTAIRE

Architecture de Von Neumann

Monitor
Data c P u ynformation
M Printel
v A
Other I/P
Devices RAM Speaker
Other O/P
HDD c® | | 7| pevices
BIOS

Figure 1.1: Architecture de Von Neumann

« Les Logiciels d’Application : Outils pour 'utilisateur (Word, Excel, Jeux,
ete.).

1.2. Présentation du Langage C++

1.2.1 Le processus de compilation

Le C++ est un langage compilé. L’ordinateur ne comprend que le langage binaire (0
et 1). Pour qu'il comprenne le C++ (lisible par ’humain), on utilise un compilateur.

Le cycle de création d’un programme est le suivant :
1. Edition : Le programmeur écrit le Code Source (extension .cpp).
2. Compilation : Le compilateur traduit ce code en langage machine.

3. Edition de liens (Linker) : Il assemble le code compilé avec les bibliotheques
nécessaires.

4. Exécution : On obtient un fichier Exécutable (extension .exe sous Windows).

CHAPITRE 1. INTRODUCTION ET SYNTAXE ELEMENTAIRE

1.2.2 Structure d’un programme C+-+

Voici la structure minimale d’un programme C++ :

Code extraction 1.1: Structure minimale d’un programme C++

// Zone d’inclusion des bibliotheques
#include <iostream>

// Utilisation de 1’espace de nom standard

using namespace std;

// Fonction principale

programme

int main() {
// Instructions du programme
cout << "Bienvenue en C++" << endl;

}

o #include <iostream> : Indispensable pour gérer les entrées (clavier) et sorties
(écran).

// Fin du programme

return

e using namespace std;

0;

Permet d’utiliser les commandes standard (comme

cout) sans avoir a écrire std: : cout a chaque fois.

e int main() : Tout programme commence son exécution ici.

e return 0; : Indique au systeme que le programme s’est terminé sans erreur.

1.3. Syntaxe et Instructions de Base

1.3.1 Les Variables et Types

Pour stocker une information en mémoire (RAM), on doit déclarer une variable en

précisant son type.

Point d’entree du

Type | Description Exemple Taille

int Entier (sans virgule) int age = 20; 4 octets
float | Réel (virgule flottante) | float prix = 19.99; 4 octets
double | Réel (double précision) | double pi = 3.1415926535; | 8 octets
char Caractere unique char lettre = ’A’; 1 octet
bool Booléen (Vrai/Faux) bool test = true; 1 octet

Tableau 1.1: Types de données de base en C++

Regles de nommage :

Un nom de variable ne doit pas commencer par un
chiffre, ne doit pas contenir d’espace ni de caracteres spéciaux (sauf), et ne doit pas

étre un mot réservé du langage (comme int ou return).

CHAPITRE 1. INTRODUCTION ET SYNTAXE ELEMENTAIRE

1.3.2 Les Entrées / Sorties (I/0)

Pour interagir avec I'utilisateur, on utilise les flux de la bibliotheque iostream.

« Affichage (cout) : Envoie des données vers I’écran. Le symbole « indique le
sens du flux (vers la sortie).

Code extraction 1.2: Exemple d’affichage

cout << "Le resultat est : " << resultat << endl;
// endl permet un retour a la ligne

 Saisie (cin) : Récupére des données depuis le clavier. Le symbole » indique le
sens du flux (vers la variable).

Code extraction 1.3: Exemple de saisie
int age;
cout << "Quel est votre age 7 ";
cin >> age; // L’utilisateur tape une valeur qui
est stockee dans ’age’

1.3.3 Les Opérateurs

« Arithmétiques : + (addition), - (soustraction), * (multiplication), / (division),
% (modulo : reste de la division entiere).

o Comparaison : == (égal), != (différent), < (inférieur), > (supérieur), <= (in-
férieur ou égal), >= (supérieur ou égal).

1.3.4 Les Commentaires

Le code doit étre commenté pour étre compréhensible par un humain. Les commen-
taires sont ignorés par le compilateur.

e // : Commentaire sur une seule ligne.

e /x ... x/: Commentaire sur plusieurs lignes (bloc).

CHAPITRE 1. INTRODUCTION ET SYNTAXE ELEMENTAIRE

Exercices Corrigés — Chapitre 1

Exercice 1.1 : Compilation Mentale

Enoncé : Que se passe-t-il si vous oubliez le ; & la fin d’une ligne ?

Correction : C’est une erreur de syntaxe. Le compilateur (étape 2) va s’arréter
et afficher une erreur (ex: « expected ’;” before...»). Le fichier objet ne sera pas créé.

Exercice 1.2 : Affichage complexe

Enoncé : Ecrire un programme qui affiche les guillemets & I'écran : I1 a dit "Bonjour".

Correction : Il faut utiliser le caractere d’échappement \ pour afficher des
caracteres spéciaux.

Code extraction 1.4: Solution exercice 1.2

#include <iostream>
using namespace std;

int main() {
cout << "Il a dit \"Bonjour\"" << endl;
return O;

Exercice 1.3 : Calculs géométriques

Enoncé : Ecrivez un programme qui demande a 'utilisateur la longueur et la largeur
d’un rectangle, puis affiche son périmetre et sa surface.

Correction :

Code extraction 1.5: Solution exercice 1.3

#include <iostream>
using namespace std;

int main() {
float longueur, largeur;
float perimetre, surface;

// 1. Saisie

cout << "Entrez la longueur : ";
cin >> longueur;

cout << "Entrez la largeur : "
cin >> largeur;

// 2. Traitement
perimetre = 2 * (longueur + largeur);

CHAPITRE 1. INTRODUCTION ET SYNTAXE ELEMENTAIRE

surface = longueur * largeur;

// 3. Affichage
cout << "Perimetre : " << perimetre << endl

cout << "Surface : " << surface << endl;

return O;

Exercice 1.4 : Calculatrice Simple

Enoncé : Créez un programme qui demande deux nombres réels et affiche leur somme,
produit et division.

Correction :

Code extraction 1.6: Solution exercice 1.4

#include <iostream>
using namespace std;

int main() {
double a, b;
cout << "Entrez deux nombres : ";
cin >> a >> b;

cout << "Somme : " << a + b << endl;
cout << "Produit : " << a *x b << endl;

// Attention a la division par zero

if (b != 0)
cout << "Division : " << a / b << endl;
else

cout << "Division impossible" << endl;

return O;

Exercice 1.5 : Echange de variables

Enoncé : Ecrivez un programme qui échange le contenu de deux variables entieres A
et B sans utiliser de fonction, puis affichez le résultat.

Correction :

Code extraction 1.7: Solution exercice 1.5

int main() {
int a = 5, b = 10, temp;

10

CHAPITRE 1. INTRODUCTION ET SYNTAXE ELEMENTAIRE

temp = a; // 0On sauvegarde a
a = b; // 0On ecrase a avec b
b = temp; // 0On restaure 1l’ancienne

valeur de a dans b

cout << a << " " << b; // Affiche 10 5
return O;

11

Chapitre 2

Structures de Controle

2.1. Introduction

Par défaut, un programme exécute ses instructions de maniére séquentielle (ligne par
ligne, du haut vers le bas). Pour créer des programmes « intelligents», nous devons
pouvoir modifier cet ordre d’exécution selon certaines conditions. C’est le réle des
structures de controle.

2.2. Les Structures Conditionnelles

Elles permettent d’exécuter un bloc d’instructions seulement si une condition spécifique
est vraie (VRAI/TRUE).

2.2.1 L’alternative simple : if / else
La structure if teste une condition entre parentheses.
« Si la condition est vraie, le premier bloc est exécuté.
 Sinon (else), c’est le second bloc qui est exécuté (facultatif).
Syntaxe :

Code extraction 2.1: Syntaxe de if/else

if (condition) {
// Instructions si la condition est VRAIE

} else {
// Instructions si la condition est FAUSSE

3

Opérateurs logiques : Pour combiner plusieurs conditions, on utilise :

o && (ET) : Toutes les conditions doivent étre vraies.

12

CHAPITRE 2. STRUCTURES DE CONTROLE

e || (OU) : Au moins une condition doit étre vraie.

o ! (NON) : Inverse le résultat (Vrai devient Faux).

IF-ELSE-IF STATEMENT

T Fa/sl

a
/[
‘

Figure 2.1: Diagramme de flux de la structure if-else-if

6

| PSR

2.2.2 Le choix multiple : switch

Lorsque I'on doit tester une méme variable contre plusieurs valeurs constantes (comme
un menu de choix), le switch est plus lisible qu'une suite de if... else if.

Syntaxe :

Code extraction 2.2: Syntaxe de switch

switch (variable) {
case valeurl:
// Instructions si variable == valeurl
break; // Sort du switch
case valeur?2:

// Instructions si variable == valeur2

break;

default:

// Instructions si aucune valeur ne
correspond

}

Attention : L’instruction break est cruciale. Sans elle, le programme contin-
uerait d’exécuter les instructions des case suivants (c’est ce qu’on appelle le « fall-
throughy).

13

CHAPITRE 2. STRUCTURES DE CONTROLE

2.3. Les Boucles (Structures Itéra-
tives)

Les boucles permettent de répéter un bloc d’instructions plusieurs fois. Il existe trois
types de boucles en C++-.

2.3.1 La boucle for (Pour)

Elle est utilisée lorsque ’on connait a ’avance le nombre de répétitions. Elle rassemble
Iinitialisation, la condition et 'incrémentation sur une seule ligne.

Syntaxe :
Code extraction 2.3: Syntaxe de la boucle for
for (initialisation ; condition ; incrementation) {
// Instructions a repeter
}

Exemple : Afficher les nombres de 0 a 9.

Code extraction 2.4: Exemple de boucle for

for (int i = 0; i < 10; i++) {
cout << "i wvaut : " << i1 << endl;

2.3.2 La boucle while (Tant que)

Elle est utilisée lorsque le nombre de répétitions n’est pas connu a ’avance. Elle répéte
les instructions tant que la condition est vraie. La condition est testée avant chaque
passage.

Syntaxe :

Code extraction 2.5: Syntaxe de la boucle while

while (condition) {
// Instructions
// Attention : il faut modifier la
condition ici pour eviter une boucle
infinie

14

CHAPITRE 2. STRUCTURES DE CONTROLE

2.3.3 La boucle do...while (Faire... Tant que)

Similaire au while, mais la condition est testée a la fin. Cela garantit que le bloc
d’instructions sera exécuté au moins une fois (utile pour la saisie de mot de passe ou
les menus).

Syntaxe :

Code extraction 2.6: Syntaxe de la boucle do-while
do A
// Instructions executees au moins une fois
} while (condition);

Start Loop

Execute Statement

False

A 4

Increment or
Decrement

End Loop

Figure 2.2: Diagramme de flux d’une boucle

2.4. Instructions de Saut (Rupture
de Séquence)

Ces instructions permettent de modifier le comportement normal d’une boucle.

2.4.1 break

L’instruction break arréte immédiatement la boucle (ou le switch) et passe a I'instruction
qui suit I'accolade fermante.

Exemple : Sortir d'une boucle de recherche des que I’élément est trouvé.

2.4.2 continue

L’instruction continue arréte l'itération en cours et remonte directement au début de
la boucle pour l'itération suivante.

15

CHAPITRE 2. STRUCTURES DE CONTROLE

Exemple : Dans une boucle de 1 a 10, on veut afficher tous les nombres sauf 5.
Sii == 5, on fait continue.

Exercices Corrigés — Chapitre 2

Exercice 2.1 : Controle de Saisie

Enoncé : Demandez & 'utilisateur de saisir un nombre entre 1 et 10. Recommencez
tant que la saisie est incorrecte.

Correction :

Code extraction 2.7: Solution exercice 2.1

#include <iostream>
using namespace std;

int main() {

int n;
do {
cout << "Entrez un nombre entre 1
et 10 : ",
cin >> n;
} while (n < 1 || n > 10);
cout << "Merci, vous avez saisi : " << n <<
endl ;

return O;

Exercice 2.2 : Table de multiplication

Enoncé : Afficher la table de multiplication de 7.

Correction :

Code extraction 2.8: Solution exercice 2.2

int main() {
int table 7;
for(int i = 1; i <= 10; i++) {
cout << table << " x " K< i << " =
" << table * i << endl;

3

return O;

16

CHAPITRE 2. STRUCTURES DE CONTROLE

Exercice 2.3 : La Factorielle

Enoncé : Ecrivez un programme qui demande un nombre entier positif & I'utilisateur
et calcule sa factorielle (ex: 5! =1 x 2 x 3 x 4 x 5 = 120) en utilisant une boucle
for. Si l'utilisateur entre un nombre négatif, affichez une erreur.

Correction :

Code extraction 2.9: Solution exercice 2.3

#include <iostream>
using namespace std;

int main() A
int n;
long long factorielle = 1; // "long long"
pour les grands nombres
cout << "Entrez un entier positif : ";
cin >> n;

if (n < 0) {

cout << "Erreur : Le nombre doit

etre positif." << endl;
} else {
// Boucle de calcul
for (int i = 1; i <= n; i++) {
factorielle = factorielle *
i;

}

cout << "La factorielle de " << n
<< " est " << factorielle <<
endl ;

return O;

17

Chapitre 3

Les Fonctions

3.1. Introduction et Utilité

Lorsque les programmes deviennent longs et complexes, il est inefficace d’écrire tout le
code dans la seule fonction main.

Une fonction est un sous-programme autonome congu pour effectuer une tache
précise (ex: calculer une moyenne, afficher un menu, vérifier un mot de passe).

Pourquoi utiliser des fonctions ?

1. Eviter la répétition : Si un code doit étre exécuté plusieurs fois, on 1’écrit une
seule fois dans une fonction et on ’appelle quand on en a besoin.

2. Modularité : Le programme est découpé en petits blocs logiques plus faciles a
comprendre et a maintenir.

3. Débogage facilité : Il est plus simple de tester une petite fonction isolée que
de chercher une erreur dans 1000 lignes de code.

3.2. Structure d’une Fonction

Pour qu’une fonction soit utilisable, le compilateur doit connaitre deux choses : son
existence (le prototype) et ce qu’elle fait (sa définition).

3.2.1 Le Prototype (Déclaration)

C’est la « carte d’identité» de la fonction. Il est généralement placé avant le main (ou
dans un fichier .h séparé). Il indique au compilateur le nom de la fonction, le type de
donnée qu’elle renvoie, et les parametres qu’elle accepte.

Syntaxe :

type_retour nom_fonction(type_paraml, type_param?2,

D

18

CHAPITRE 3. LES FONCTIONS

3.2.2 La Définition (Le corps)

C’est le code réel de la fonction. Elle peut étre placée apres le main si le prototype a
été déclaré avant.

Syntaxe complete :

Code extraction 3.1: Définition d'une fonction
type_retour nom_fonction(type_paraml nom_varl,
type_param2 nom_var2) {

// Declaration des variables locales
// Instructions

return valeur; // Renvoie le resultat

3

« type_retour : Le type de la variable renvoyée (int, float, etc.). Si la fonction

ne renvoie rien (elle fait juste un affichage par exemple), on utilise le type spécial
void.

o return : Arréte 'exécution de la fonction et renvoie la valeur au programme
appelant.

3.3. Appel d’une Fonction

L’appel se fait simplement en écrivant le nom de la fonction suivi des arguments entre
parentheses.

Si la fonction renvoie une valeur, on peut stocker ce résultat dans une variable.

Exemple complet :

Code extraction 3.2: Exemple complet d’utilisation de fonction
#include <iostream>
using namespace std;

// 1. Prototype
float carre(float x);

int main() {
float nombre = 5.0;
float resultat;

// 2. Appel de la fonction
resultat = carre(nombre);

cout << "Le carre de " << nombre << " est "
<< resultat << endl;
return O;

19

CHAPITRE 3. LES FONCTIONS

// 3. Definition
float carre(float x) {
float res;
res = X * X;
return res; // Renvoie 25.0

3.4. Portée des Variables (Locales vs
Globales)

C’est un concept fondamental.

« Variables Locales : Une variable déclarée dans une fonction (ou dans le main)
n’existe que dans cette fonction. Elle est détruite des que la fonction se termine.
Les autres fonctions ne peuvent pas la voir.

« Variables Globales : Déclarées en dehors de toute fonction (tout en haut du
fichier). Elles sont accessibles partout. Note : Il est déconseillé d’utiliser trop de
variables globales car elles rendent le code difficile & maitriser.

3.5. Les Modes de Passage de Parametres

Il existe deux fagons de transmettre des variables a une fonction.

3.5.1 Passage par Valeur (Par défaut)
La fonction recoit une copie de la variable.

« Si la fonction modifie cette copie, la variable originale dans le main ne change
pas.

« Analogie : Vous donnez une photocopie d’'un document a un collegue. S’il écrit
dessus, votre original reste propre.

3.5.2 Passage par Référence (L’opérateur &)
La fonction regoit I’adresse mémoire de la variable originale (son emplacement réel).
« Toute modification faite dans la fonction affecte directement la variable originale.

o Analogie : Vous donnez l'acces a votre fichier original sur le serveur. Si le
collégue le modifie, vous voyez les changements.

o Utilité : Permet a une fonction de modifier plusieurs variables ou d’éviter de
copier de grosses structures de données (optimisation).

20

CHAPITRE 3. LES FONCTIONS

Comparaison en code :

Passage par Valeur Passage par Référence

void test(int x) void test(int &x)

x = 10; (La copie change) x = 10; (L’original change)
La variable du main reste inchangée. | La variable du main devient 10.

Tableau 3.1: Comparaison des modes de passage de parametres

Exemple classique : La fonction echange

Pour échanger le contenu de deux variables A et B, il faut obligatoirement passer
par référence, sinon ’échange ne se ferait que sur des copies temporaires.

Code extraction 3.3: Fonction d’échange avec passage par référence

void echange (int &a, int &b) {

int temp = a;
a = b;
b = temp;

// Appel : echange(x, y); -> x et y sont reellement
inverses.

Exercices Corrigés — Chapitre 3

Exercice 3.1 : Prédicat de parité

Enoncé : Ecrire une fonction estPair qui prend un entier et retourne un booléen
(true si pair, false sinon).

Correction :

Code extraction 3.4: Solution exercice 3.1
bool estPair (int n) {
if (n % 2 == 0)
return true;
else
return false;
// Version courte : return (n % 2 == 0);

Exercice 3.2 : Division euclidienne complete

Enoncé : Ecrire une fonction qui prend un dividende et un diviseur, et qui « renvoie»
a la fois le quotient et le reste (via des références).

Correction :

21

CHAPITRE 3. LES FONCTIONS

Code extraction 3.5: Solution exercice 3.2

void divEuclidienne(int a, int b, int "ient,
int &reste) {

if (b '= 0) {
quotient = a / b;
reste = a % b;

}

// Appel : divEuclidienne (13, 4, q, r); -> q vaudra
3, r vaudra 1

Exercice 3.3 : Echange de valeurs

Enoncé : Ecrivez une fonction echange qui prend deux entiers en parametres et
échange leurs valeurs. Affichez les valeurs avant et apres 'appel dans le main.

Correction :

Code extraction 3.6: Solution exercice 3.3

#include <iostream>
using namespace std;

// Prototype : Notez l’utilisation de ’&’ pour le
passage par reference
void echange (int &a, int &b);

int main() {
int x = 10, y = 20;

cout << "Avant : x = " << x << ",y = " L
y << endl;

echange(x, y); // Appel de la fonction

cout << "Apres : x = " << x << ", y =" L
y << endl;

return O;

// Definition
void echange (int &a, int &b) {

int temp = a;
a = b;
b = temp;

22

Chapitre 4

Tableaux et Pointeurs

4.1. Les Tableaux (Arrays)

Jusqu’ici, nous utilisions des variables simples (une variable = une valeur). Mais com-
ment stocker les notes de 100 étudiants sans créer 100 variables notel, note2, etc. 7
La réponse est : les tableaux.

4.1.1 Définition

Un tableau est une structure de données permettant de stocker plusieurs valeurs de
méme type dans des cases mémoire contigués (les unes a coté des autres).

4.1.2 Les Tableaux Unidimensionnels (Vecteurs)
C’est une liste simple d’éléments.
e Déclaration : type nom_tableau[taille];
— int notes[5]; : Crée un tableau de 5 entiers.
e Acceés : On accede a un élément via son indice (index) entre crochets.
— Attention : En C++4, les indices commencent toujours a 0.
— Le premier élément est notes[0] et le dernier est notes[4].

o Initialisation :

int tab[3] = {10, 20, 30}; // Remplit directement
les cases

4.1.3 Les Tableaux Multidimensionnels (Matrices)

On peut créer des « tableaux de tableaux», souvent utilisés pour représenter des grilles
ou des matrices.

e Déclaration : type nom[lignes] [colonnes];

23

CHAPITRE 4. TABLEAUX ET POINTEURS

— float matrice[3][4]; : Un tableau de 3 lignes et 4 colonnes.

4.2. Les Pointeurs

C’est souvent la partie redoutée des étudiants, mais c’est la plus puissante du C++.

4.2.1 Concept

Une variable classique contient une valeur (ex: a = 5). Un pointeur est une variable
spéciale qui contient ’adresse mémoire d’une autre variable.

4.2.2 Les Opérateurs
« L’opérateur d’adresse (&) : Permet de connaitre ot une variable est stockée.
— &a : Donne l'adresse de la variable a (ex: 0x7ffee4).

o L’opérateur de déréférencement (*) : Permet d’accéder au contenu de la
case pointée.

— Si p contient 'adresse de a, alors *p donne la valeur de a.

Exemple :

Code extraction 4.1: Exemple d’utilisation des pointeurs
int a = 10;
int *p; // Declaration d’un pointeur sur entier

p = &a; // p pointe maintenant sur a (p contient 1’
adresse de a)
cout << xp; // Affiche 10 (la valeur pointee)

*p = 20; // Modifie la valeur de a via le pointeur
cout << a; // Affiche 20

4.3. Relation entre Tableaux et Poin-
teurs

En C++, tableaux et pointeurs sont intimement liés. Le nom d’un tableau est en
réalité un pointeur constant vers son premier élément.

Sion a int T[5]; :
o T est équivalent a &T[0] (adresse du premier élément).

o *T est équivalent & T[0] (valeur du premier élément).

24

CHAPITRE 4. TABLEAUX ET POINTEURS

Arithmétique des pointeurs : On peut se déplacer dans un tableau en ajoutant
des entiers a un pointeur.

o x(T + 1) est équivalent a T[1].

e *(T + i) est équivalent a T[i].

4.4. Allocation Dynamique de Mé-
moire

Dans un tableau classique (int T[10]), la taille est fixée avant la compilation (allo-
cation statique). Si on veut décider de la taille pendant I'exécution (ex: demander &
I'utilisateur « Combien d’éleves y a-t-il 7»), on doit utiliser I'allocation dynamique.

4.4.1 L’opérateur new

Il demande au systeme de réserver de la mémoire.

int n;

cin >> n;

int *tab = new int[n]; // Cree un tableau de taille
n

4.4.2 L’opérateur delete

En C++, la mémoire n’est pas nettoyée automatiquement. Si vous allouez de la mé-
moire avec new, vous devez la libérer avec delete quand vous n’en avez plus besoin,
sinon vous créez une « fuite de mémoire» (memory leak).

delete[] tab; // Libere la memoire du tableau

Exercices Corrigés — Chapitre 4

Exercice 4.1 : Moyenne

Enoncé : Saisir 5 notes dans un tableau et calculer la moyenne.

Correction :

Code extraction 4.2: Solution exercice 4.1

int main() {
float notes[5], somme = 0;

for (int i=0; i<5; i++) {
cin >> notes[i];
somme += notes[i];

25

CHAPITRE 4. TABLEAUX ET POINTEURS

cout << "Moyenne : " << somme / 5.0 << endl

return O;

Exercice 4.2 : Recherche séquentielle

Enoncé : Ecrire un programme qui demande un nombre X et vérifie s’il est présent
dans un tableau T initialisé.

Correction :

Code extraction 4.3: Solution exercice 4.2

int main() {
int T[5] = {12, 5, 8, 9, 1};
int x;
bool trouve = false;

cin >> x;

for (int i=0; i<5; i++) {

n -

if (T[i] == x) {
trouve = true;
break; // On arrete de
chercher
}

if (trouve)

cout << "Trouve !";
else

cout << "Absent.";

return O;

Exercice 4.3 : Manipulation de base

Enoncé : Déclarez un entier, un pointeur sur cet entier, et modifiez la valeur de ’entier
en passant par le pointeur.

Correction :

Code extraction 4.4: Solution exercice 4.3

int main() {
int x = 10;

26

CHAPITRE 4. TABLEAUX ET POINTEURS

int *p = &x;

cout << x*p << endl; // Affiche 10
*p = 50;
cout << x << endl; // Affiche 50

return O;

Exercice 4.4 : Tableau dynamique

Enoncé : Demandez a l'utilisateur la taille d'un tableau, allouez-le, remplissez-le avec
les carrés des indices (0, 1, 4, 9...), affichez-le, puis libérez la mémoire.

Correction :

Code extraction 4.5: Solution exercice 4.4

int main() {
int n;
cout << "Taille 7 ";
cin >> n;

int *tab = new int[n]; // Allocation

for(int i=0; i<n; i++)
tab[i] = i * i; // Remplissage

for(int i=0; i<n; i++)
cout << tab[i] << " "; // Affichage

delete[] tab; // Liberation
return O;

27

Chapitre 5

Les Fichiers

5.1. Introduction

Jusqu’a présent, toutes les données manipulées par nos programmes étaient stockées
dans la RAM (mémoire vive). Le probleme de la RAM est qu’elle est volatile : des que
le programme s’arréte ou que l'ordinateur s’éteint, toutes les données sont perdues.

Pour conserver des informations de maniére permanente (persistance), nous de-
vons les écrire sur le disque dur sous forme de fichiers.

5.2. La Bibliotheque <fstream>

Pour manipuler des fichiers en C++, il faut inclure la bibliotheque spécifique :

#include <fstream>

Elle définit deux types principaux de variables (flux) :

1. ofstream (Output File STREAM) : Pour écrire des données vers un fichier (Sor-
tie).

2. ifstream (Input File STREAM) : Pour lire des données depuis un fichier (En-
trée).

5.3. Ecrire dans un fichier

Le processus se fait en 3 étapes : Ouvrir, Ecrire, Fermer.

Code extraction 5.1: Ecriture dans un fichier

#include <iostream>
#include <fstream>
using namespace std;

28

CHAPITRE 5. LES FICHIERS

int main() {
// 1. Declaration et Ouverture
// On cree un flux de sortie nomme °’
monFichier’ vers "test.txt"
ofstream monFichier ("E:/test.txt");

// 2. Verification
if (monFichier.is_open()) {
// 3. Ecriture (comme avec cout,
mais vers le fichier)
monFichier << "Bonjour tout le

monde ." << endl;
monFichier << "Ceci est une ligne
de texte." << endl;

monFichier << 42 << endl;

// 4. Fermeture (0Obligatoire pour
valider 1l’enregistrement)
monFichier.close () ;

cout << "Ecriture terminee." <<
endl ;
} else {
cout << "Erreur : Impossible 4’
ouvrir le fichier." << endl;
}

return O;

5.4. Lire un fichier

Pour lire, on utilise ifstream. On lit généralement ligne par ligne ou mot par mot.

Code extraction 5.2: Lecture d’un fichier

#include <iostream>

#include <fstream>

#include <string> // Necessaire pour stocker le
texte 1lu

using namespace std;

int main() {
ifstream lecture("E:/test.txt");
string ligne; // Variable pour stocker la
ligne 1lue

29

CHAPITRE 5. LES FICHIERS

if (lecture.is_open()) {
// Boucle de lecture : tant qu’on n
’est pas a la fin du fichier
while (getline(lecture, ligne)) {
cout << ligne << endl; //
Affiche la ligne lue a 1l
’ecran
}
lecture.close () ;
} else {
cout << "Erreur d’ouverture en
lecture." << endl;

return O;

}

getline(flux, variable) : Lit une ligne entiere (espaces inclus) et la place
dans la variable. Renvoie Faux si la fin du fichier est atteinte.

Exercices Corrigés — Chapitre 5

Exercice 5.1 : Copie de fichier

Enoncé : Ecrire un programme qui lit source.txt et copie son contenu ligne par
ligne dans destination.txt.

Correction :

Code extraction 5.3: Solution exercice 5.1

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main() {
ifstream src("source.txt");
ofstream dest ("destination.txt");
string ligne;

if (src.is_open() && dest.is_open()) {
while(getline(src, ligne)) {
dest << ligne << endl;
}
src.close();
dest.close () ;

30

CHAPITRE 5. LES FICHIERS

return O;

Exercice 5.2 : Journal de bord

Enoncé : Ecrivez un programme qui demande a 1'utilisateur de saisir une phrase, puis
ajoute cette phrase a la fin d’un fichier texte nommé « journal.txt». Ensuite, relisez
tout le fichier pour afficher son contenu a I’écran.

Correction :

Code extraction 5.4: Solution exercice 5.2

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main() A
string phrase;

// --- ECRITURE (Mode ’app’ pour append/
ajouter) ---

ofstream fichierEcriture (" journal.txt", ios
trapp);

if (fichierEcriture.is_open()) {
cout << "Ecrivez une phrase a
ajouter au jourmal : ";
getline(cin, phrase); // getline
pour lire avec les espaces
fichierEcriture << phrase << endl;
fichierEcriture.close();
} else {
cout << "Erreur d’ouverture en
ecriture." << endl;

// --- LECTURE ---

cout << "\n--- Contenu du fichier ---" <<
endl;

ifstream fichierLecture (" journal.txt");

string ligne;

if (fichierLecture.is_open()) {
while (getline(fichierLecture,
ligne)) {
cout << ligne << endl;

31

CHAPITRE 5. LES FICHIERS

}
fichierLecture.close();
} else {
cout << "Erreur d’ouverture en

lecture." << endl;

return O;

32

Chapitre 6

Programmation Orientée Objet

(POO)

6.1. Changement de Paradigme

« Programmation Structurée (Classique) : On sépare les données (variables)
des opérations (fonctions).

— Formule : Algorithmes + Données = Programme.

e Programmation Orientée Objet (POO) : On regroupe les données et les
opérations qui les manipulent au sein d'une méme entité : 1’Objet.

— Formule : Méthodes + Données = Objet.

Avantages : Meilleure organisation, code réutilisable, modélisation plus proche
du monde réel (ex: une classe « Voiturey, une classe « CompteBancairey).

6.2. Classes et Objets

« La Classe : C’est le plan de construction (le moule). Elle définit de quoi 'objet
sera composé.

o L’Objet : C’est une instance concrete de la classe (le gateau fabriqué avec le
moule).

6.2.1 Structure d’une classe
Une classe contient deux types de membres :
1. Attributs : Les variables (données).

2. Méthodes : Les fonctions (comportements).

33

CHAPITRE 6. PROGRAMMATION ORIENTEE OBJET (POO)

6.3. Encapsulation (Private / Pub-
lic)

C’est un principe de sécurité fondamental. On cache les détails internes de I'objet pour
empécher leur modification anarchique de I'extérieur.

« private : Accessible uniquement par les méthodes de la classe elle-méme. (C’est
ici qu’on met les attributs).

e public : Accessible par tout le monde (le main). (C’est ici qu’on met les méth-
odes).

6.4. Exemple Complet : La Classe
Point

Voici comment créer un type « Point» géométrique capable de se gérer lui-méme.

Code extraction 6.1: Exemple complet : Classe Point

#include <iostream>
#include <cmath> // Pour sqrt et pow
using namespace std;

// Definition de la classe (Le plan)
class Point {
// Partie cachee (Encapsulation)
private:
float x, y;
char nom;

// Partie visible (Interface)
public:

// Methode pour definir les valeurs
void saisir () {

cout << "Nom du point : "; cin >>
nom;

cout << "Abscisse x : "; cin >> x;

cout << "Ordonnee y : "; cin >> y;

// Methode pour s’afficher
void afficher () {
cout << "Point " << nom << "(" << x
<< u,u << y << u)n << endl;

34

CHAPITRE 6. PROGRAMMATION ORIENTEE OBJET (POO)

// Methode pour calculer la distance avec
un autre point p
float distance(Point p) {
return sqrt(pow(x - p.x, 2) + pow(

y - p-V, 2));
};

// Programme principal

int main() A
// Creation de deux objets (Instances)
Point A, B;

cout << "--- Saisie du point A ---" << endl
A.saisir(); // On demande a 1l’objet A de
lancer sa methode saisir

cout << "--- Saisie du point B ---" << endl

B.saisir () ;

cout << "--- Affichage ---" << endl;
A.afficher () ;
B.afficher () ;

// Calcul de distance
float d = A.distance(B);
cout << "Distance AB = " << d << endl;

return O;

Exercices Corrigés — Chapitre 6

Exercice 6.1 : Gestion de Compte Bancaire

Enoncé : Créez une classe Compte avec :
o Attributs privés : solde, titulaire
o Constructeur : initialise le titulaire et met le solde a 0.
o Méthode deposer (montant).

o Méthode retirer (montant) : vérifie s’il y a assez d’argent.

35

CHAPITRE 6. PROGRAMMATION ORIENTEE OBJET (POO)

e Méthode afficher().

Correction :

Code extraction 6.2: Solution exercice 6.1

#include <iostream>
#include <string>
using namespace std;

class Compte {
private:
string titulaire;
float solde;

public:

// Constructeur

Compte (string nom) A
titulaire

= nom;
solde = 0.0;

void deposer (float m) {
solde += m;

3

bool retirer(float m) {
if (solde >= m) {

solde -= m;
return true;
} else {
cout << "Fonds insuffisants
I << endl;
return false;
}
}
void afficher () {
cout << "Compte de " << titulaire
<< " " <K< solde << " EUR" <X
endl ;

};

int main() {
Compte c1("Dupont");
cl.deposer (1000) ;
cl.retirer (200) ;
cl.afficher(); // Affiche 800 EUR

36

CHAPITRE 6. PROGRAMMATION ORIENTEE OBJET (POO)

return O;

Exercice 6.2 : Classe Rectangle

Enoncé : Créez une classe Rectangle avec :
o Attributs privés : largeur, hauteur.
o Méthode publique setDimensions(1, h) pour initialiser les valeurs.
o Méthode publique surface() qui retourne la surface.
o Méthode publique perimetre() qui retourne le périmetre.
Dans le main, créez un objet, initialisez-le et affichez ses caractéristiques.

Correction :

Code extraction 6.3: Solution exercice 6.2

#include <iostream>
using namespace std;

class Rectangle {
private:
float largeur;
float hauteur;

public:
// Methode pour definir les valeurs (Setter
)
void setDimensions(float 1, float h) {
largeur = 1;
hauteur = h;
}

// Methode pour calculer la surface
float surface() {
return largeur * hauteur,

// Methode pour calculer le perimetre
float perimetre() {
return 2 * (largeur + hauteur);
}
T

int main() {
Rectangle monRect; // Creation de 1l’objet
monRect.setDimensions (5.0, 3.0);

37

CHAPITRE 6. PROGRAMMATION ORIENTEE OBJET (POO)

cout << "Surface : " << monRect.surface ()
<< endl;

cout << "Perimetre : " << monRect.perimetre
() << endl;

return O;

38

Références et Bibliographie

Ouvrages Fondateurs (En Anglais)
1. Stroustrup, Bjarne. The C++ Programming Language. 4th Edition. Addison-
Wesley Professional, 2013.

« Note : Ecrit par le créateur du C++, c’est la référence absolue pour les
détails techniques du langage.

2. Stroustrup, Bjarne. Programming: Principles and Practice Using C++. 2nd
Edition. Addison-Wesley, 2014.

« Note : Plus pédagogique, souvent utilisé comme manuel d’introduction dans
les universités américaines.

Ouvrages Pédagogiques (En Francgais)
3. Delannoy, Claude. Programmer en langage C++. 10éme édition. Editions Ey-
rolles, 2021.

o Note : Le livre le plus populaire dans les universités francophones pour sa
clarté et ses nombreux exercices.

4. Bersini, Hugues. La programmation orientée objet. Téme édition. Editions Ey-
rolles.

» Note: Excellent pour comprendre les concepts théoriques de la POO (Classes,
Héritage, Polymorphisme) indépendamment du langage.

Documentation et Standards en Ligne

5. ISO/IEC 14882. Standard International pour le langage de programmation C++.
6. CppReference.com (Version FR). https://fr.cppreference.com

e Note : Une documentation technique type « wiki», tenue a jour par la
communauté et tres rigoureuse. Idéale pour vérifier la syntaxe d’une fonction
standard.

39

https://fr.cppreference.com

	Avant-Propos
	Introduction et Syntaxe Élémentaire
	Notions Élémentaires d'Informatique
	Le Matériel (Hardware)
	Le Logiciel (Software)

	Présentation du Langage C++
	Le processus de compilation
	Structure d'un programme C++

	Syntaxe et Instructions de Base
	Les Variables et Types
	Les Entrées / Sorties (I/O)
	Les Opérateurs
	Les Commentaires

	Exercices Corrigés

	Structures de Contrôle
	Introduction
	Les Structures Conditionnelles
	L'alternative simple : if / else
	Le choix multiple : switch

	Les Boucles (Structures Itératives)
	La boucle for (Pour)
	La boucle while (Tant que)
	La boucle do...while (Faire... Tant que)

	Instructions de Saut (Rupture de Séquence)
	break
	continue

	Exercices Corrigés

	Les Fonctions
	Introduction et Utilité
	Structure d'une Fonction
	Le Prototype (Déclaration)
	La Définition (Le corps)

	Appel d'une Fonction
	Portée des Variables (Locales vs Globales)
	Les Modes de Passage de Paramètres
	Passage par Valeur (Par défaut)
	Passage par Référence (L'opérateur &)

	Exercices Corrigés

	Tableaux et Pointeurs
	Les Tableaux (Arrays)
	Définition
	Les Tableaux Unidimensionnels (Vecteurs)
	Les Tableaux Multidimensionnels (Matrices)

	Les Pointeurs
	Concept
	Les Opérateurs

	Relation entre Tableaux et Pointeurs
	Allocation Dynamique de Mémoire
	L'opérateur new
	L'opérateur delete

	Exercices Corrigés

	Les Fichiers
	Introduction
	La Bibliothèque <fstream>
	Écrire dans un fichier
	Lire un fichier
	Exercices Corrigés

	Programmation Orientée Objet (POO)
	Changement de Paradigme
	Classes et Objets
	Structure d'une classe

	Encapsulation (Private / Public)
	Exemple Complet : La Classe Point
	Exercices Corrigés

	Références et Bibliographie

