
République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université Ibn Khaldoun – Tiaret
Faculté des Sciences Appliquées

Département de Génie Électrique

Support de cours

Programmation en C++

Réalisé par

Mr. MAASKRI Moustafa

Expertise réalisée par

• Dr. MOSTEFAOUI Sidahmed Mokhtar MCA Univ de Tiaret

• Dr. DAOUD Mohamed Amine MCA Univ de Tiaret

Année universitaire 2024/2025

Avant-Propos (Introduction)

Ce polycopié est le fruit de plusieurs années d’enseignement de la matière « Informa-
tique et Programmation» au sein du département de Génie Électrique de l’Université
Ibn Khaldoun de Tiaret.

L’objectif de ce support pédagogique est d’offrir aux futurs ingénieurs en élec-
trotechnique, automatique et électronique les bases solides nécessaires pour maîtriser
le développement logiciel. Si l’ingénieur en génie électrique est avant tout un spécialiste
du matériel (Hardware), la frontière avec le logiciel (Software) est aujourd’hui inexis-
tante : systèmes embarqués, microcontrôleurs, simulation numérique et traitement du
signal exigent une maîtrise rigoureuse de la programmation.

Le langage C++ a été choisi pour sa performance, sa gestion précise de la mémoire
et son paradigme Orienté Objet, indispensables pour l’industrie moderne.

Ce manuel est structuré de manière progressive :

1. Il débute par les fondamentaux (architecture machine et syntaxe de base).

2. Il aborde ensuite l’algorithmique procédurale (boucles, fonctions, pointeurs).

3. Il se termine par une introduction à la Programmation Orientée Objet (POO),
concept clé des systèmes complexes.

Chaque chapitre est accompagné d’exemples concrets et d’exercices corrigés, conçus
pour consolider les acquis théoriques et préparer l’étudiant aux travaux pratiques.

1

Table des matières

Avant-Propos 1

1 Introduction et Syntaxe Élémentaire 5
1.1 Notions Élémentaires d’Informatique 5

1.1.1 Le Matériel (Hardware) . 5
1.1.2 Le Logiciel (Software) . 5

1.2 Présentation du Langage C++ . 6
1.2.1 Le processus de compilation . 6
1.2.2 Structure d’un programme C++ 7

1.3 Syntaxe et Instructions de Base . 7
1.3.1 Les Variables et Types . 7
1.3.2 Les Entrées / Sorties (I/O) . 8
1.3.3 Les Opérateurs . 8
1.3.4 Les Commentaires . 8

Exercices Corrigés . 9

2 Structures de Contrôle 12
2.1 Introduction . 12
2.2 Les Structures Conditionnelles . 12

2.2.1 L’alternative simple : if / else 12
2.2.2 Le choix multiple : switch . 13

2.3 Les Boucles (Structures Itératives) . 14
2.3.1 La boucle for (Pour) . 14
2.3.2 La boucle while (Tant que) . 14
2.3.3 La boucle do...while (Faire... Tant que) 15

2.4 Instructions de Saut (Rupture de Séquence) 15
2.4.1 break . 15
2.4.2 continue . 15

Exercices Corrigés . 16

3 Les Fonctions 18
3.1 Introduction et Utilité . 18
3.2 Structure d’une Fonction . 18

3.2.1 Le Prototype (Déclaration) . 18
3.2.2 La Définition (Le corps) . 19

3.3 Appel d’une Fonction . 19
3.4 Portée des Variables (Locales vs Globales) 20

2

TABLE DES MATIÈRES

3.5 Les Modes de Passage de Paramètres 20
3.5.1 Passage par Valeur (Par défaut) 20
3.5.2 Passage par Référence (L’opérateur &) 20

Exercices Corrigés . 21

4 Tableaux et Pointeurs 23
4.1 Les Tableaux (Arrays) . 23

4.1.1 Définition . 23
4.1.2 Les Tableaux Unidimensionnels (Vecteurs) 23
4.1.3 Les Tableaux Multidimensionnels (Matrices) 23

4.2 Les Pointeurs . 24
4.2.1 Concept . 24
4.2.2 Les Opérateurs . 24

4.3 Relation entre Tableaux et Pointeurs 24
4.4 Allocation Dynamique de Mémoire . 25

4.4.1 L’opérateur new . 25
4.4.2 L’opérateur delete . 25

Exercices Corrigés . 25

5 Les Fichiers 28
5.1 Introduction . 28
5.2 La Bibliothèque <fstream> . 28
5.3 Écrire dans un fichier . 28
5.4 Lire un fichier . 29
Exercices Corrigés . 30

6 Programmation Orientée Objet (POO) 33
6.1 Changement de Paradigme . 33
6.2 Classes et Objets . 33

6.2.1 Structure d’une classe . 33
6.3 Encapsulation (Private / Public) . 34
6.4 Exemple Complet : La Classe Point . 34
Exercices Corrigés . 35

Références et Bibliographie 39

3

Liste des figures

1.1 Architecture de Von Neumann . 6

2.1 Diagramme de flux de la structure if-else-if 13
2.2 Diagramme de flux d’une boucle . 15

4

Chapitre 1

Introduction et Syntaxe
Élémentaire

1.1. Notions Élémentaires d’Informatique
L’informatique (contraction d’Information et automatique) repose sur l’interaction
entre deux composantes indissociables : le matériel et le logiciel.

1.1.1 Le Matériel (Hardware)
Selon l’architecture de Von Neumann, une machine de traitement de l’information se
compose essentiellement de trois parties :

1. Le Processeur (CPU) : Le « cerveau» de l’ordinateur. Il contient l’Unité
Arithmétique et Logique (UAL) pour les calculs et l’Unité de Commande pour
gérer les instructions.

2. La Mémoire Vive (RAM) : Une zone de stockage temporaire et rapide. Elle
contient les données et les programmes en cours d’exécution. Son contenu est
perdu lorsque l’ordinateur est éteint (mémoire volatile).

3. Les Périphériques d’Entrée/Sortie (E/S) :

• Entrée : Clavier, souris, micro (pour envoyer des données à la machine).

• Sortie : Écran, imprimante, haut-parleurs (pour recevoir les résultats).

1.1.2 Le Logiciel (Software)
Le matériel seul est inerte. Il a besoin d’instructions pour fonctionner. Ces instructions
sont regroupées sous forme de programmes ou logiciels. On distingue :

• Le Système d’Exploitation (OS) : Gère les ressources matérielles (ex: Win-
dows, Linux, macOS).

5

CHAPITRE 1. INTRODUCTION ET SYNTAXE ÉLÉMENTAIRE

Figure 1.1: Architecture de Von Neumann

• Les Logiciels d’Application : Outils pour l’utilisateur (Word, Excel, Jeux,
etc.).

1.2. Présentation du Langage C++
1.2.1 Le processus de compilation
Le C++ est un langage compilé. L’ordinateur ne comprend que le langage binaire (0
et 1). Pour qu’il comprenne le C++ (lisible par l’humain), on utilise un compilateur.

Le cycle de création d’un programme est le suivant :

1. Édition : Le programmeur écrit le Code Source (extension .cpp).

2. Compilation : Le compilateur traduit ce code en langage machine.

3. Édition de liens (Linker) : Il assemble le code compilé avec les bibliothèques
nécessaires.

4. Exécution : On obtient un fichier Exécutable (extension .exe sous Windows).

6

CHAPITRE 1. INTRODUCTION ET SYNTAXE ÉLÉMENTAIRE

1.2.2 Structure d’un programme C++
Voici la structure minimale d’un programme C++ :

Code extraction 1.1: Structure minimale d’un programme C++
// Zone d’ inclusion des bibliotheques
include <iostream >

// Utilisation de l’espace de nom standard
using namespace std;

// Fonction principale : Point d’entree du
programme

int main () {
// Instructions du programme
cout << " Bienvenue en C++" << endl;

// Fin du programme
return 0;

}

• #include <iostream> : Indispensable pour gérer les entrées (clavier) et sorties
(écran).

• using namespace std; : Permet d’utiliser les commandes standard (comme
cout) sans avoir à écrire std::cout à chaque fois.

• int main() : Tout programme commence son exécution ici.

• return 0; : Indique au système que le programme s’est terminé sans erreur.

1.3. Syntaxe et Instructions de Base
1.3.1 Les Variables et Types
Pour stocker une information en mémoire (RAM), on doit déclarer une variable en
précisant son type.

Type Description Exemple Taille
int Entier (sans virgule) int age = 20; 4 octets
float Réel (virgule flottante) float prix = 19.99; 4 octets
double Réel (double précision) double pi = 3.1415926535; 8 octets
char Caractère unique char lettre = ’A’; 1 octet
bool Booléen (Vrai/Faux) bool test = true; 1 octet

Tableau 1.1: Types de données de base en C++

Règles de nommage : Un nom de variable ne doit pas commencer par un
chiffre, ne doit pas contenir d’espace ni de caractères spéciaux (sauf _), et ne doit pas
être un mot réservé du langage (comme int ou return).

7

CHAPITRE 1. INTRODUCTION ET SYNTAXE ÉLÉMENTAIRE

1.3.2 Les Entrées / Sorties (I/O)
Pour interagir avec l’utilisateur, on utilise les flux de la bibliothèque iostream.

• Affichage (cout) : Envoie des données vers l’écran. Le symbole « indique le
sens du flux (vers la sortie).

Code extraction 1.2: Exemple d’affichage
cout << "Le resultat est : " << resultat << endl;
// endl permet un retour a la ligne

• Saisie (cin) : Récupère des données depuis le clavier. Le symbole » indique le
sens du flux (vers la variable).

Code extraction 1.3: Exemple de saisie
int age;
cout << "Quel est votre age ? ";
cin >> age; // L’ utilisateur tape une valeur qui

est stockee dans ’age ’

1.3.3 Les Opérateurs
• Arithmétiques : + (addition), - (soustraction), * (multiplication), / (division),

% (modulo : reste de la division entière).

• Comparaison : == (égal), != (différent), < (inférieur), > (supérieur), <= (in-
férieur ou égal), >= (supérieur ou égal).

1.3.4 Les Commentaires
Le code doit être commenté pour être compréhensible par un humain. Les commen-
taires sont ignorés par le compilateur.

• // : Commentaire sur une seule ligne.

• /* ... */ : Commentaire sur plusieurs lignes (bloc).

8

CHAPITRE 1. INTRODUCTION ET SYNTAXE ÉLÉMENTAIRE

Exercices Corrigés – Chapitre 1
Exercice 1.1 : Compilation Mentale

Énoncé : Que se passe-t-il si vous oubliez le ; à la fin d’une ligne ?

Correction : C’est une erreur de syntaxe. Le compilateur (étape 2) va s’arrêter
et afficher une erreur (ex: « expected ’;’ before...»). Le fichier objet ne sera pas créé.

Exercice 1.2 : Affichage complexe

Énoncé : Écrire un programme qui affiche les guillemets à l’écran : Il a dit "Bonjour".

Correction : Il faut utiliser le caractère d’échappement \ pour afficher des
caractères spéciaux.

Code extraction 1.4: Solution exercice 1.2
include <iostream >
using namespace std;

int main () {
cout << "Il a dit \" Bonjour \"" << endl;
return 0;

}

Exercice 1.3 : Calculs géométriques

Énoncé : Écrivez un programme qui demande à l’utilisateur la longueur et la largeur
d’un rectangle, puis affiche son périmètre et sa surface.

Correction :

Code extraction 1.5: Solution exercice 1.3
include <iostream >
using namespace std;

int main () {
float longueur , largeur ;
float perimetre , surface ;

// 1. Saisie
cout << "Entrez la longueur : ";
cin >> longueur ;
cout << "Entrez la largeur : ";
cin >> largeur ;

// 2. Traitement
perimetre = 2 * (longueur + largeur);

9

CHAPITRE 1. INTRODUCTION ET SYNTAXE ÉLÉMENTAIRE

surface = longueur * largeur ;

// 3. Affichage
cout << " Perimetre : " << perimetre << endl

;
cout << " Surface : " << surface << endl;

return 0;
}

Exercice 1.4 : Calculatrice Simple

Énoncé : Créez un programme qui demande deux nombres réels et affiche leur somme,
produit et division.

Correction :

Code extraction 1.6: Solution exercice 1.4
include <iostream >
using namespace std;

int main () {
double a, b;
cout << "Entrez deux nombres : ";
cin >> a >> b;

cout << "Somme : " << a + b << endl;
cout << " Produit : " << a * b << endl;

// Attention a la division par zero
if (b != 0)
cout << " Division : " << a / b << endl;
else
cout << " Division impossible " << endl;

return 0;
}

Exercice 1.5 : Échange de variables

Énoncé : Écrivez un programme qui échange le contenu de deux variables entières A
et B sans utiliser de fonction, puis affichez le résultat.

Correction :

Code extraction 1.7: Solution exercice 1.5
int main () {

int a = 5, b = 10, temp;

10

CHAPITRE 1. INTRODUCTION ET SYNTAXE ÉLÉMENTAIRE

temp = a; // On sauvegarde a
a = b; // On ecrase a avec b
b = temp; // On restaure l’ ancienne

valeur de a dans b

cout << a << " " << b; // Affiche 10 5
return 0;

}

11

Chapitre 2

Structures de Contrôle

2.1. Introduction
Par défaut, un programme exécute ses instructions de manière séquentielle (ligne par
ligne, du haut vers le bas). Pour créer des programmes « intelligents», nous devons
pouvoir modifier cet ordre d’exécution selon certaines conditions. C’est le rôle des
structures de contrôle.

2.2. Les Structures Conditionnelles
Elles permettent d’exécuter un bloc d’instructions seulement si une condition spécifique
est vraie (VRAI/TRUE).

2.2.1 L’alternative simple : if / else
La structure if teste une condition entre parenthèses.

• Si la condition est vraie, le premier bloc est exécuté.

• Sinon (else), c’est le second bloc qui est exécuté (facultatif).

Syntaxe :

Code extraction 2.1: Syntaxe de if/else
if (condition) {

// Instructions si la condition est VRAIE
} else {

// Instructions si la condition est FAUSSE
}

Opérateurs logiques : Pour combiner plusieurs conditions, on utilise :

• && (ET) : Toutes les conditions doivent être vraies.

12

CHAPITRE 2. STRUCTURES DE CONTRÔLE

• || (OU) : Au moins une condition doit être vraie.

• ! (NON) : Inverse le résultat (Vrai devient Faux).

Figure 2.1: Diagramme de flux de la structure if-else-if

2.2.2 Le choix multiple : switch
Lorsque l’on doit tester une même variable contre plusieurs valeurs constantes (comme
un menu de choix), le switch est plus lisible qu’une suite de if... else if.

Syntaxe :

Code extraction 2.2: Syntaxe de switch
switch (variable) {

case valeur1 :
// Instructions si variable == valeur1
break; // Sort du switch
case valeur2 :
// Instructions si variable == valeur2
break;
default :
// Instructions si aucune valeur ne

correspond
}

Attention : L’instruction break est cruciale. Sans elle, le programme contin-
uerait d’exécuter les instructions des case suivants (c’est ce qu’on appelle le « fall-
through»).

13

CHAPITRE 2. STRUCTURES DE CONTRÔLE

2.3. Les Boucles (Structures Itéra-
tives)
Les boucles permettent de répéter un bloc d’instructions plusieurs fois. Il existe trois
types de boucles en C++.

2.3.1 La boucle for (Pour)
Elle est utilisée lorsque l’on connaît à l’avance le nombre de répétitions. Elle rassemble
l’initialisation, la condition et l’incrémentation sur une seule ligne.

Syntaxe :

Code extraction 2.3: Syntaxe de la boucle for
for (initialisation ; condition ; incrementation) {

// Instructions a repeter
}

Exemple : Afficher les nombres de 0 à 9.

Code extraction 2.4: Exemple de boucle for
for (int i = 0; i < 10; i++) {

cout << "i vaut : " << i << endl;
}

2.3.2 La boucle while (Tant que)
Elle est utilisée lorsque le nombre de répétitions n’est pas connu à l’avance. Elle répète
les instructions tant que la condition est vraie. La condition est testée avant chaque
passage.

Syntaxe :

Code extraction 2.5: Syntaxe de la boucle while
while (condition) {

// Instructions
// Attention : il faut modifier la

condition ici pour eviter une boucle
infinie

}

14

CHAPITRE 2. STRUCTURES DE CONTRÔLE

2.3.3 La boucle do...while (Faire... Tant que)
Similaire au while, mais la condition est testée à la fin. Cela garantit que le bloc
d’instructions sera exécuté au moins une fois (utile pour la saisie de mot de passe ou
les menus).

Syntaxe :

Code extraction 2.6: Syntaxe de la boucle do-while
do {

// Instructions executees au moins une fois
} while (condition);

Figure 2.2: Diagramme de flux d’une boucle

2.4. Instructions de Saut (Rupture
de Séquence)
Ces instructions permettent de modifier le comportement normal d’une boucle.

2.4.1 break
L’instruction break arrête immédiatement la boucle (ou le switch) et passe à l’instruction
qui suit l’accolade fermante.

Exemple : Sortir d’une boucle de recherche dès que l’élément est trouvé.

2.4.2 continue
L’instruction continue arrête l’itération en cours et remonte directement au début de
la boucle pour l’itération suivante.

15

CHAPITRE 2. STRUCTURES DE CONTRÔLE

Exemple : Dans une boucle de 1 à 10, on veut afficher tous les nombres sauf 5.
Si i == 5, on fait continue.

Exercices Corrigés – Chapitre 2
Exercice 2.1 : Contrôle de Saisie

Énoncé : Demandez à l’utilisateur de saisir un nombre entre 1 et 10. Recommencez
tant que la saisie est incorrecte.

Correction :

Code extraction 2.7: Solution exercice 2.1
include <iostream >
using namespace std;

int main () {
int n;
do {

cout << "Entrez un nombre entre 1
et 10 : ";

cin >> n;
} while (n < 1 || n > 10);

cout << "Merci , vous avez saisi : " << n <<
endl;

return 0;
}

Exercice 2.2 : Table de multiplication

Énoncé : Afficher la table de multiplication de 7.

Correction :

Code extraction 2.8: Solution exercice 2.2
int main () {

int table = 7;
for(int i = 1; i <= 10; i++) {

cout << table << " x " << i << " =
" << table * i << endl;

}
return 0;

}

16

CHAPITRE 2. STRUCTURES DE CONTRÔLE

Exercice 2.3 : La Factorielle

Énoncé : Écrivez un programme qui demande un nombre entier positif à l’utilisateur
et calcule sa factorielle (ex: 5! = 1 × 2 × 3 × 4 × 5 = 120) en utilisant une boucle
for. Si l’utilisateur entre un nombre négatif, affichez une erreur.

Correction :

Code extraction 2.9: Solution exercice 2.3
include <iostream >
using namespace std;

int main () {
int n;
long long factorielle = 1; // "long long"

pour les grands nombres

cout << "Entrez un entier positif : ";
cin >> n;

if (n < 0) {
cout << "Erreur : Le nombre doit

etre positif ." << endl;
} else {

// Boucle de calcul
for (int i = 1; i <= n; i++) {

factorielle = factorielle *
i;

}
cout << "La factorielle de " << n

<< " est " << factorielle <<
endl;

}

return 0;
}

17

Chapitre 3

Les Fonctions

3.1. Introduction et Utilité
Lorsque les programmes deviennent longs et complexes, il est inefficace d’écrire tout le
code dans la seule fonction main.

Une fonction est un sous-programme autonome conçu pour effectuer une tâche
précise (ex: calculer une moyenne, afficher un menu, vérifier un mot de passe).

Pourquoi utiliser des fonctions ?

1. Éviter la répétition : Si un code doit être exécuté plusieurs fois, on l’écrit une
seule fois dans une fonction et on l’appelle quand on en a besoin.

2. Modularité : Le programme est découpé en petits blocs logiques plus faciles à
comprendre et à maintenir.

3. Débogage facilité : Il est plus simple de tester une petite fonction isolée que
de chercher une erreur dans 1000 lignes de code.

3.2. Structure d’une Fonction
Pour qu’une fonction soit utilisable, le compilateur doit connaître deux choses : son
existence (le prototype) et ce qu’elle fait (sa définition).

3.2.1 Le Prototype (Déclaration)
C’est la « carte d’identité» de la fonction. Il est généralement placé avant le main (ou
dans un fichier .h séparé). Il indique au compilateur le nom de la fonction, le type de
donnée qu’elle renvoie, et les paramètres qu’elle accepte.

Syntaxe :
type_retour nom_fonction (type_param1 , type_param2 ,

...);

18

CHAPITRE 3. LES FONCTIONS

3.2.2 La Définition (Le corps)
C’est le code réel de la fonction. Elle peut être placée après le main si le prototype a
été déclaré avant.

Syntaxe complète :

Code extraction 3.1: Définition d’une fonction
type_retour nom_fonction (type_param1 nom_var1 ,

type_param2 nom_var2) {
// Declaration des variables locales
// Instructions
return valeur; // Renvoie le resultat

}

• type_retour : Le type de la variable renvoyée (int, float, etc.). Si la fonction
ne renvoie rien (elle fait juste un affichage par exemple), on utilise le type spécial
void.

• return : Arrête l’exécution de la fonction et renvoie la valeur au programme
appelant.

3.3. Appel d’une Fonction
L’appel se fait simplement en écrivant le nom de la fonction suivi des arguments entre
parenthèses.

Si la fonction renvoie une valeur, on peut stocker ce résultat dans une variable.

Exemple complet :

Code extraction 3.2: Exemple complet d’utilisation de fonction
include <iostream >
using namespace std;

// 1. Prototype
float carre(float x);

int main () {
float nombre = 5.0;
float resultat ;

// 2. Appel de la fonction
resultat = carre(nombre);

cout << "Le carre de " << nombre << " est "
<< resultat << endl;

return 0;
}

19

CHAPITRE 3. LES FONCTIONS

// 3. Definition
float carre(float x) {

float res;
res = x * x;
return res; // Renvoie 25.0

}

3.4. Portée des Variables (Locales vs
Globales)
C’est un concept fondamental.

• Variables Locales : Une variable déclarée dans une fonction (ou dans le main)
n’existe que dans cette fonction. Elle est détruite dès que la fonction se termine.
Les autres fonctions ne peuvent pas la voir.

• Variables Globales : Déclarées en dehors de toute fonction (tout en haut du
fichier). Elles sont accessibles partout. Note : Il est déconseillé d’utiliser trop de
variables globales car elles rendent le code difficile à maîtriser.

3.5. Les Modes de Passage de Paramètres
Il existe deux façons de transmettre des variables à une fonction.

3.5.1 Passage par Valeur (Par défaut)
La fonction reçoit une copie de la variable.

• Si la fonction modifie cette copie, la variable originale dans le main ne change
pas.

• Analogie : Vous donnez une photocopie d’un document à un collègue. S’il écrit
dessus, votre original reste propre.

3.5.2 Passage par Référence (L’opérateur &)
La fonction reçoit l’adresse mémoire de la variable originale (son emplacement réel).

• Toute modification faite dans la fonction affecte directement la variable originale.

• Analogie : Vous donnez l’accès à votre fichier original sur le serveur. Si le
collègue le modifie, vous voyez les changements.

• Utilité : Permet à une fonction de modifier plusieurs variables ou d’éviter de
copier de grosses structures de données (optimisation).

20

CHAPITRE 3. LES FONCTIONS

Comparaison en code :

Passage par Valeur Passage par Référence
void test(int x) void test(int &x)
x = 10; (La copie change) x = 10; (L’original change)
La variable du main reste inchangée. La variable du main devient 10.

Tableau 3.1: Comparaison des modes de passage de paramètres

Exemple classique : La fonction echange

Pour échanger le contenu de deux variables A et B, il faut obligatoirement passer
par référence, sinon l’échange ne se ferait que sur des copies temporaires.

Code extraction 3.3: Fonction d’échange avec passage par référence
void echange (int &a, int &b) {

int temp = a;
a = b;
b = temp;

}

// Appel : echange (x, y); -> x et y sont reellement
inverses .

Exercices Corrigés – Chapitre 3
Exercice 3.1 : Prédicat de parité

Énoncé : Écrire une fonction estPair qui prend un entier et retourne un booléen
(true si pair, false sinon).

Correction :

Code extraction 3.4: Solution exercice 3.1
bool estPair (int n) {

if (n % 2 == 0)
return true;
else
return false;
// Version courte : return (n % 2 == 0);

}

Exercice 3.2 : Division euclidienne complète

Énoncé : Écrire une fonction qui prend un dividende et un diviseur, et qui « renvoie»
à la fois le quotient et le reste (via des références).

Correction :

21

CHAPITRE 3. LES FONCTIONS

Code extraction 3.5: Solution exercice 3.2
void divEuclidienne (int a, int b, int "ient ,

int &reste) {
if (b != 0) {

quotient = a / b;
reste = a % b;

}
}

// Appel : divEuclidienne (13, 4, q, r); -> q vaudra
3, r vaudra 1

Exercice 3.3 : Échange de valeurs

Énoncé : Écrivez une fonction echange qui prend deux entiers en paramètres et
échange leurs valeurs. Affichez les valeurs avant et après l’appel dans le main.

Correction :

Code extraction 3.6: Solution exercice 3.3
include <iostream >
using namespace std;

// Prototype : Notez l’ utilisation de ’&’ pour le
passage par reference

void echange (int &a, int &b);

int main () {
int x = 10, y = 20;

cout << "Avant : x = " << x << ", y = " <<
y << endl;

echange (x, y); // Appel de la fonction
cout << "Apres : x = " << x << ", y = " <<

y << endl;

return 0;
}

// Definition
void echange (int &a, int &b) {

int temp = a;
a = b;
b = temp;

}

22

Chapitre 4

Tableaux et Pointeurs

4.1. Les Tableaux (Arrays)
Jusqu’ici, nous utilisions des variables simples (une variable = une valeur). Mais com-
ment stocker les notes de 100 étudiants sans créer 100 variables note1, note2, etc. ?
La réponse est : les tableaux.

4.1.1 Définition
Un tableau est une structure de données permettant de stocker plusieurs valeurs de
même type dans des cases mémoire contiguës (les unes à côté des autres).

4.1.2 Les Tableaux Unidimensionnels (Vecteurs)
C’est une liste simple d’éléments.

• Déclaration : type nom_tableau[taille];

– int notes[5]; : Crée un tableau de 5 entiers.

• Accès : On accède à un élément via son indice (index) entre crochets.

– Attention : En C++, les indices commencent toujours à 0.

– Le premier élément est notes[0] et le dernier est notes[4].

• Initialisation :
int tab [3] = {10, 20, 30}; // Remplit directement

les cases

4.1.3 Les Tableaux Multidimensionnels (Matrices)
On peut créer des « tableaux de tableaux», souvent utilisés pour représenter des grilles
ou des matrices.

• Déclaration : type nom[lignes][colonnes];

23

CHAPITRE 4. TABLEAUX ET POINTEURS

– float matrice[3][4]; : Un tableau de 3 lignes et 4 colonnes.

4.2. Les Pointeurs
C’est souvent la partie redoutée des étudiants, mais c’est la plus puissante du C++.

4.2.1 Concept
Une variable classique contient une valeur (ex: a = 5). Un pointeur est une variable
spéciale qui contient l’adresse mémoire d’une autre variable.

4.2.2 Les Opérateurs
• L’opérateur d’adresse (&) : Permet de connaître où une variable est stockée.

– &a : Donne l’adresse de la variable a (ex: 0x7ffee4).

• L’opérateur de déréférencement (*) : Permet d’accéder au contenu de la
case pointée.

– Si p contient l’adresse de a, alors *p donne la valeur de a.

Exemple :

Code extraction 4.1: Exemple d’utilisation des pointeurs
int a = 10;
int *p; // Declaration d’un pointeur sur entier

p = &a; // p pointe maintenant sur a (p contient l’
adresse de a)

cout << *p; // Affiche 10 (la valeur pointee)

*p = 20; // Modifie la valeur de a via le pointeur
cout << a; // Affiche 20

4.3. Relation entre Tableaux et Poin-
teurs
En C++, tableaux et pointeurs sont intimement liés. Le nom d’un tableau est en
réalité un pointeur constant vers son premier élément.

Si on a int T[5]; :

• T est équivalent à &T[0] (adresse du premier élément).

• *T est équivalent à T[0] (valeur du premier élément).

24

CHAPITRE 4. TABLEAUX ET POINTEURS

Arithmétique des pointeurs : On peut se déplacer dans un tableau en ajoutant
des entiers à un pointeur.

• *(T + 1) est équivalent à T[1].

• *(T + i) est équivalent à T[i].

4.4. Allocation Dynamique de Mé-
moire
Dans un tableau classique (int T[10]), la taille est fixée avant la compilation (allo-
cation statique). Si on veut décider de la taille pendant l’exécution (ex: demander à
l’utilisateur « Combien d’élèves y a-t-il ?»), on doit utiliser l’allocation dynamique.

4.4.1 L’opérateur new
Il demande au système de réserver de la mémoire.

int n;
cin >> n;
int *tab = new int[n]; // Cree un tableau de taille

n

4.4.2 L’opérateur delete
En C++, la mémoire n’est pas nettoyée automatiquement. Si vous allouez de la mé-
moire avec new, vous devez la libérer avec delete quand vous n’en avez plus besoin,
sinon vous créez une « fuite de mémoire» (memory leak).

delete [] tab; // Libere la memoire du tableau

Exercices Corrigés – Chapitre 4
Exercice 4.1 : Moyenne

Énoncé : Saisir 5 notes dans un tableau et calculer la moyenne.

Correction :

Code extraction 4.2: Solution exercice 4.1
int main () {

float notes [5], somme = 0;

for(int i=0; i <5; i++) {
cin >> notes[i];
somme += notes[i];

25

CHAPITRE 4. TABLEAUX ET POINTEURS

}

cout << " Moyenne : " << somme / 5.0 << endl
;

return 0;
}

Exercice 4.2 : Recherche séquentielle

Énoncé : Écrire un programme qui demande un nombre X et vérifie s’il est présent
dans un tableau T initialisé.

Correction :

Code extraction 4.3: Solution exercice 4.2
int main () {

int T[5] = {12, 5, 8, 9, 1};
int x;
bool trouve = false;

cin >> x;

for(int i=0; i <5; i++) {
if(T[i] == x) {

trouve = true;
break; // On arrete de

chercher
}

}

if(trouve)
cout << "Trouve !";
else
cout << "Absent .";

return 0;
}

Exercice 4.3 : Manipulation de base

Énoncé : Déclarez un entier, un pointeur sur cet entier, et modifiez la valeur de l’entier
en passant par le pointeur.

Correction :

Code extraction 4.4: Solution exercice 4.3
int main () {

int x = 10;

26

CHAPITRE 4. TABLEAUX ET POINTEURS

int *p = &x;

cout << *p << endl; // Affiche 10
*p = 50;
cout << x << endl; // Affiche 50

return 0;
}

Exercice 4.4 : Tableau dynamique

Énoncé : Demandez à l’utilisateur la taille d’un tableau, allouez-le, remplissez-le avec
les carrés des indices (0, 1, 4, 9...), affichez-le, puis libérez la mémoire.

Correction :

Code extraction 4.5: Solution exercice 4.4
int main () {

int n;
cout << "Taille ? ";
cin >> n;

int *tab = new int[n]; // Allocation

for(int i=0; i<n; i++)
tab[i] = i * i; // Remplissage

for(int i=0; i<n; i++)
cout << tab[i] << " "; // Affichage

delete [] tab; // Liberation
return 0;

}

27

Chapitre 5

Les Fichiers

5.1. Introduction
Jusqu’à présent, toutes les données manipulées par nos programmes étaient stockées
dans la RAM (mémoire vive). Le problème de la RAM est qu’elle est volatile : dès que
le programme s’arrête ou que l’ordinateur s’éteint, toutes les données sont perdues.

Pour conserver des informations de manière permanente (persistance), nous de-
vons les écrire sur le disque dur sous forme de fichiers.

5.2. La Bibliothèque <fstream>
Pour manipuler des fichiers en C++, il faut inclure la bibliothèque spécifique :

include <fstream >

Elle définit deux types principaux de variables (flux) :

1. ofstream (Output File STREAM) : Pour écrire des données vers un fichier (Sor-
tie).

2. ifstream (Input File STREAM) : Pour lire des données depuis un fichier (En-
trée).

5.3. Écrire dans un fichier
Le processus se fait en 3 étapes : Ouvrir, Écrire, Fermer.

Code extraction 5.1: Écriture dans un fichier
include <iostream >
include <fstream >
using namespace std;

28

CHAPITRE 5. LES FICHIERS

int main () {
// 1. Declaration et Ouverture
// On cree un flux de sortie nomme ’

monFichier ’ vers "test.txt"
ofstream monFichier ("E:/ test.txt ");

// 2. Verification
if (monFichier . is_open ()) {

// 3. Ecriture (comme avec cout ,
mais vers le fichier)

monFichier << " Bonjour tout le
monde ." << endl;

monFichier << "Ceci est une ligne
de texte ." << endl;

monFichier << 42 << endl;

// 4. Fermeture (Obligatoire pour
valider l’ enregistrement)

monFichier .close ();
cout << " Ecriture terminee ." <<

endl;
} else {

cout << "Erreur : Impossible d’
ouvrir le fichier ." << endl;

}

return 0;
}

5.4. Lire un fichier
Pour lire, on utilise ifstream. On lit généralement ligne par ligne ou mot par mot.

Code extraction 5.2: Lecture d’un fichier
include <iostream >
include <fstream >
include <string > // Necessaire pour stocker le

texte lu
using namespace std;

int main () {
ifstream lecture ("E:/ test.txt ");
string ligne; // Variable pour stocker la

ligne lue

29

CHAPITRE 5. LES FICHIERS

if (lecture . is_open ()) {
// Boucle de lecture : tant qu ’on n

’est pas a la fin du fichier
while (getline (lecture , ligne)) {

cout << ligne << endl; //
Affiche la ligne lue a l
’ecran

}
lecture .close ();

} else {
cout << "Erreur d’ ouverture en

lecture ." << endl;
}

return 0;
}

getline(flux, variable) : Lit une ligne entière (espaces inclus) et la place
dans la variable. Renvoie Faux si la fin du fichier est atteinte.

Exercices Corrigés – Chapitre 5
Exercice 5.1 : Copie de fichier

Énoncé : Écrire un programme qui lit source.txt et copie son contenu ligne par
ligne dans destination.txt.

Correction :

Code extraction 5.3: Solution exercice 5.1
include <iostream >
include <fstream >
include <string >
using namespace std;

int main () {
ifstream src (" source.txt ");
ofstream dest (" destination .txt ");
string ligne;

if(src. is_open () && dest. is_open ()) {
while(getline (src , ligne)) {

dest << ligne << endl;
}
src.close ();
dest.close ();

}

30

CHAPITRE 5. LES FICHIERS

return 0;
}

Exercice 5.2 : Journal de bord

Énoncé : Écrivez un programme qui demande à l’utilisateur de saisir une phrase, puis
ajoute cette phrase à la fin d’un fichier texte nommé « journal.txt». Ensuite, relisez
tout le fichier pour afficher son contenu à l’écran.

Correction :

Code extraction 5.4: Solution exercice 5.2
include <iostream >
include <fstream >
include <string >
using namespace std;

int main () {
string phrase;

// --- ECRITURE (Mode ’app ’ pour append/
ajouter) ---

ofstream fichierEcriture (" journal .txt", ios
:: app);

if (fichierEcriture . is_open ()) {
cout << " Ecrivez une phrase a

ajouter au journal : ";
getline (cin , phrase); // getline

pour lire avec les espaces
fichierEcriture << phrase << endl;
fichierEcriture .close ();

} else {
cout << "Erreur d’ ouverture en

ecriture ." << endl;
}

// --- LECTURE ---
cout << "\n--- Contenu du fichier ---" <<

endl;
ifstream fichierLecture (" journal .txt ");
string ligne;

if (fichierLecture . is_open ()) {
while (getline (fichierLecture ,

ligne)) {
cout << ligne << endl;

31

CHAPITRE 5. LES FICHIERS

}
fichierLecture .close ();

} else {
cout << "Erreur d’ ouverture en

lecture ." << endl;
}

return 0;
}

32

Chapitre 6

Programmation Orientée Objet
(POO)

6.1. Changement de Paradigme
• Programmation Structurée (Classique) : On sépare les données (variables)

des opérations (fonctions).

– Formule : Algorithmes + Données = Programme.

• Programmation Orientée Objet (POO) : On regroupe les données et les
opérations qui les manipulent au sein d’une même entité : l’Objet.

– Formule : Méthodes + Données = Objet.

Avantages : Meilleure organisation, code réutilisable, modélisation plus proche
du monde réel (ex: une classe « Voiture», une classe « CompteBancaire»).

6.2. Classes et Objets
• La Classe : C’est le plan de construction (le moule). Elle définit de quoi l’objet

sera composé.

• L’Objet : C’est une instance concrète de la classe (le gâteau fabriqué avec le
moule).

6.2.1 Structure d’une classe
Une classe contient deux types de membres :

1. Attributs : Les variables (données).

2. Méthodes : Les fonctions (comportements).

33

CHAPITRE 6. PROGRAMMATION ORIENTÉE OBJET (POO)

6.3. Encapsulation (Private / Pub-
lic)
C’est un principe de sécurité fondamental. On cache les détails internes de l’objet pour
empêcher leur modification anarchique de l’extérieur.

• private : Accessible uniquement par les méthodes de la classe elle-même. (C’est
ici qu’on met les attributs).

• public : Accessible par tout le monde (le main). (C’est ici qu’on met les méth-
odes).

6.4. Exemple Complet : La Classe
Point
Voici comment créer un type « Point» géométrique capable de se gérer lui-même.

Code extraction 6.1: Exemple complet : Classe Point
include <iostream >
include <cmath > // Pour sqrt et pow
using namespace std;

// Definition de la classe (Le plan)
class Point {

// Partie cachee (Encapsulation)
private :
float x, y;
char nom;

// Partie visible (Interface)
public:
// Methode pour definir les valeurs
void saisir () {

cout << "Nom du point : "; cin >>
nom;

cout << " Abscisse x : "; cin >> x;
cout << " Ordonnee y : "; cin >> y;

}

// Methode pour s’ afficher
void afficher () {

cout << "Point " << nom << "(" << x
<< "," << y << ")" << endl;

}

34

CHAPITRE 6. PROGRAMMATION ORIENTÉE OBJET (POO)

// Methode pour calculer la distance avec
un autre point p

float distance (Point p) {
return sqrt(pow(x - p.x, 2) + pow(

y - p.y, 2));
}

};

// Programme principal
int main () {

// Creation de deux objets (Instances)
Point A, B;

cout << "--- Saisie du point A ---" << endl
;

A.saisir (); // On demande a l’objet A de
lancer sa methode saisir

cout << "--- Saisie du point B ---" << endl
;

B.saisir ();

cout << "--- Affichage ---" << endl;
A. afficher ();
B. afficher ();

// Calcul de distance
float d = A. distance (B);
cout << " Distance AB = " << d << endl;

return 0;
}

Exercices Corrigés – Chapitre 6
Exercice 6.1 : Gestion de Compte Bancaire

Énoncé : Créez une classe Compte avec :

• Attributs privés : solde, titulaire.

• Constructeur : initialise le titulaire et met le solde à 0.

• Méthode deposer(montant).

• Méthode retirer(montant) : vérifie s’il y a assez d’argent.

35

CHAPITRE 6. PROGRAMMATION ORIENTÉE OBJET (POO)

• Méthode afficher().

Correction :

Code extraction 6.2: Solution exercice 6.1
include <iostream >
include <string >
using namespace std;

class Compte {
private :
string titulaire ;
float solde;

public:
// Constructeur
Compte(string nom) {

titulaire = nom;
solde = 0.0;

}

void deposer (float m) {
solde += m;

}

bool retirer (float m) {
if (solde >= m) {

solde -= m;
return true;

} else {
cout << "Fonds insuffisants

!" << endl;
return false;

}
}

void afficher () {
cout << "Compte de " << titulaire

<< " : " << solde << " EUR" <<
endl;

}
};

int main () {
Compte c1(" Dupont ");
c1. deposer (1000);
c1. retirer (200);
c1. afficher (); // Affiche 800 EUR

36

CHAPITRE 6. PROGRAMMATION ORIENTÉE OBJET (POO)

return 0;
}

Exercice 6.2 : Classe Rectangle

Énoncé : Créez une classe Rectangle avec :

• Attributs privés : largeur, hauteur.

• Méthode publique setDimensions(l, h) pour initialiser les valeurs.

• Méthode publique surface() qui retourne la surface.

• Méthode publique perimetre() qui retourne le périmètre.

Dans le main, créez un objet, initialisez-le et affichez ses caractéristiques.

Correction :

Code extraction 6.3: Solution exercice 6.2
include <iostream >
using namespace std;

class Rectangle {
private :
float largeur ;
float hauteur ;

public:
// Methode pour definir les valeurs (Setter

)
void setDimensions (float l, float h) {

largeur = l;
hauteur = h;

}

// Methode pour calculer la surface
float surface () {

return largeur * hauteur ;
}

// Methode pour calculer le perimetre
float perimetre () {

return 2 * (largeur + hauteur);
}

};

int main () {
Rectangle monRect ; // Creation de l’objet
monRect . setDimensions (5.0 , 3.0);

37

CHAPITRE 6. PROGRAMMATION ORIENTÉE OBJET (POO)

cout << " Surface : " << monRect . surface ()
<< endl;

cout << " Perimetre : " << monRect . perimetre
() << endl;

return 0;
}

38

Références et Bibliographie

Ouvrages Fondateurs (En Anglais)
1. Stroustrup, Bjarne. The C++ Programming Language. 4th Edition. Addison-

Wesley Professional, 2013.

• Note : Écrit par le créateur du C++, c’est la référence absolue pour les
détails techniques du langage.

2. Stroustrup, Bjarne. Programming: Principles and Practice Using C++. 2nd
Edition. Addison-Wesley, 2014.

• Note : Plus pédagogique, souvent utilisé comme manuel d’introduction dans
les universités américaines.

Ouvrages Pédagogiques (En Français)
3. Delannoy, Claude. Programmer en langage C++. 10ème édition. Éditions Ey-

rolles, 2021.

• Note : Le livre le plus populaire dans les universités francophones pour sa
clarté et ses nombreux exercices.

4. Bersini, Hugues. La programmation orientée objet. 7ème édition. Éditions Ey-
rolles.

• Note : Excellent pour comprendre les concepts théoriques de la POO (Classes,
Héritage, Polymorphisme) indépendamment du langage.

Documentation et Standards en Ligne
5. ISO/IEC 14882. Standard International pour le langage de programmation C++.

6. CppReference.com (Version FR). https://fr.cppreference.com

• Note : Une documentation technique type « wiki», tenue à jour par la
communauté et très rigoureuse. Idéale pour vérifier la syntaxe d’une fonction
standard.

39

https://fr.cppreference.com

	Avant-Propos
	Introduction et Syntaxe Élémentaire
	Notions Élémentaires d'Informatique
	Le Matériel (Hardware)
	Le Logiciel (Software)

	Présentation du Langage C++
	Le processus de compilation
	Structure d'un programme C++

	Syntaxe et Instructions de Base
	Les Variables et Types
	Les Entrées / Sorties (I/O)
	Les Opérateurs
	Les Commentaires

	Exercices Corrigés

	Structures de Contrôle
	Introduction
	Les Structures Conditionnelles
	L'alternative simple : if / else
	Le choix multiple : switch

	Les Boucles (Structures Itératives)
	La boucle for (Pour)
	La boucle while (Tant que)
	La boucle do...while (Faire... Tant que)

	Instructions de Saut (Rupture de Séquence)
	break
	continue

	Exercices Corrigés

	Les Fonctions
	Introduction et Utilité
	Structure d'une Fonction
	Le Prototype (Déclaration)
	La Définition (Le corps)

	Appel d'une Fonction
	Portée des Variables (Locales vs Globales)
	Les Modes de Passage de Paramètres
	Passage par Valeur (Par défaut)
	Passage par Référence (L'opérateur &)

	Exercices Corrigés

	Tableaux et Pointeurs
	Les Tableaux (Arrays)
	Définition
	Les Tableaux Unidimensionnels (Vecteurs)
	Les Tableaux Multidimensionnels (Matrices)

	Les Pointeurs
	Concept
	Les Opérateurs

	Relation entre Tableaux et Pointeurs
	Allocation Dynamique de Mémoire
	L'opérateur new
	L'opérateur delete

	Exercices Corrigés

	Les Fichiers
	Introduction
	La Bibliothèque <fstream>
	Écrire dans un fichier
	Lire un fichier
	Exercices Corrigés

	Programmation Orientée Objet (POO)
	Changement de Paradigme
	Classes et Objets
	Structure d'une classe

	Encapsulation (Private / Public)
	Exemple Complet : La Classe Point
	Exercices Corrigés

	Références et Bibliographie

