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PREFACE

S'appuyant sur la documentation riche et disponible dans le domaine, nous avons mis au point
ce travail, présenté comme un support du cours sur la Théorie de la Plasticité. Ce dernier a pour
objet d’initier 1'étudiant aux notions théoriques de la théorie de la plasticité des structures. Des
connaissances préalables recommandées pour les étudiants afin de mieux comprendre la théorie
de plasticité¢ tels que I’algebre, Mécanique des milieux continus, Mécanique rationnelle,

Mécanique des fluides et Résistance des matériaux.

On définit dans cette polycopie cinq chapitres essentiels, chapitre 1 sera consacré pour les
différents essais mécaniques et le chapitre 2 sera consacré pour les différents modeles
rhéologique afin de modéliser la plasticité des matériaux, chapitre 3 sera consacré pour les
différents critéres de plasticité et chapitre 4 et 5 seront initiation de la plasticité des barres et des

poutres respectivement.

Avec les développements détaillés des mécaniques des milieux continues accompagnés de
quelques exercices ; ce polycopié constitue une référence pédagogique orientée au niveau de
I’université de Tiaret, dont 1'objectif de faciliter toutes consultations ou enseignement du module

concerné.

Ce polycopié s’adresse aux étudiants de Master 1 option Voies et Ouvrages d’Art. 1l est
rédigé de maniere que I’attention du lecteur se concentre sur les applications pratiques du sujet

traité.
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Chapitre I

Les essais mecaniques



Chapitre 1

I.1. Généralité

Les essais mécaniques sont I'étape indispensable pour accéder aux grandeurs
caractéristiques des matériaux, du module d'Young a la limite d'¢élasticité, en passant par la
ténacité ou la résistance a la fatigue, et ce dans des conditions variables, par exemple de
température ou de sollicitation. Le propos de ce cours est de présenter les techniques
expérimentales les plus couramment utilisées, aussi bien dans les laboratoires universitaires
qu'industriels, pour caractériser le comportement mécanique des matériaux. Les techniques

abordées seront :

e Les essais uniaxiaux (quasi- statiques et dynamiques),

e Les essais multiaxiaux,

I.2. Essais mécaniques uniaxiaux

I.2.1. Essais de traction

L'essai de traction constitue un des essais les plus utilisés pour la caractérisation mécanique
des matériaux. Etant purement uniaxial, d’aboutir directement a une loi de comportement

uniaxiale. Il permet de déterminer de nombreuses grandeurs normalisées, comme :

e La limite d'élasticité,
e La contrainte maximale,

e La contrainte a la rupture etc.

Nécessaires dans les calculs de structure. Nous donnons ici tout d'abord la description
générale d'une machine de traction, puis des ¢léments concernant les éprouvettes, les mesures

de déformation et de charge appliquée.
12.1.1. Objectifs de [’essai

L’essai de traction est le moyen le plus couramment employé pour caractériser le
comportement mécanique d’un matériau sous une sollicitation progressive a vitesse de
chargement faible ou modérée. L’essai permet, en outre, I’étude et I’identification des

mécanismes physiques de déformation plastique.
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1.2.1.2. Description générale d'une machine de traction

Une machine de traction est constituée d'un bati portant une traverse mobile. L'éprouvette
de traction, vissée ou enserrée entre des mors, selon sa géométrie, est amarrée a sa partie
inférieure a la base de la machine et a sa partie supérieure a la traverse mobile (dans le cas
d'une machine mécanique) ou au vérin de traction (dans le cas d'une machine hydraulique). Le
déplacement de la traverse vers le haut réalise la traction. Une machine de traction comporte
une cellule de charge, qui permet de mesurer 1'effort appliqué a 1'éprouvette et le déplacement
de 1'éprouvette peut étre suivi de diverses fagons. Les dispositifs expérimentaux sont
généralement asservis et peuvent étre pilotés a vitesse de montée en charge, a charge
constante, a vitesse de déformation constante, etc. selon ce qui peut étre proposé par le

systéme de pilotage.

pilotage

systeme hydraulique

Figure 1.1 : Dispositif de traction du Centre des Matériaux.

1.2.1.3. Eprouvettes

Les éprouvettes de traction adoptent deux géométries : cylindrique ou plate. La section
doit étre constante sur une longueur suffisante pour obtenir un état de contrainte homogene
pendant l'essai. Aux deux extrémités sont usinées des tétes d'amarrage avec des rayons de

courbures suffisamment grands pour éviter des concentrations de contrainte excessives. Dans



Chapitre 1

le cas des éprouvettes plates, le centrage de I'éprouvette peut devenir problématique si des

trous calibrés ne sont pas percés dans les tétes.

Figure 1.2 : Eprouvettes de traction cylindriques et plates.

——— /Rémin S f"
0 d,

: ; di = O des tétes filetées
- - ' "7 ) v Wi

do = O partie calibrée

A 42
T
'
1
1
!

—> > € > Lo = longueur entre repére = 5 do

Figure 1.3 : Exemple d'une éprouvette de traction.
1.2.1.4. Diagramme de traction

Les valeurs mesurées directement lors d'un essai de traction sont la force F et I'allongement
AL, plutdét que les contraintes et la déformation. La contrainte o, rapportée dans un
diagramme de traction est la force divisée par la section initiale So de 1'éprouvette (contrainte

nominale).

O = (L1)
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De méme la déformation ¢, se réfere a la longueur initiale Lo de la partie délimitée par

I’extensometre (déformation nominale).

&= (1.2)

AL
L,
On parle de diagrammes rationnels quand on détermine les contraintes et les déformations
vraies. Ils sont obtenus en divisant la force ou I'allongement par la section, respectivement la
longueur instantanée. Ici nous nous contentons du premier type de diagramme qui est

d'ailleurs le diagramme d'usage commun. La figure 1.4 illustre I'allure que peuvent avoir les

courbes de traction de différents matériaux.

SR, 1N
-
Il Fmll
WEmil . 1T, oozl S B
G
" S Ty
IFel -
H
Acier doux Acier dur
-
IIFo.00 2 Il
_ﬂ-i Allongement S
(8] :.uqz % @ ¢ oL

Figure 1.4 : Schéma représentant 2 types différents de courbes de traction.

Pour les matériaux ¢élastiques (les aciers, par exemple), la courbe «effort-allongement) est

composée d’une partie linéaire « OA » et d’une partie de ligne courbe « AB »

+ Domaine élastique
Il correspond a la partie linéaire « OA ». Cette droite nous montre que 1’allongement est
faible et que cette déformation est proportionnelle I’effort exercé sur 1’éprouvette. Le

domaine élastique est limité au point « A » d’ordonnée « Fe »
Fe : (intensité de la force de traction a la limite apparente d’¢élasticité de I’éprouvette).

Pour les aciers doux, on définit une résistance limite élastique comme étant le rapport de

Fe par I’aire la section utile So de 1’éprouvette :
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F,[N]
— e
O'e[MPa] = S—2 (L3)
o[mm?]
Pour les aciers durs et les fontes, on définit une résistance limite conventionnelle
d’¢lasticité notée oceo.2. Cette résistance est calculée a partir d’un effort Feo.02 (effort qui

engendre un allongement rémanent de I’éprouvette de 0.2% (A% = 0.2)).

O .02 e (1.4)
0

+ Domaine des déformations permanentes

a) Zone d’écrouissage

Au-dela de la charge a la limite d’¢élasticité¢ (entre A et C), la suppression de I’effort F

n’entraine plus une disparition totale de la déformation.

L’amplitude de la déformation rémanente est déterminée sur le diagramme en menant du

point B de la courbe correspondant a I’effort F une paralléle a la droite (A,0). On obtient

ainsi la droite ( B,O’).

* — c
Fe - — / frf “«. D
I / rupture'!
| ! |
I pente de |
 la droite OA |
| / |
[ !
I 7 i
[ 0 j,r ;
| ! .
G Z0NE D'ECROUVISSAGE = ih
7o0ne déeformations
élastique | zone de déformation plastique
A plastig

Figure L.5. Courbe de traction (force-déformation) pour la zone d’écrouissage.

Entre « A » et « B » il se produit un phénomene d’écrouissage du métal, il en résulte une

augmentation de la résistance ¢élastique du matériau.
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En effet si on applique sur cette méme éprouvette a nouveau un effort F croissant, la
courbe partira cette fois-ci de « O’ » et elle ira linéairement jusqu’a « B ». En « B » apparaitra

cette fois-ci la force de traction « Fe » : force a la limite apparente d’élasticité du matériau.

« Fe » est égal a leffort « F » qui a engendré I’écrouissage de 1’éprouvette. « Fe » étant
plus important aprés écrouissage qu’avant, la résistance ¢lastique oe sera aussi plus

importante.

b) Effort maxi et la zone de striction

e Résistance a la rupture

'i' C apparition de I"étranglement
Fm4+-—-—————-—-
Fel . A D
| rupture,
| i
|
| |
5 |
" |
I
| |
! :
0 | >
ZONE DE STRICTION
. Zone | i . !
I
_Elast que zone de déformation plastigue

Figure 1.6. Courbe de traction (force-déformation) pour la zone de stinction.

Entre « A » et « C » le fait d’allonger encore 1’éprouvette, augmente en conséquence

I’effort de traction.

En « C » D’effort de traction atteint son maximum. Celui-ci est noté¢ « Fm » et est appelé
effort maxi de traction.
Pour tous les métaux, on définit une résistance a la rupture comme étant le rapport de Fm

par I’aire la section utile So de I’éprouvette. Cette résistance a la rupture est notée or :

O, = (L5)
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. Etranglement et la zone de striction :

Au moment ou I’effort de traction atteint son maximum (en « C ») commence une

réduction de diamétre tres visible de 1’éprouvette en son milieu.

Ce phénomene correspond a un réarrangement atomique qui provient d’un glissement des

particules.

Entre « C » et » D » le déplacement relatif des 2 tétes d’amarrage (allongement de
I’éprouvette) ne provoque plus une augmentation de I’effort de traction mais une diminution.

En «D» il se produit une rupture brutale de I’éprouvette.
¢) Exploitation des résultats de ’essai de traction

e Détermination du coefficient d’allongement A% :

o
e ] ;k -------- _,' . 1_ — = Ruprture ductile
\ ’ A LO y =
> — oy —
S“<SO: [< Lu "

K

Rupture ductile

\

Rupture fragile

Figure 1.7 : Eprouvette de traction cylindrique et de son évolution en cours d’essai

Soit Lo : longueur initiale (la distance entre les deux repéres A et B tracés sur 1’éprouvette

avant I’essai).

Soit Lu : longueur ultime (longueur [A, B] mesurée en raboutant les deux morceaux de

I’éprouvette cassée).

On définit un indicateur sur la ductilité du matériau en calculant le coefficient

d’allongement noté A%.
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A%:ﬁxmo

0

(L6)

Tableau I.1 : la classification des matériaux selon le coefficient d’allongement

> 5 % | les matériaux sont considérés comme ductiles.
A%

<5 % | les matériaux sont considérés comme fragiles ou «cassants.

e Détermination du coefficient de striction Z%

So : Section initiale (calculée en mm? & partir du diamétre « do » mesuré entre les deux
reperes A et B tracés sur I’éprouvette avant 1’essai.

Su : Section ultime (calculée en mm? a partir du diamétre « du » mesuré a I’endroit de la
cassure de I’éprouvette cassée.

On définit un autre indicateur sur la ductilité du matériau en calculant le coefficient de

striction noté Z%

7% = Sy =% %100

0

(L7)

e Module d'élasticité longitudinale E

Il caractérise la pente de la droite de proportionnalité précédente donc 1'élasticité du

matériau testé. Plus E est grand, plus le matériau est rigide et inversement.

conftrainte £
[ W =§ c
Gr - q-._ —_— N —
Ly I
o I
e | o
= l rupture,
=F |
5 | |
= ' pente de | |
£ la droite 0A - |
S/ | E—tan¥ !
|
¥ | I
I I
| -
o déformations E:f‘—é
zone )
elastigue | zone de déformation plastique

Figure 1.8 : Lois de comportement (contrainte déformation)

La forme de la courbe donnant la contrainte ¢ en fonction de I’allongement unitaire €

est identique aux échelles pres, a celle enregistrée sur la machine de traction.
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e En lieu et place de la force maxi « Fm » nous retrouvons la résistance a la rupture or
e En lieu et place de la force limite élastique « Fe » nous retrouvons la résistance

¢lastique Ge.

Dans la zone ¢lastique il y a proportionnalité entre la contrainte et I’allongement unitaire

(OA est une droite).

L’équation de cette droite est de type « 6 = E. € » ou « E » est le coefficient directeur de la

droite. Si « ¥ » est I’angle d’inclinaison de cette droite alors E = tan ¥

La loi de proportionnalité entre la contrainte et 1’allongement unitaire est appelée loi de

HOOKE. Elle s’écrit :
o=FExe¢g (I.8)

E : Module d’¢élasticité¢ longitudinale ou encore module de YOUNG. Ce module est une

constante pour chaque famille de matériaux

Tableau L.2 : Valeur typique du module d'élasticité pour différent métaux.

Matériaux Module d'élasticité (GPa)
Acier Carbone 210
Fer 211
Alliage de cuivre 124
Cuivre 130
Alliage d'aluminium 72
Aluminium 70

1.2.2. Essai de fluage

Le fluage est le phénomene physique qui provoque la déformation irréversible différée
c'est-a-dire non-instantanée) d’un matériau soumis a une contrainte constante (notée c0),
inférieure a la limite d'élasticité du matériau, pendant une durée suffisante. Le fluage ainsi que
la relaxation de contrainte sont deux méthodes en quasi statique de caractérisation des

matériaux visqueux (cas du béton).


https://fr.wikipedia.org/wiki/D%C3%A9formation_d%27un_mat%C3%A9riau
https://fr.wikipedia.org/wiki/D%C3%A9formation_plastique
https://fr.wikipedia.org/wiki/Mat%C3%A9riau
https://fr.wikipedia.org/wiki/Contrainte
https://fr.wikipedia.org/wiki/Limite_d%27%C3%A9lasticit%C3%A9
https://fr.wikipedia.org/wiki/Loi_de_comportement#Fluage_et_relaxation_de_contrainte
https://fr.wikipedia.org/wiki/Relaxation_de_contrainte
https://fr.wikipedia.org/wiki/Caract%C3%A9risation_des_mat%C3%A9riaux
https://fr.wikipedia.org/wiki/Caract%C3%A9risation_des_mat%C3%A9riaux
https://fr.wikipedia.org/wiki/B%C3%A9ton
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12.2.1. Eprouvettes

Les éprouvettes de fluage sont analogues a celles utilisées en pour les essais de traction
uniaxiale ordinaires : éprouvettes cylindriques ou plates, encore que d'autres géométries
peuvent étre utilisées selon la disponibilité du matériau ou les contraintes géométriques. Il est
préférable, toutefois, étant donnée la faible vitesse de déformation, de disposer d'éprouvettes

relativement longues pour augmenter la précision de la mesure du déplacement.

1.2.2.2. Dispositif d'application de la charge

Lors d'une expérience de fluage, il est plus courant de travailler a charge qu'a contrainte
constante, toutefois il est possible d'effectuer des essais a contrainte constante, ce qui
implique de faire varier la charge appliquée au fur et & mesure de la déformation de
I'échantillon. Les dispositifs de fluage sont généralement composés d'un poids et d'un bras de
levier relié a un mors sur lequel 1'éprouvette est fixée (figure 1.9 montre un montage de fluage
type). 11 faut porter une attention particuliere a l'alignement des tétes d'amarrage, afin de
limiter les moments de flexion imposés a 1'éprouvette (la norme ASTM recommandé une
déformation en flexion inférieure a 10 % de la déformation axiale). Une étape sensible de

l'essai de fluage est la mise en charge qui doit étre accomplie de fagon soignée pour éviter de

perturber 1'essai.

L'éprouvette doit déja étre a la température de l'essai pour cette opération. La mise en
charge peut étre réalisée soit de maniere "instantanée" pour s'approcher de la courbe théorique
de fluage, mais cela peut entrainer une perturbation du dispositif de mesure de la déformation
ou un effet de choc sur 1'éprouvette qui entraine l'apparition d'un transitoire. Autrement, on
peut procéder a un chargement progressif qui a I'avantage d'étre reproductible, soit par paliers
discontinus (ajout de masses), soit en augmentant continiiment la charge, typiquement a l'aide

de petites billes de plomb.
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& | balancier

four

echantillon

& R ==

A systeme de
pilotage

Figure 1.9 : Dispositif d'essai de fluage.
12.2.3. Four

Les fours utilisés sont en général des fours tubulaires a résistance électrique qui chauffe par
radiation. Les variations de température ayant un impact fort sur les résultats de fluage, il est
important d'assurer un contrdle précis de la température (la norme fixe une variation
maximale de = 1,7°C au-dessous de 980 °C et + 2,8 °C au-dessus. La montée en température a
elle seule peut durer plusieurs heures pour éviter de dépasser la température d'essai, ce qui
invaliderait les résultats. La mesure de température est généralement effectuée par un
thermocouple fixé sur I'échantillon. Les éprouvettes longues peuvent imposer d'utiliser

plusieurs thermocouples afin de s'assurer de I'homogénéité de la température.
1.2.2.4. Mesure du déplacement

La mesure du déplacement est effectuée par Extensométrie. Dans le cas des essais de
fluage, la température élevée interdit le plus souvent de placer I'extensometre directement

dans le four et on utilise un systéme de tiges capables de supporter la température d'essai,

11
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transférant la déformation a un LVDT comme présenté sur la figure 1.10. Il est aussi possible
de faire appel a de 1'Extensométrie sans contact, ce qui implique de disposer d'une fenétre

dans le four pour suivre le déplacement des points de la surface pris comme reperes.

micromeétre
d'ajustement

Zone utile de I'éprouvette

Figure 1.10 : Dispositif de mesure de la déformation pour essai de fluage.

1.2.2.5 Résultats types

Lorsqu’une éprouvette est soumise a une traction simple (essai monodimensionnel sous
une contrainte ¢ et une déformation €), si, a partir d’un certain état, la contrainte est
maintenue constante, la déformation restera constante (absence de déformations différées dans
le temps) s’il n’y a aucune viscosité. Lorsqu’on dépasse le tiers de la température de fusion
dans les alliages métalliques, on observe au contraire des déformations liées au caractére
visqueux du comportement. On distingue classiquement 3 stades dans un essai de fluage,

comme indiqué sur la figure [.11.a.

e Fluage primaire (I), ou transitoire, pendant lequel la vitesse de déformation diminue
avec le temps, ce qui traduit une augmentation de la résistance du matériau. Cette
tendance provient en général d’un accroissement de la densité de dislocations
jusqu’a saturation.

e Fluage secondaire (II), ou stationnaire, pendant lequel la vitesse de déformation se
stabilise. Cette phase correspond a I’équilibre atteint entre les phénomenes de

durcissement et ceux de restauration a 1’échelle des dislocations.

12
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e Fluage tertiaire (III) ou la vitesse de déformation augmente jusqu’a rupture de
I’éprouvette. La densité et la mobilité¢ des dislocations augmentent. En paralléle,
des phénomenes de cavitation interne et d’endommagement en surface vont mener
a la création de fissures. Ces dernieéres vont diminuer la surface portante de

I’éprouvette entrainant la rupture par augmentation de la contrainte macroscopique.

€A

Rupture

Fluage
Primaire
.

1

K Fluage secondaire
'
1

Fluage
Tertiaire

temps

Figure I.11.a : Courbe schématique représentant les différents stades de fluage
La figure 1.11.b montre quant a elle le résultat obtenu pour différents niveaux de

chargement sur une fonte a 800°C.

o=12MPa =
o= 16MPa f
a=20MPa ;
o=25MPa =

.01

u
OIS |y

| |
1 800 EOD 1000
Lis)

Figure I.11.b : Fluage d’une fonte a 800°C.
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1.2.3. Essai de résilience

1.2.3.1. Objectif et principe de l’essai

La connaissance des caractéristiques mécaniques déduites de I’essai de traction peut étre
insuffisante, puisque des ruptures peuvent €tre obtenues en dessous de la limite d’élasticité

dans des conditions particulieéres qui rendent le matériau fragile. Les facteurs fragilisant sont :

e Le triaxialité des contraintes ;
e [ ’abaissement de la température ;

e L’augmentation de la vitesse de déformation.

Le principe de 1’essai consiste a rompre par choc du mouton pendule une éprouvette
entaillée reposant sur deux appuis. On détermine 1’énergie absorbée caractérisant la résistance
aux chocs du matériau métallique essayé. La résistance aux chocs, donc I’énergie nécessaire

pour produire la rupture de 1’éprouvette, exprimée en joule par centimeétre carré.

Energie absorb¢ par rupture (J)

Résilience = (1.9)

Section au droit de 'entaille (cm?)

1.2.3.2. Eprouvette

L'effet de la forme de 1'éprouvette sur 1'énergie de rupture est trés prononce. La Figure 1.12
montre les formes et dimensions géométriques de 3 types d'éprouvettes standardisées. Elles
ont toutes une longueur de 55 mm et une section nominale de 10 x 10 mm?, mais se
distinguent dans leur forme et leur profondeur d'entaille qui se trouve sur le cote oppose a
l'endroit ou le marteau frappe (Figure 1.13). Elle a pour objet de garantir un état de contrainte
triaxiale, déja lors de l'amorcgage de la fissure, plutdt que de provoquer l'effet d'entaille. C'est
pour cette raison que le fond de l'entaille n'est pas pointue mais cylindrique (rayon de 0.25 ou
de 1 mm selon type d'éprouvette). L'aire de la section restant a 1'endroit de I'entaille est, selon
la définition de la résilience ako, la section a utiliser pour le calcul de sa valeur. Notez que
seuls des résultats obtenus sur des éprouvettes de dimensions identiques devraient étre
compares. Il n'y a pas de méthode générale de conversion de valeurs de résilience, obtenues

par une méthode d'essai, en valeurs qui seraient obtenues par une autre méthode d'essai.

14
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< 55 > <10>
7 R 1.0 P! 10
VSM 3 W

T2s

<3 <10>
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ISO-U R 1.0 { 10
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< 55 > <10>
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ISO -V (R0.25 y 10
W

L \45 Ta

Figure 1.12 : Eprouvettes Charpy standardisées.

1.2.3.3. Principe de [’essai

Un marteau de masse m est fixé a I'extrémité d'un pendule (figure 1.13). Ce pendule peut
tourner dans le plan vertical autour d'un axe horizontal. L'éprouvette repose sur un support et
se trouve au point le plus bas sur la trajectoire du marteau. Pour effectuer un essai, on écarte
le bras jusqu'a ce que le marteau atteigne sa position initiale P et on le lache. Quand le
pendule vient frapper 1'éprouvette, il a une énergie cinétique qui est égale a I'énergie
potentielle qu'il avait a sa position de départ (mgH), H étant la hauteur du marteau par rapport
a sa position d'équilibre. Apres la rupture, le marteau remonte. Dans son point culminant
(hauteur h), 1'énergie cinétique résiduelle s'est de nouveau transformée en énergie potentielle

(mgh). L'énergie K dépensée ou absorbée pour rompre 1'éprouvette vaut alors :

Avec : mg est le poids de la pendule, W =mg (H —h) (I.10)

’ Graduation angulaire du cadran
Axe d’articulation 8

du pendule

Pendule en position initiale

Pendule en position

finale

Pendule au moment du choc

Eprouvette contre I'éprouvette

Figure 1.13 : Principe de 1’essai (en haut) et du montage de I’éprouvette (en bas).
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1.2.3.4. Machine de [’essai

Le mouton Pendule Charpy permettant de réaliser des essais de résilience avec une
capacité disponible qui peut atteindre 750 J selon les versions. L'essai permet de déterminer
'énergie absorbée lors de la rupture d'une éprouvette entaillée. Le pendule est constitué d'une
base en fonte et de deux colonnes d'appui pour le support des éprouvettes CHARPY, un
mouton-pendule avec son bras, un systéme de levage du mouton motorisé et un mécanisme de

déclenchement (figure 1.14).

Un afficheur numérique permet la lecture de I'énergie absorbée par I'éprouvette testée et un
frein motorisé assure la réaction sur le mouton en ralentissement rapide des oscillations.
L'équipement est disponible en différentes versions; 150, 300, 450 et 750 Joules et avec
différents couteaux d'impact pour répondre aux normes en rigueurs. La sécurité est assurée
par un carter de protection transparent avec micro contacteur de sécurité conforme aux

normes CE.

1.2.3.5. Conduite de [’essai et exploitation des résultats

Le plan d’oscillation du mouton doit passer sensiblement par le centre de gravité de la
cabote. Le point d’impact coincide avec le centre de percussion du mouton. Pour 1’essai
normal, I’énergie disponible du mouton doit étre égale 294 Joule. La résilience obtenue avec

un tel mouton est désignée par le symbole K.

L’éprouvette est placée sur le porte-éprouvette de telle sorte que I’aréte du couteau vienne
la frapper dans le plan de symétrie de I’entaille et sur la face opposée a celle-ci. La valeur
qu’en donne la quantité K est alors généralement approchée par exces en raison du frottement
des extrémités de I’éprouvette sur les portes-éprouvettes ; mention de cette particularité doit

donc, le cas échéant, accompagner les résultats d’essai.

S Tavteur de remontée]a vide ::, P i
[} couteau /

barreau entaillé
/ 2 mi-profondeur

—_

L

/'
// &
¥ 4
e
:i§§§§
verticale
AN
~
~
4 cm
_|_ [
x
55 cm

H métres /
couteau frappant
) du coté np{:qse
auteur de remontée / / a l'entaille
apvﬁs bris du barfeau ,/
S | (impact) // 4
T / -
Sa = / ST 1cm
. o a—— — »
\ l

1cm

> barreau T~ couteau

0.5 cm

Figure 1.14 : Disposition avant et apres I’essai Charpy
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En principe, il serait bien utile de connaitre les contraintes critiques qui provoquent la
rupture sous l'effet d'un choc. Néanmoins dans la pratique et dans la théorie, le phénomene de
la rupture dynamique est trés complexe. Méme au niveau expérimental, la détermination d'une
contrainte critique s'avére déja extrémement difficile. Comme la fissuration sous l'effet du
choc avance a trés grande vitesse et que de ce fait les contraintes montent et descendent
presque instantanément, leur mesure exacte n'est pratiquement pas possible. On doit

reconnaitre que les contraintes du choc se transmettent par une onde acoustique.

L’essai s’effectue a la machine d’essai (figure 1.15) dont la construction et I’installation
doivent étre rigides et convenir a la norme en vigueur. La machine est équipée par 1’échelle
prévue pour le mesurage de I’énergie de choc. Dans les conditions standard 1’essai s’exécute a
une température de 23*° °C, et avec une énergie initiale nominale de la machine : Wo = 300*°
Joules. Tout d’abord, le Mouton pendule est mis en position initiale a une hauteur ho qui

correspond ainsi a une énergie de départ Wo.

Figure 1.16 : Exemple des éprouvettes apres 1’essai de résilience.
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I.3. Essais multiaxiaux

Les essais multiaxiaux apportent une information précieuse pour tester les modeles de
déformation, mais ils sont malheureusement peu pratiqués en raison des difficultés
expérimentales. Les essais possibles, classiquement, sont les essais de traction (ou
compression) - torsion, les essais de traction bi axiale et les essais de compression triaxiale.
L'essai de traction cisaillement est le plus riche pour tester les aspects d'anisotropie. Nous

présenterons ici les essais de traction bi axiale et les essais de traction - torsion.

Les essais multiaxiaux peuvent étre effectués suivant deux modes : en phase ou hors phase,
selon que l'éprouvette subit simultanément ou non les différentes sollicitations. Les
déplacements et les forces appliquées peuvent enregistrées de la méme fagon que dans le cas
des essais de traction uniaxiale. Ces essais sont utilisés soit dans des conditions quasi

statiques soit dans le cadre d'essais de fatigue multiaxiale.

1.3.1. Traction bi axiale

Les essais de traction bi axiale consistent a exercer une contrainte dans deux directions
perpendiculaires sur une méme ¢éprouvette. Ceci impose d'utiliser des éprouvettes
cruciformes, comme celle présentées figure (I.17). Pour réaliser des états de contrainte
uniformes, il faut que les bras de la croix aient des rigidités transversales assez faibles, ce que

l'on peut obtenir en les évidant.

Figure 1.17 : éprouvette de traction biaxiale montée.

18
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1.3.2. Traction-torsion

Ce type d'essai permet d'étudier des trajets de chargement avec modification des directions
principales des contraintes. La machine est constituée d'un vérin linéaire et d'un vérin torique
avec dispositif de découplage. La figure (I.18) présente un dispositif de traction-torsion du
Centre des Matériaux et un exemple de chemin mécanique dans l'espace des contraintes

pouvant €tre appliqué a une éprouvette.

Figure 1.18 : dispositif de traction-torsion du Centre des Matériaux.

1.4. Exercices
> Exercice 1

On réalise un essai de traction sur une éprouvette d’un certain métal. L aire de la section
est S= 39,41 cm? et la base de mesure vaut L = 200 mm. Les appareils de mesure fournissant
les valeurs suivantes (charge F, allongement AL).

Mesure N° 1 2 3 4 5 6 7 8 9 10 11
F [KN] 200 | 400 | 600 | 800 | 1000 | 1100 | 1200 | 1250 | 1300 | 1350 | 1380
AL [mm] 0.142 | 0.280 | 0.422 | 0.661 | 0.702 | 0.771 | 0.864 | 0.948 | 1.200 | 1.710 | 2.501

1) Tracer le diagramme (o, €) du matériau.
2) En déduire la valeur du module d’¢lasticité E. De quel métal s’agit-t-il probablement ?
3) En déduire la valeur de la limite d’élasticité conventionnelle Geo..

Calculer le coefficient de striction Z% si la section Du a la rupture est Su=11.66 mm

19
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Solution Exercice n° 01 :

Tracage du diagramme (o, €) du matériau :

F 2
O':S_(KN/m) 5.07 | 10.15 | 15.22 | 20.30 | 25.37 | 27.91 | 3045 | 31.72 | 32.99 | 24.26 | 35.02

0

AL
g=—

i /) 071 | 1.40 | 2.11 | 331 | 351 | 3.86 | 432 | 474 | 6.00 | 855 | 12.51
0

40,00 Ce0.2

3500 & o

30,00

25,00
Pour déterminer o, ,il faut
tracer une ligne // a la phase
élastique a partir de € =2%o

20,00
15,00

Contrainte o (Gpa)

10,00
5,00

- 2.00 4.00 6,00 8,00 10,00 12,00 14,00
Déformation (%o )

Courbe de loi de comportement

2. Détermination de la valeur de E :

tanp=F :15’—00_3 =7212KN / m?
2.0810
11 s’agit d’alliage d’aluminium (Voir tableau- Rappel du cours).

3. Détermination de la limite d’élasticité conventionnelle &, , :

0,0, =33.50KN / cm?

4. Calcul du coefficient de striction :

11.66-39.41
3941

Z% =

‘x 100 =70.42%

> Exercice 2
On réalise un essai de traction sur une éprouvette d’acier 1060 de longueur Lo=100 mm et

de diamétre D=12 mm d’acier a I’état recuit. Les vues générale et agrandie de la courbe brute

de traction F = f(Al) sont données par les courbes suivantes :
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100
Acier 1060
90 B (vue générale) I ———
80
70
Z 60
£ /
L 50
o
2
o 40
'S
30
20
10
0

0.0 5.0 20.0 25.

10.0 156.0
Allongement Al (mm)

1- Quelle est la valeur du module d’Young E (en GPa) de I’acier 1060 ?
2- Quelle est la limite proportionnelle d’¢lasticité . (en MPa) de 1’acier 1060 ?

3- Quelle est la limite conventionnelle d’¢élasticité ceo2 (en MPa) de 1’acier 1060 ?

Force F (kN)

60

50

40

30 f

20 E

10 k

4- Quelle est la résistance a la traction om (en MPa) de I’acier 1060 ?

Allongement Al (mm)

Acier 1080
(vue agrandie) [
0.1 0.2 0.5 0.6

5- Quelle est la valeur de la déformation permanente A (en %) aprés rupture de 1’éprouvette ?

Solution de ’exercice N° 2 :

1. La valeur du module d’Young E :

E =tg(p) = 235GPa

2. La limite proportionnelle d’élasticité .

o, = i = £ = 354MPa
N S 12
7T
4

3. La limite conventionnelle d’élasticité ceo,2 :

F, F, 50x10°
Oz = g‘z = - e = i = 442.1MPa
4 4

4. La résistance a la traction 6m:

3
o = Foa 88107 o0y b,
m S 122
72'7
4

5. La valeur de la déformation permanente A :

A=%=£x100=23.5%

0
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60
Acier 1060
E (vue agrandie) I—
50
E Foo2 —
a0 F
z f[Fe /
= E
™ E
s 30 3
8 f
[V
20 /
10
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6

> Exercice 3

Force F (kN)

100

a0

B0

T

30

20

10

Acier 1060
H (u1e générale)

Fr,

Fy

0.0 5.0

10.0 15.0 20.0

ALt

On procede a un essai de résilience sur une éprouvette E a 'aide d'un mouton pendule dit
de Charpy. Le marteau est laché sans vitesse initiale a partir d'une position horizontale ; on

note Go la position initiale du centre de gravité. Le centre de gravité décrit I'arc G E , et,

apres rupture de 1'éprouvette, décrit I’arc EG

Données :

Masse du bras marteau m = 40 kg.
Angle de remontée 6 = 20°.
Longueur: OGo = 800 mm.

Section de 1'éprouvette S = 0,7 cm?.

1. Déterminer I'énergie initiale.
2. Apres le choc, le marteau s'écarte de ’angle 0.

a. Calculer OH ;
b. En déduire h; ;

c. Calculer I’énergie absorbée par la rupture de I’éprouvette.

3. Calculer la résilience de 1'échantillon.

Solution de I’exercice N° 3 :

1. Energie initiale:
W, =M-g. hy= 40.981. 08 = 31392]
2.

a) Calcul de OH:

OH
cosf = o0 —= OH =cos B.0G'

!
OH =cos20. 0,8 - 0H =0,75m

b) Calcul de ha:
h, = OE—0H = h, = 0,8—0,75
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h, = 0,05m
c) Calculer I’énergie absorbée par la rupture de I’éprouvette:

W, = mg(h —h,) — W, =40x9.81x(0.8—0.05) = 294.3

3. Calcul de la résilience de 1'échantillon :

W. 2943 )
KCU = Z~ = = 420,43 J/cm

5 0,7
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Les modeles rhéologiques
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II.1. Généralité

Les modeles rhéologiques sont utilisés pour modéliser le comportement d’un matériau,
c’est-a-dire pour simuler sa réponse a une sollicitation mécanique. Concernant la
viscoélasticité linéaire, des modeles analogiques empiriques ont été proposés ; ils sont
composés d’une combinaison de connexions en série et/ou parallele de ressorts (de
coefficients d’¢lasticité E;) et d’amortisseurs (de coefficients de viscosité i) élémentaires,
représentant les composantes élastique et visqueuse, respectivement. Il existe des modeles
performants pour décrire la viscoélasticité, approchant de fagcon satisfaisante les courbes de
caractérisation meécanique, mais de complexit¢ mathématique ¢élevée. Certaines lois de
comportement sont intégrées dans des logiciels de calcul par éléments finis traitant la
viscoélasticité. Les fluides viscoélastiques peuvent aussi étre représentés par des modeles

analogiques ¢électriques.

I1.2. Les briques de base du comportement non linéaire

L’allure qualitative de la réponse des matériaux a quelques essais simples permet de les
ranger dans des classes bien définies. Ces comportements de base, qui peuvent Etre
représentés par des systémes mécaniques ¢lémentaires, sont 1’élasticité, la plasticité et la
viscosité. Les éléments les plus courants sont reportés en figure 1.1, ou le point au-dessus

d’une variable désigne la dérivée temporelle :

1. Le ressort, qui symbolise I’¢lasticité linéaire parfaite, pour laquelle la déformation est
entierement réversible lors d’une décharge, et ou il existe une relation biunivoque entre les

parametres de charge et de déformation (figure II.1.a).

2. L’amortisseur, qui schématise la viscosité, linéaire (figure II.1.b) ou non-linéaire
(figure II.1.c). La viscosité est dite pure s’il existe une relation biunivoque entre la charge et la

vitesse de chargement. Si cette relation est linéaire, le modele correspond a la loi de Newton.

3. Le patin, qui modélise I’apparition de déformations permanentes lorsque la charge est
suffisante (figure I1.1.d). Si le seuil d’apparition de la déformation permanente n’évolue pas
avec le chargement, le comportement est dit plastique parfait. Si, de plus, la déformation

avant écoulement est négligée, le modele est rigide—parfaitement plastique.
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a <
c. % <]: o =nil/N
ﬁ 1 Oy =0 =0,
d

Figure I1.1. Les modé¢les de base pour la représentation des comportements

Ces ¢léments peuvent étre combinés entre eux pour former des modeles rhéologiques.
Ceux-ci représentent des systémes mécaniques qui servent de support dans la définition des
modeles. Il ne faut en aucun cas leur accorder un trop grand crédit pour ce qui concerne la
représentation des phénomenes physiques qui sont a la base des déformations. Ils sont
néanmoins briévement présentés ici, car ils permettent de comprendre la nature des relations a
introduire pour chaque type de comportement, en pratiquant par exemple l’exercice qui
consiste a combiner deux a deux les modeles élémentaires. C’est aussi I’occasion d’introduire
I’ensemble du vocabulaire qui sera utile dans le cas général des -chargements
tridimensionnels. En fonction du type de chargement imposé, la réponse de ces systémes peut

étre jugée dans 3 plans différents :

¢ Plan déformation—contrainte, e—G, pour 1’essai de traction simple, ou d’écrouissage,
augmentation monotone de la charge ou de la déformation ;
e Plan temps—déformation, T—¢, pour I’essai de fluage, sous charge constante ;

e Plan temps—contrainte, T—c, pour I’essai de relaxation, sous déformation constante.
I1.3. Plasticité uniaxiale
I1.3.1. Modéle élastique—parfaitement plastique
L’association d’un ressort et d’un patin en série (figure 1.2 a) produit un comportement

¢lastique parfaitement plastique, modélisé en figure 1.2 c. Le systéme ne peut pas supporter

une contrainte dont la valeur absolue est plus grande que &,,. Pour caractériser ce modg¢le, il

faut considérer une fonction de charge f dépendant de la seule variable o, et définie par :
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f(a) = lol—og, (IL1)

Le domaine d’¢lasticité correspond aux valeurs négatives de /', et le comportement du

systeme se résume.

(H)

() (E)

DD IDDIE

Figure I1.2. Associations en série ou parall¢le de patin et ressort.

Alors aux équations suivantes :

e Domaine d’élasticitési: f < 0 (£ = £z = g /E) (IL.2)
e Décharge élastiquesi: f= 0etf< 0(& = £z =6/E) (I1.3)
e FEcoulement plastiquesi: f = 0etf = 0 (g = =F) (IL.4)

En régime ¢lastique, la vitesse de déformation plastique est bien entendu nulle, la vitesse
de déformation élastique devenant a son tour nulle pendant 1’écoulement plastique. Ceci
implique que I’expression de la vitesse de déformation plastique ne peut pas se faire a I’aide
de la contrainte. C’est au contraire la vitesse de déformation qui doit étre choisie comme

pilote.

Le modéle est sans écrouissage, puisque le niveau de contrainte ne varie plus au sortir du
domaine d’¢lasticité. 11 n’y a pas d’énergie stockée au cours de la déformation, et la
dissipation en chaleur est €gale a la puissance plastique. Le mod¢le est susceptible d’atteindre
des déformations infinies sous charge constante, conduisant a la ruine du systéme par

déformation excessive.
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I1.3.2. Modé¢le de Prager

L’association en parall¢le de la figure 2.2b correspond au comportement illustré en figure
I1.2.d. Dans ce cas, le modéele présente de I’écrouissage. Il est dit cinématique linéaire (Prager,
1955), car dépendant linéairement de la valeur actuelle de la déformation plastique. Sous cette
forme, le modele est rigide— plastique. Il devient élasto-plastique si 1’on rajoute un ressort en

? est due au fait que, lors de 1’écoulement

série. La forme de la courbe dans le plan o — &
plastique, la contrainte qui s’établit dans le ressort vaut X = He’. Par ailleurs, cet
écoulement ne se produit que si la valeur absolue de la contrainte dans le patin, soit
|o — He® |, est égale a 6. Pour une déformation donnée, cette contrainte X est une contrainte

interne qui caractérise le nouvel état neutre du matériau.

Ce deuxieme exemple offre 1’occasion d’écrire un modele plus complet que
précédemment. La fonction de charge dépend maintenant de la contrainte appliquée et de la

contrainte interne. Elle s’écrit

flo.X) = |lc—X|—g, (IL5)

Il n’y aura présence d’écoulement plastique que si on vérifie & la fois f = QOet f = 0.

Ceci conduit a la condition suivante :

d af .
do ax (I1.6)
D’ou :
signe(oc —X) 6+ signe(c —X) X = 0 (I1.7)
. ) p _ &
g = X et finalement & == (11.8)

Dans ce cas, la contrainte augmente au cours de I’écoulement plastique, si bien qu’elle peut
servir de variable de controle. Mais il est aussi toujours possible d’exprimer la vitesse
d’écoulement plastique en fonction de la vitesse de déformation totale, en utilisant la
décomposition de la déformation combinée avec 1’expression de la vitesse de déformation

plastique, le cas ou H = 0 redonnant bien entendu le cas du matériau parfaitement plastique :

=L ; (11.9)
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I1.4. Viscoélasticité uniaxiale
I1.4.1. Un exemple de modéle rhéologique

Le modele de Maxwell regroupe un amortisseur et un ressort en série (figure 11.3.a), celui
de Voigt un amortisseur et un ressort en paralléle (figure I1.3.b). Leurs équations respectives

sont :

=  Maxwell
10
n ( )

= Voigt
og—He
g = He+ns, ouencore: § = ——— (IL11)
n
La particularité du modele de Voigt est de ne pas présenter d’élasticité instantanée. Ceci

entraine que sa fonction de relaxation n’est pas continue et dérivable par morceaux, avec un

saut fini a ’origine :

L’application d’un saut de déformation en t = 0 produit une contrainte infinie. Ce modele
n’est donc pas utilisable en relaxation, sauf si la mise en charge est progressive, et sera pour
cette raison associ¢ a un ressort en série pour effectuer des calculs de structure (modele de
Kelvin—Voigt du paragraphe suivant). Sous ’effet d’une contrainte 6o constante en fonction
du temps, la déformation tend vers la valeur asymptotique co/H, le fluage est donc limité
(figure 11.3.c). Par ailleurs, si, aprés une mise en charge lente, la déformation est fixée a une
valeur €o, la contrainte asymptotique sera (H*go). Il n’y a donc pas dans ce dernier cas
disparition compléte de la contrainte. Au contraire, dans le cas du modele de Maxwell, la
vitesse de fluage est constante (figure I1.3.c), et la disparition de contrainte au cours d’une

expérience de relaxation est totale (figure 11.3.d).
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(H)
gg m) (Eo)
m)
a. Maxwell b. Voigt
€ c
Maxwell
co/Eo Eogo
co/H
Voigt Maxwell
t t
c. Fluage d. Relaxation

Figure I1.3. Fonctionnement des mod¢les de Maxwell et Voigt.

11.4.2. Ecriture générale des équations de I’élasto-plasticité uniaxiale

Dans le cas général, les conditions de «charge—décharge» s’expriment donc :

v Domaine d’élasticité si: f(o,4,)<0 ((;: —c/ E) (I1.12)

v Décharge élastique si: f(o,4)=0 et f(o,4)<0  (&=0/E) (IL13)

P

v Tfcoulement plastique si: f(0,4)=0 et f(0,4)=0 (e=c/E+e ) (IL14)

Dans le cas général, le module H dépend de la déformation et/ou des variables
d’écrouissage. La valeur du module plastique au point (c,A;) s’obtient en écrivant que le point
représentatif du chargement reste sur la limite du domaine d’élasticité au cours de

I’écoulement. L.’équation qui en découle s’appelle la condition de cohérence :

f(o,4)=0 (IL15)

Ce formalisme peut paraitre un peu lourd dans le cadre d’un chargement uniaxial, mais il
est utile de le mettre en place, car ce sont les mémes outils qui seront ensuite utilisés dans le
cas plus complexe des chargements multiaxiaux. Dans les deux exemples qui ont été décrits,
le domaine d’¢lasticité est soit fixe, soit mobile, sa taille étant conservée. Le premier cas ne

nécessite bien entendu aucune variable d’écrouissage, le second fait intervenir une variable X
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qui dépend de la valeur actuelle de la déformation plastique. Cette variable deviendra
tensorielle dans le cas général.

11.4.3. Modéles composés

11.4.3.1. Modele de Kelvin—Voigt

Il présente respectivement les réponses suivantes, pourz >0 , en fluage sous une

contrainte 60, en posantz, =7/ H , et en relaxation pour une déformationg¢,, en posant

t,=n/(H+E,) :

1 1 t
e(t)=C@)o, = ffﬁ(l_exl{_ZD opt (11.16)
H E t
ot)=E(t)s, = H+E0+H+OEO [exp|:—;:|} E.g, (IL.17)
(H (Ep)
BoaG06a00 LODIDE DR
—000 ﬂ“?’ﬂﬁ“i{ (n) . m

"TWH —

A, K:.‘l\"i'l'l—"r[]'l gt b. Zener

Figure I1.4. Exemple de modeles composés
11.4.2.1. Modele de Zener :

Il peut se ramener au modele de Kelvin—Voigt, a ’aide du double changement de variable

! ! +1 tE E, +H
_— — ,e 2 =
E, E, H ’ (IL18)

Ce qui prouve que les deux modéles sont en fait identique. La méme observation peut étre
faite en fluage. Ce modele correspond au comportement du béton frais. Les modéeles indiqués

peuvent tre encore améliorés :
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e Le modele de Kelvin—Voigt généralisé est obtenu en ajoutant en série d’autres
modules amortisseur-ressort (H, 1) dans le cas du premier modele; ce modele
représente en général correctement le comportement des polymeres fortement
réticulés.

e Le modele de Maxwell généralisé est obtenu en ajoutant en paralléle d’autres
modules amortisseur-ressort (E2, 1) au second modele ; ce modele représente

qualitativement le comportement des polymeéres thermoplastiques.

I1.5. Exercices
> Exercice 1

On consideére un modele viscoélastique de Maxwell, composé par I’assemblage en série

d’un amortisseur de viscosité 77 et d’un ressort de module E.
1) Donner I’équation qui caractérise le comportement de ce modele.

5 E

[ [F—svsrsmsrn—

Solution de I’exercice n°01 :

L’association du patin et du ressort est en série, donc:
0, =0, =03

E=¢ +¢&,
Pour le patin:
o=n.c
Pour le ressort:
o=F-¢
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. n -
E=0+—0
7 E

> Exercice 2

On considére un modele viscoélastique de Kelvin-Voigt, composé par I’assemblage en
série d’un amortisseur de viscosité 7 et d’un ressort de module E.

1) Donner I’équation qui caractérise le comportement de ce modele.

E

LRI he

F n

o=

bbb
L K

Solution de ’exercice n°02 :

L’association du patin et du ressort est en série, donc:
o, =0, =0,

E=¢+¢&,
Pour le patin:
o=n.c
Pour le ressort:
o=FE-¢

L’équation qui caractérise le comportement du modéele de Kelvin-Voigt:

0':E-g+77-(;‘

L_o-ne
n
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II1.1. Introduction

Un critere de plasticité, ou critere d'écoulement plastique, est un critére permettant de
savoir, sous des sollicitations données, si une piece se déforme plastiquement ou si elle reste
dans le domaine ¢lastique. De nombreux essais ont montré que l'on pouvait utiliser deux
critéres principaux : le critére de Tresca-Guest ou le critére de Von Mises. En résistance des
matériaux, on désire parfois rester dans le domaine élastique, on parle alors de critére de

résistance.

La contrainte de comparaison n'est pas une contrainte réelle existant a un instant donn¢é a
l'intérieur d'un solide, mais elle est utilisée en mécanique pour prédire la rupture. Néanmoins,
la plupart des spécialistes 1'utilisent pour déterminer si un champ de contrainte donné dans une
picce est acceptable ou non. On parle aussi de contrainte équivalente ou de contrainte
effective. Elle découle des critéres de plasticité. Cette contrainte est comparée a la limite

d'¢lasticité ou encore la contrainte de rupture obtenue par essai de traction.

I11.2. Contraintes principales

Le tenseur des contraintes caractérise les efforts intérieurs définis pour chaque volume
unitaire de matiere. Il permet de décrire précisément 1’état de contrainte en chaque point et est

noté :

Gll 612 0-13
o(M)=|0, o0, oy (I11.1)

O3 O, O3

Sachant que les termes hors diagonale correspondent a du cisaillement, et appartenant

souvent a la base vectorielle (X, Y, Z), il peut aussi s’écrire :

o, T T
XX xy xz
G(M ) =7z, O, T, (11L.2)
sz z-yz zz

Les contraintes peuvent étre exprimées dans une base telle que le tenseur des contraintes

est une matrice diagonale : on parle de contraintes principales :
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oo 0 O
o(M)=| 0 o, 0 (I1.3)
0 0 o

Les contraintes principales permettent d'interpréter immédiatement le(s) type(s) de
sollicitations subi(s) par la matiére, traction, compression, cisaillement, a la différence des

critéres de Von Mises et Tresca comme présenté ci-apres.

e désigne les points qui peuvent se ramener a de la traction simple, (0) ceux qui peuvent

se ramener a la compression simple (par exemple un chargement biaxial, car un état ou les

seules contraintes non nulles sont 1 = %2 = 9 est équivalent 4 93 = T9), est un état de

cisaillement.

Figure III.1: Etats de contraintes caractéristiques dans le plan déviateur.

ITL.3. Critéres de Plasticité
IT1.3.1. Critére Von Mises
Le critere de plasticité permet de se positionner par rapport a la limite d’¢lasticité ce :

® gy = 0,: non-plastification, d'ou existence d'un potentiel de tenue en fatigue

e dyy = g, : plastification, potentiel de tenue en fatigue réduit, voire inexistant

Le critere de Von Mises est le plus couramment utilisé. Sous contrainte principale on

obtient :

O =|o] =%\/(01 ~0,) +(0y—0y) +(oy—0,) (IIL4)

Ou bien sous le tenseur de contraintes :
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1
o =|o]= E\/(cy” -0, )2 +(0y, — 0y )2 +(oy; -0y, )2 + 6((7122 +o7, + 0223) (1IL.5)
La fonction d'écoulement plastique peut s'écrire :

f(o)=0,, -0, (I1L6)

Ce critere prend compte des composantes de contraintes en traction, compression et
cisaillement pour donner un niveau de contrainte isotrope (le méme dans toutes les

directions).

Le critere de Von Mises n'indique pas le type de sollicitations : traction, compression,

cisaillement, ...

II1.3.2. Critére de Tresca

L’expression du critére de Von Mises fait intervenir les cisaillements maximaux dans
chaque plan principal, représentés par les quantités (g; — o;). La spécificité du critere de
Tresca est de ne retenir que le plus grand d’entre eux. Le fait de rajouter une pression a
chaque terme de la diagonale ne modifie pas, comme prévu, la valeur du critére.
Contrairement au cas précédent, cette expression ne définit en général pas une surface

réguliere (discontinuité de la normale, points anguleux) :
o, =max|o, — o | (I1L.7)
lﬁ]

La fonction d'écoulement plastique peut s'écrire :

f(o)=0,-0, (I11.8)

I11.3.3. Comparaison des critéres de Tresca et Von Mises :

Comme il n’est bien entendu pas question de se placer dans 1’espace des 6 (ou 9)
composantes du tenseur des contraintes, il faut se résoudre a ne visualiser les frontieres du
domaine d’¢élasticit¢é que dans des sous—espaces a deux ou trois dimensions. Les

représentations les plus courantes s’effectuent :
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Dans le plan traction cisaillement (figure I11.2.a), lorsque seules les composantes & = a4

et T = oy, sont non nulles ; les expressions des critéres se réduisent alors a :

e VonMises: 0, =\o’ +37° (I11.9)
o Tresca: O,=+0 +47° (I1L.10)

aj? ﬁ:
.
ﬁe | ———
i e e
'_‘;'_._' ~ 7
e / :
& % /
/ \ o o %
& foe 1 .

Figure I11.2 : Comparaison des critéres de Tresca (en pointillés) et de von Mises (traits

pleins). En traction-cisaillement, (b) En traction biaxiale

Dans le plan des contraintes principales (g3, 0;) (figure 1I1.2.b), lorsque la troisiéme

contrainte principale &5 est nulle :

e VonMises: &y, =+ (cf+ 02— 20,0,)

e Tresca: Or = O si 0=, = oy
Or =0y si 0<a0, <0y
Or = 07 05 si gy = 0= g,

Dans le plan déviateur (figure II1.1), le critere de Von Mises est représenté par un cercle,

ce qui est cohérent avec son interprétation par le cisaillement octaédral, le critére de Tresca

par un hexagone ;

Dans I’espace des contraintes principales, chacun de ces critéres est représenté par un

cylindre de génératrice (1,1,1), qui s’appuie sur les courbes définies dans le plan déviateur.
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I11.4. Critéres faisant intervenir la pression hydrostatique

Ces critéres sont nécessaires pour représenter la déformation plastique des matériaux
pulvérulents, des sols ou en présence d’endommagement du matériau. Ils expriment le fait
qu’'une contrainte hydrostatique de compression rend plus difficile la déformation plastique.
Une des conséquences de leur formulation est qu’ils introduisent une dissymétrie traction—

compression.

I11.4.1. Critére de Drucker—Prager

C’est une extension du critére de Von Mises, combinaison linéaire du deuxiéme invariant
du déviateur et de la trace du tenseur des contraintes. C’est toujours un cercle dans le plan
déviateur, mais qui dépend de I’altitude sur la trisectrice des axes o1, 62, 03 de contraintes

principales (figure 111.3.a) :

/ G, /1—a

/ Oy /o
L8] ’ b.

Figure I11.3 : Représentation du critére de Drucker—Prager, (a) dans I’espace des

contraintes principales, (b) dans le plan I1-J
flo)=(1-a)J+al, (I1.11)

Avec :

Jzﬁ\/(o] —O'2)2+(O'2—O'3)2+(O'3—O'1)2 (II1.12)

un

I, =trace(o) =Y o, (111.13)
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La limite d’élasticité en traction reste ce, et la limite d’élasticité en compression est
—a,/(1— 2a). Le coefficient oo dépend du matériau, il est bien entendu compris entre 0 et

1/2, et on retrouve le critére de von Mises pour o = 0 (figure 111.3.b).

I11.4.2. Critére de Mohr—Coulomb

I1 est apparenté au critére de Tresca, faisant intervenir comme lui le cisaillement maximal,
mais en méme temps la contrainte «moyenne», représentée par le centre du cercle de Mohr

correspondant au cisaillement maximum, soit :
f(o)=0,—-0,+(0,+0;)sing—2Ccos¢ (111.14)
Avec: 0, <0, <0,

Ce critére est sous—tendu par la notion de frottement, et suppose que le cisaillement
maximal que peut subir le matériau (T; en figure II1.4.a) est d’autant plus grand que la
contrainte normale de compression est ¢levée. La limite admissible constitue une courbe
intrinséque dans le plan de Mohr. La formule énoncée ci—dessus est obtenue avec une régle de

frottement linéaire :
|7;| <—tan (@) T, +C (IIL.15)

La constante C est la cohésion, correspondant a la contrainte de cisaillement qui peut étre
supportée par le matériau sous contrainte moyenne nulle. L’angle ¢ désigne le frottement
interne du matériau. Si C est nul et ¢ non nul, le matériau est dit pulvérulent. Si ¢ est nul et C

non nul, comme dans le cas du critére de Tresca, le matériau est purement cohérent.

Le criteére peut également s’exprimer sous la forme suivante, en fonction de la poussée K,

et de la limite d’¢€lasticité en compression, Ry :

f(o)=K,0,—0y—R (I11.16)

P
Avec :

K - 1+sm¢_R _2Ccos¢

_ R = .17
P l-sing * 1-sing ( )
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Dans le plan déviateur (figure I11.4.b) on obtient un hexagone irrégulier, caractérisé par les

valeurs suivantes (avecp = (—1/3)1,):
\/E(Ccos¢—psin¢)

o,=2 - (ITL.18)
3+sing

J6(~Ccosg+ psing)

o,=2 - (II1.19)
3—sing
T3
Ge
1,
(= | G2
o7
d.
b.

Figure I11.4 : Représentation du critére de Mohr-Coulomb, (a) dans le plan de Mohr, (b)

dans le plan déviateur

I11.5. Modélisation de I’écrouissage

Lorsque 1’état de contrainte atteint la surface de charge initiale et que le chargement du
matériau se poursuit, celui-ci se déforme plastiquement. Selon le matériau, cet état de charge
peut progresser dans I’espace des contraintes en modifiant la géométrie de la surface de
charge initiale, de sorte que cet état de charge reste toujours sur la surface de charge. On parle
d’écrouissage au sens ou la charge a modifié¢ la géométrie du domaine élastique. Une
décharge de 1’éprouvette montrera d’ailleurs un retour dans ce domaine élastique qui vient

d’étre modifié.

L’écrouissage dépend bien entendu du trajet de charge parcouru hors du domaine
d’¢élasticité initial. Les modifications subies par la surface de charge peuvent étre de trois

sortes :

» une expansion isotrope de la surface ;
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» une translation du centre du domaine d’¢lasticité initial. Ce déplacement est a 1’origine
de I’effet Bauschinger observé sur un essai unidimensionnel : cette translation rompt
la symétrie traction/compression du seuil de plasticité ;

» une distorsion ou un changement de forme de la surface. Initialement elliptique,
comme illustré sur la figure (II1.5) dans un plan (o; t), cette surface peut se distordre

jusqu’a présenter un point plus ou moins anguleux dans la direction de chargement.

Pour d’autres matériaux, la nouvelle surface seuil obtenue aprés écoulement plastique
A e . o e
s’avere étre identique a la surface de charge initiale, on parlera de matériau élastique

parfaitement plastique.

242
-
— —1-0.5 o
0
osf 1 " |
|
— Y __,_'9'/1'6./ J
= CUIVRE 9995

Figure IILS5 : Essai de traction-torsion sur cuivre : surface seuil initiale. En trait plein la

surface seuil prédite par le critére de Von Mises.

Dans la suite, nous nous limitons a la modélisation du changement de taille de la surface

(écrouissage isotrope) et a la translation du centre du domaine (écrouissage cinématique).

I11.5.1. Ecrouissage isotrope

Ce type d’écrouissage tient compte d’une expansion du domaine d’élasticité avec la
déformation plastique. Cette expansion correspond a une homothétie de centre 0. Aussi, on ne
tient pas compte de 1’effet Bauschinger, la surface reste centrée sur 1’origine. Supposons que

la surface de charge puisse s’écrire sous la forme :
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f(o.p)=0,,~0(p) (I11.20)

Ou o(p)est une fonction croissante de la déformation plastique équivalente cumulée,

cette derniére étant définie de la facon suivante :

p=j13(f)dr;b=,/§8p :&” (I11.21)
0

La fonction o est supposée connue expérimentalement, on verra qu’on peut en
p

proposer plusieurs modéles. Cette fonction scalaire est astreinte a valoir la limite d’élasticité

initiale lorsque la déformation plastique équivalente cumulée est nulle, soit formellement :
o(p=0)=o0, (I11.22)

La figure (II1.6) montre 1’expansion du domaine d’¢élasticité décrite par ce type d’écrouissage.

Figure I11.6 : Expansion du domaine d’¢€lasticité de Von Mises : écrouissage isotrope.

L’¢écriture la plus simple pouvant étre considéréeo(p)est une fonction affine de la
déformation plastique cumulée p, de sorte que o(p)=0,+0o,, Q étant une constante. On
peut aussi écrire cette fonction comme une loi puissance o (p)=K, +o,, c’est la loi de

Ramberg-Osgood.
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I11.5.2. Ecrouissage cinématique

L’écrouissage cinématique correspond a une translation du centre du domaine d’élasticité,
sans changement de forme ni de taille, et permet donc de prendre en compte 1’effet
Bauschinger identifi¢ lors de 1’essai unidimensionnel. On introduit alors le tenseur déviateur

X (trX = 0) pour décrire la position du centre du domaine d’¢élasticité. Ce tenseur est nul pour

le domaine initial centré en 0. Aussi le critére actuel de plasticité s’applique a présent a 1’état

de contrainte « décentré » o — X , et s’écrit :

f(o-X)<0 (I11.23)

Par exemple la contrainte équivalente de Von Mises prend la forme suivante :

3
VM .
(o =\/E(S—X).(S—X) (I11.24)

Ou on rappelle que s est le déviateur des contraintes. Physiquement, X correspond a
I’existence de contraintes internes a 1’échelle microscopique dues aux défauts et aux

hétérogénéités qui représentent des obstacles a la migration des dislocations dans les grains.
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Figure I1L.7 : Translation du domaine d’¢lasticité de Von Mises : écrouissage cinématique.

La figure (II1.7) illustre la translation du domaine d’élasticité paramétrée par le tenseur X.
Il existe de nombreux modeles d’évolution de X dont certains assez complexes dont nous
reparlerons au second chapitre. Le modele le plus simple consiste a piloter son évolution de

facon linéaire avec la vitesse de déformation plastique :
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X=He" (111.25)

Ou H est un parametre. L’évolution linéaire est connue sous le nom de loi de Prager.
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Figure IIL8 : Ecrouissage cinématique : essai de traction

Soit, par application du critére, I’état de contrainte actuel s’exprime comme 0 =0, +X =

o, +He" . Ce décentrement correspondant a 1’effet Bauschinger est illustré dans le cas de

I’essai de traction sur la figure II1.8.

L’expérience montre que ce type d’écrouissage est de premiere importance des qu’une
structure subit des chargements cycliques, dans lesquels des états de contrainte de
traction/compression peuvent se succéder dans chaque cycle. Si ces chargements sont
suffisamment importants pour générer un €écoulement plastique (par exemple en fatigue
oligocyclique), la prise en compte d’une dissymétrisation traction/compression de la surface
d’¢lasticité au travers de sa translation s’avere nécessaire pour pouvoir prédire correctement le
comportement de 1’¢lément de matiere. Dans la pratique, on utilise des modeles qui
combinent les écrouissages isotrope et cinématiques pour de nombreux matériaux

métalliques.
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I11.6. Exercices

> Exercice 1

Tracer dans le plan des contraintes principales 61—o> la limite du domaine d’¢lasticité en
accord avec les criteres de Von Mises et de Tresca, dans le cas ou les seules composantes non

nulles du tenseur des contraintes sont 61 et o».

> Solution d’exercice n°01 :

Le critére ne doit pas étre modifié par I’addition d’un tenseur sphérique. On en déduit que
la forme du critére pour 1’état de contrainte : (o1, 62, 63) est la méme que celle obtenue pour :

(61— 03,02 —03,0).

La forme cherchée dans le plan 61-62 est donc obtenue par simple translation dans la
direction de la premicere bissectrice. Ce résultat, illustré en figure I11.9 dans le cas du critére de

Von Mises, est également valable pour le critére de Tresca.

o,

i

u / o i

Figure IIL.9 : Tracé du critere de Von Mises dans le plan 61—o2, en contrainte plane et

pour 63 # 0.
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Chapitre IV

IV.1. Introduction

Ce chapitre introduit les principales notions d’élasto-plasticité a partir de 1’analyse de la
réponse d’une éprouvette soumise a un essai de traction—compression. La modélisation de cet
essai permet de présenter différentes schématisations couramment utilisées pour traiter des
problémes d’évolution ¢€lasto-plastique. Ces modeles sont ensuite soumis aux calculs

analytique puis numérique des structures treillis.

IV.2. Essai de traction

Intéressons-nous a I’aspect phénoménologique de I’essai dans le cadre de 1’¢lasto-plasticité
classique, a savoir hypothéses de transformations quasi-statiques en petites déformations et a

température

So

Figure IV.1: Eprouvette de traction

Considérons une éprouvette de traction sous la forme d’un cylindre homogéne droit de
section Sp et de longueur /y. Cette éprouvette est soumise a un effort de traction F comme sur
la figure (IV.1). Pour des petites déformations de 1’éprouvette, I’état de contrainte peut étre
suppos¢ uniforme et uniaxial (la diminution de section est négligée). Nous posons & = &xx =
AL/l et 6 = oxx = F/So. Considérons les graphes (o, €) obtenus pour trois essais de traction
avec décharge. Selon le niveau de sollicitation lors du chargement, nous obtenons les allures

de la figure (IV.2).

& VO
o
A
oy g i
'
E £ E £
——
t]_'l Ef'
(A)essal 1: 0 < oy (blessaiz: o = oy (cessaiz:c > m

Figure IV.2: Traction avec décharge.
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» a < g : le systtme se situe dans le domaine élastique et le comportement du
matériau est réversible. Il est supposé par la suite que la loi de comportement dans le
domaine ¢€lastique est linéaire, soit 6 = E €. ou E est le module d’Young du matériau ;

» 6 =00 : cet essai est impossible a réaliser physiquement. La limite d’élasticité oo, seuil
a partir duquel il existe des déformations irréversibles, est définie de fagon
conventionnelle et correspond a une fraction de déformation permanente ;

»a > oy : la décharge a partir du point A (chargement maximum) s’effectue
parallélement a la charge élastique, on parle de décharge ¢lastique. En B (charge nulle)

ne subsiste que la déformation plastique ou déformation permanente €.

En tout point de la courbe, la déformation est € = €. + &,. Effectuons maintenant une série
de charges—décharges consécutives. L’allure de la courbe de réponse est représentée sur la
figure (IV.3). Nous observons une évolution de la limite d’élasticité en traction due a

I’écrouissage. En premiére approximation, nous pouvons considérer que :

— lors des chargements consécutifs la limite d’¢lasticité suit la courbe du chargement
monotone ;

— I’écoulement plastique ne modifie pas le module d’élasticité.

L o
7o I ,f" '-chall';;;ement
.-'"l,.-"' monotone
//
.I'II- .IIIIIIII.I'III J--_

Figure I'V.3: Réponse a une série de charges-décharges consécutives

Par conséquent, connaissant la déformation plastique, le seuil de plasticité actuel peut étre

défini a partir de la courbe d’écrouissage obtenue pour un chargement monotone.

En fait le probléme de I’évolution du domaine d’¢élasticité est une des difficultés majeures
de la plasticité. Prenons I’exemple d’un chargement cyclique pour montrer que la
connaissance de 1’état actuel (o, &) ne suffit pas a priori pour définir le domaine d’¢lasticité

actuel. Sur la figure (IV.4), apres décharge nous obtenons le point O’, la déformation plastique
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est définie par le segment OO'. Or dans cet état, la limite d’¢élasticité est différente au premier
et au deuxiéme passage. Cet exemple montre que les lois décrivant 1’évolution du domaine

d’¢lasticité ont un caractere essentiellement incrémental. De plus, il faut distinguer deux cas :

Figure IV.4: Historique d’un cycle de chargement OA-AB-BC

Charge plastique : 11 y a variation des parameétres d’écrouissage et de la déformation

plastique.

Charge ou décharge élastique : Il n’y a pas de variation des paramétres d’écrouissage ni

de la déformation plastique.

En résumé, 1’évolution plastique ne peut se traduire que par des lois incrémentales reliant a
un instant donné les incréments des parametres d’écrouissage et de déformation plastique a
partir de 1’état actuel. Pour 1’étude des problémes quasi—statique d’élasto-plasticité (sans
vieillissement ni viscosité), nous utilisons donc un temps cinématique t pour repérer les états

successifs du matériau en fonction de 1’historique des sollicitations.

IV.2. Modélisation du comportement en traction—compression

Pour modéliser la courbe d’écrouissage de 1’essai de traction—compression obtenue pour un
chargement monotone, le plus simple est d’utiliser un modele construit a partir de segments
de droite. La figure (IV.5) représente un modele multilinéaire. Dans la suite, nous limiterons
la présentation a des modeles bilin€aires ayant la méme limite d’élasticité initiale en traction

et en compression.
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i

l'l'

- 7o

_FI,I

Figure I'V.5: Mode¢le d’écrouissage multilinéaire

IV.2.1. Modéles avec écrouissage

Le mode¢le rigide plastique peut étre utilisé lorsque les déformations plastiques sont trés

importantes par rapport aux déformations élastiques :

problémes de mise en forme.

c’est, par exemple, le cas pour les

Lorsqu’il y a écrouissage, il faut se donner un modeéle pour représenter 1’évolution du

domaine d’¢lasticité. Les deux modeles les plus simples sont 1’écrouissage isotrope et

I’écrouissage cinématique. Ils sont basés sur ’utilisation de la courbe d’écrouissage du

chargement monotone, illustrée sur la figure (IV.6).

| Er

(a) élasto-plastique avec écrouissage (EPE)

iy

r

...-—F"""'"—_FFFHE T

..—-—"'_.-._'

(b) rigide-plastique avec écrouissage (RPE)

Figure IV.6: Mod¢les d’écrouissage monotone.
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a) Ecrouissage isotrope
Ce modele suppose une dilatation homothétique du domaine d’¢€lasticité par rapport au
domaine initial supposé connu. Le coefficient de dilatation dans le cas de 1’écrouissage

linéaire est défini par le module tangent Er.

Pour un essai cyclique, I’hypotheése d’écrouissage isotrope donne une courbe similaire a
celle représentée sur la figure (IV.7). La limite d’¢élasticité en compression augmente comme
celle de traction. On note que dans ce modele 1’énergie de déformation élastique pouvant étre

absorbée est de plus en plus importante et toujours identique en traction et compression.

e

Ly

/ .
V
/

Figure I'V.7: Hypothése d’écrouissage isotrope

b) Ecrouissage cinématique
Ce modele suppose une translation sans déformation du domaine d’élasticité initial

supposé connu. La translation est définie a partir de la courbe d’écrouissage monotone.

Le modele cinématique respecte 1’effet Bauschinger couramment observé pour les
matériaux métalliques, a savoir un durcissement dans un sens (sens de I’écoulement plastique)
et un adoucissement d’égale amplitude dans le sens contraire (décharge élastique). La courbe
correspondant a un essai cyclique avec écrouissage cinématique est indiquée sur la figure
(IV.8). L’amplitude du domaine d’élasticité reste constante mais I’énergie €lastique absorbée
et pouvant étre restituée dans un sens est toujours différente de celle dans I’autre sens. En
pratique, lors d’un essai cyclique, aucune de ces allures ne peut étre observée. Il est possible
de combiner ces deux modeles d’écrouissage pour essayer de se rapprocher au mieux de la

réponse au chargement cyclique donné.
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i

Figure I'V.8: Hypothése d’écrouissage cinématique

IV.2.2. Modéles parfaits

Ces modeles négligent I’écrouissage du matériau. Le modele élasto-plastique parfait est
surtout utilis¢é du point de vue académique pour simplifier la résolution analytique des

problémes posés.

T4 B 7
0 ._.-".' L t
c D
(a) modéle élasto-plastique parfait EPP (b) modele rigide-plastique parfait RPP

Figure IV.9: Mod¢le de courbe d’écrouissage monotone

Pour ce modele, donnons une interprétation énergétique de la courbe d’écrouissage :

» OABD : énergie totale, ou travail des efforts intérieurs pour atteindre B ;
» OABC : énergie de dissipation plastique ;

» BCD : énergie de déformation élastique, elle est restituée a la décharge.

Le modele rigide plastique parfait est utilisé pour les problemes de calcul des charges
limites (Lorsque 1’écrouissage n’est pas négligé, [’énergie ¢élastique restituée apres

plastification est toujours plus importante dans le sens de la déformation plastique). Pour ces
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deux modeles, au-dela d’une valeur limite du chargement il y aura écoulement libre du

matériau et perte d’équilibre.
IV.3. Exercices

> Exercice 1

On considéere la structure treillis de la figure IV.10 composée de trois barres, articulées
entre elles au point d’application du chargement F, et chacune étant articulée par rapport au
bati. On suppose que les barres sont a I’état initial sans contraintes, et que le chargement est
appliqué suffisamment lentement pour rentrer dans le cadre établi précédemment. On suppose
d’autre part que les trois barres ont un comportement élastique parfaitement plastique
identique, c’est- a-dire un module d’Young E et une limite d’¢lasticité oo, et une section

identique S. Pour simplifier 1’étude, I’angle a est égal a 45.

On demande d’étudier :

- Laplasticité dans les barres au travers d’une structure treillis composée de trois barres ;

L L i

Figure IV.10 : Structure treillis de trois barres.

> Solution d’exercice n®°1 :

Phase élastique : Analyse du probléeme Nous avons trois inconnues N1, N2 et N3,
représentant les efforts dans les barres, pour deux équations d’équilibre dans le plan. Par
conséquent, le systeme est hyperstatique de degré un. Les équations d’équilibre ont la forme

suivante :

55



Chapitre IV

2 2 ﬁ J2

-N,—+N,—=0;N,—+N,—+N,-F =0
1 2 3 2 1 o) 3 2 (IV-I)

Soit, plus simplement :
N,=N,;;N,=F 2N, (IV.2)

Prenons Ni; comme inconnue hyperstatique. L’énergie de déformation s’écrit dans ce cas

d’étude :
1
2W = — (AV2N,2+hN3 + nN2N,?) (IV.3)
Et par conséquent, en fonction de I’inconnue Ny, grace a 1’équation (IV.2) :
h ) 2
oW = E—S(Z\/ENl +(F—~2N,) ) IV 4)

Appliquons le théoréme de Ménabréa :

a—W:O:>(2\/§+2)N1:F\/§:>N1:

F
— = V.5
ON, 2++2 (V-2)

D’ou, finalement :
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Chapitre V

V.1. Introduction

Ce chapitre est consacré a I’étude de 1’évolution élasto-plastique des poutres. La loi de
comportement généralisée élasto-plastique est obtenue a partir d’'un modéle en flexion pure
(moment de flexion constant). Ce modele est appliqué a 1’étude élasto-plastique des structures

portiques.

V.2. Rappels et notations

Considérons une poutre longue rectiligne en flexion dans le plan (x.0.y) dans le cadre des

hypothéses de Bernoulli et des petits déplacements qui entrainent 6 =Vv,XZ, et

u(M,t) = (—yv,x,v0)".

fibre neutre

état initial

(a) champs de déplacement (b) section droite
Figure V.1: modele de Bernoulli : flexion plane.

Les petites déformations supposenté., =—)V, .. Le milieu est isotrope homogéne

élastique et 1’état de contrainte est uni-axial, soito, = E&_ . Intégrons les contraintes sur la

section pour obtenir la loi de comportement généralisée élastique des poutres :
Mf =Elv, (V.1)

Cette loi relie les deux grandeurs utilisées lors des calculs, le moment de flexion et la

fleche. En statique, 1’équation d’équilibre des moments donne :

T=-M, =-Eb,_ (V.2)

fox
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On note la contrainte généralisée G =M , | la déformation généralisée € =V, _ et la loi de

comportement généralisée 6 = EI£ .

}7 <\—*— A 1_’
Uxx
l_i Oxx
(a) section (b) contraintes

Figure V.2: Essai de flexion

La loi de comportement du matériau étant définie au niveau local, exprimons les relations
entre la contrainte physique et la contrainte généralisée, relations utiles par la suite pour

exprimer les lois de comportement élasto-plastique :

&:EJE:EJ(—ijz—gG—” (V3)
y

Ce qui entraine les champs de contraintes et de déformations suivants :

o, =

XX

G;6,, =—Yé (V.4)

~ =

V.3. Modéele élasto-plastique

Ce sont les champs & et £ qui sont utilisés lors des calculs. Notre objectif est donc
d’exprimer la loi de comportement généralisée élasto-plastique 0 = f (5 ) en fonction de la

loi de comportement du matériau.

Pour simplifier la présentation nous supposons le matériau élasto-plastique parfait. La
courbe d’écrouissage du matériau identifiée par un essai de traction est représentée sur la

figure (V.3.a).

59



Chapitre V

7 A B .
a0
O € €
C D
(a) modele élasto-plastique parfait EPP (b) modeéle rigide-plastique parfait RPP

Figure V.3: mode¢le de courbe d’écrouissage monotone.

V.4. Flexion pure

v' Evolution élastique

Considérons un essai de flexion pure réalisé sur une poutre de section symétrique. Le
moment de flexion M est uniforme le long de la poutre. Pour cet essai, représenté sur la figure
(V.4), effort tranchant est nul. La solution obtenue avec les hypothéses de Bernoulli est donc

exacte pour les matériaux incompressibles et quasi-exacts pour les matériaux compressibles.

B )

Figure V.4 : Essai de flexion pure.

Compte tenu de la répartition des contraintes dans la section et des hypotheses de symétrie,

les fibres les plus éloignées situées a une distance t/4 de la fibre moyenne plastifient les

premicres. Par conséquent, il y a début de plastification lorsque(O'xx )y: .y =0y, soit

s N . . . . . R
Go =7 ou &, est le moment de début de plastification. La déformation généralisée

~ v
correspondante est &, = 77 %0

v" Evolution élasto-plastique

Pour M > G,,, il y a évolution ¢€lasto-plastique du matériau a partir des fibres extérieures.

Le moment étant uniforme sur la longueur, dans toute section de la poutre, nous obtenons

1’état de contrainte de la figure (V.5.b).
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y
5 h
zong plastfque | ——
c
zone \élastique
1 00 Oxx
—00
(a) section (b) contraintes

Figure V.5: Flexion pure et zones plastiques symétriques

Le matériau étant €lasto-plastique parfait au-dela de la cote c, la contrainte dans la zone

plastique est uniforme o = +&5, .

Conservons 1’hypothése de Bernoulli pour exprimer ¢ en fonction des variables

TR ~ : . o,
généralisées et 60. En o = —o,et o = Ee_ = —FEcé& ce qui entraine, c = —% .
xx 0 xx xx Eg

Remarque : Cette derni¢re relation reste vraie pour un matériau écrouissable. L’hypothése
de Bernoulli suppose des déformations plastiques suffisamment sympathiques pour que la

planéité des sections droites soit vérifiée.

Comme en ¢élasticité, pour écrire la loi de comportement généralisée, il faut intégrer sur

une section le champ des contraintes afin d’obtenir une relation entre le moment de flexion et

la courbure :

+h h
6=M,=|-yo, ds=2[-yo, ds (V.5)
’ —h 0
Et puisque la section est supposée symétrique :
c y h
o~‘=2j’—y(——0‘0jds+2j'y0‘0ds (V.6)
0 C c

Notons respectivement le moment quadratique de la zone ¢élastique I(c), le moment statique

de la zone ¢lastique Z(c) et le moment statique de la section Z(h) :
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1(c) = 2] y2ds; Z(c) = 2] vds; Z(h) = 2| vs: (V.7)

Nous obtenons la loi de comportement généralisée élasto-plastique & = f (5) , en fonction

du module d’élasticité E et de limite en traction o :

& =0, [@ +Z(h)— Z(c)j (V.8)
C

Avecc = % , Montrons que & est une fonction croissante de & . Il suffit de montrer que
g

¢’est une fonction décroissante de c.

s _ o [_ 1(5) Lldi(e) dZ(c)j (V.9)
dc c c dc dc

Or:

I(c)= 2£ Vids = 2{ VL(y)dy et Z(c) = 2£ yds = 2£ yL(y)dy  (v.10)

Ce qui entraine :

1dl©) _dZ(©) _» 1(0) (V.11)
c dc dc
Ce résultat est conforme a I’intuition car une augmentation de charge ne peut qu’augmenter la

zone plastique. 7

Figure V.6: Loi de comportement généralisée 0 = f (5 ) .
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La figure (V.6) représente la loi de comportement généralisée 0 = f (5 ) Pour ¢ = h, on
retrouve 0 (moment de début de plastification). Pour ¢ — 0, il y a plastification compléte de
la section. Le moment correspondant est le moment limite 6 = f (5), Le caractére

asymptotique est dii a ’existence d’une mince zone au voisinage de la fibre moyenne qui
reste toujours ¢lastique (oxx = 0). En flexion pure, la section ne peut pas plastifier
completement. Ce résultat purement théorique n’a pas de réalité¢ physique. Rappelons que la
loi de comportement généralisée des poutres longues est un modele basé sur des hypothéses

simplificatrices contradictoires du point de vue physique.

Une décharge élastique conduirait au diagramme des contraintes résiduelles de figure (V.7).

On comprend aisément qu’il n’est pas possible d’utiliser ce modéele pour traiter des problémes

. . . , : log
cycliques, sans parler de I’introduction de 1’écrouissage. Le rapport —Lest le facteur de
Oy

forme plastique de la section :

(V.12)

i

Figure V.7: superposition des diagrammes ¢€lasto-plastique et élastique correspondant a un

chargement —M

Il caractérise la réserve vis-a-vis de la plastification totale d’une section donnée. Plus ce

rapport est ¢élevé, plus la phase élasto-plastique est grande, autrement dit, un rapport élevé
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confeére une plus grande sécurité par rapport au chargement élastique limite. En contrepartie,

la charge limite élastique sera plus petite, il faut donc trouver le bon compromis.

Le tableau (V.1) indique les facteurs de forme plastiques classés par ordre décroissant pour

différentes sections.

Tableau V.1: Facteurs de forme plastiques pour différentes sections.

b N 7
4 N

2h 2h 5 \ S
~ 3 2
Y lbhz TR %bhz meR h(s'+£
o, 6 4 3 6
= 3 2 2
o 1 b 47R bh 4eR 5 (S " EJ
o, 3 3 4
S 2 E:lﬂ 1,5 i=1’27 12+3s/s
o, 3z T 12+2s/s'

Plus ce rapport tend vers I'unité, meilleure est la section du point de vue élastique (toutes

les fibres plastifient en méme temps). Dans ce cadre, la section 5 du tableau V.1 est optimale.

V.5. Flexion simple

En pratique, il est rare d’obtenir un état de contrainte constant par morceaux. Cela signifie

que les zones plastiques sont réduites a des sections dont la position évolue au cours du

chargement. Etudions le cas d’une poutre de section rectangulaire sur deux appuis chargée en

son centre par une force supposée ponctuelle. Le diagramme du moment de flexion est

représenté sur la figure (V.8). Les zones plastiques apparaissent dans la section x = £/2 ou le

moment est maximal. Puis les zones plastiques s’étendent aux sections voisines avec

I’augmentation du chargement.
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Fl/4

X

by2

Figure V.8: Essai de flexion simple.

Modélisation Pour étudier 1’évolution élasto-plastique, nous adoptons la loi de
comportement ¢lasto-plastique obtenue en flexion pure. Les effets de I’effort tranchant dans la

zone plastique sont négligés.

: ~ 4 .
Le début de la phase €lasto-plastique correspond & Mf =6, et F = % et la section x =

1

€/2 est complétement plastifiée pour Mf =& etF :470-. La figure (V.9) représente

I’évolution de la zone plastique selon les phases du chargement.

o o0 00
X a X a \ X

(/2 £/2 £/2

(a) phase élastique (b) phase élasto-plastique (c) fin de plastification

Figure V.9 : évolution des zones de plastification en flexion simple

Etude de la zone plastique L’abscisse de la premiére section plastifiée est simple a

exprimer a = %0 La forme de cette zone est définie par la cotec = Z“-O'"’ or pour
g
a<x<l/2:
g=— =% =D 3(1—%}:(::;1 3(1—F—fj (V.13)
o, 20,
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Or F, = 4;‘1 d’ou

c=h 3[1—2—Ffj (V.14)
\/ F I

La figure (V.10) représente la zone plastique qui est limitée par une parabole d’équation

c(x) définie pour F, < F < F,.

I
/

Figure V.10: Zone plastique en flexion simple

> Etude de la déformation

L’étude de la déformation est conduite sur deux zones :

o zone ¢€lastique pour x<a:

g=S _F  _Gx_5x (V.15)
EI  2EI El a a
o zone ¢€lasto-plastique pour a<x<//2 :
R (V.16)

g

La figure (V.11) représente 1’évolution de la courbure pour les trois phases de chargement de
la figure (V.9). Pour F = Fy, la courbure a un comportement asymptotique et tend vers I’infini.

Tout se passe comme si la poutre était formée de deux trongons articulés.
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o

F=F

< F< K

F< hy

X

/3 a 1/2

Figure V.11: Essai de flexion pure

Pour obtenir I’expression de la fleche, il faut intégrer les relations qui définissent la

courbure en fonction de Xx.

+ Phase élastique : Le chargement est tel que F<Fyet la loi de comportement

généralisée indique &= % = 2_}};1)6 avecv(0)=0 et v (//2)=0 pour cause de symétrie.

Par conséquent, la fléche prend la forme suivante :

FP(1(x ’ X
V) =257 {5(7) _ZJ (V-17)

. 26
+ Phase élasto-plastique : Le chargement est alors F,<F<F avec a:%. Les

fonctions de répartition sont définies dans les équations (V.15) et (V16). Les quatre
constantes sont calculées en écrivant la condition d’appui en x = 0, la condition de
symétrie en x = {/2 et la continuité de la fleche et de la rotation en x = a. Tous

calculs faits, nous obtenons :

v(x)=ﬁx3+£‘0a( /3—1—3} (V.18)
6a a 2

- Pour x<a

- Pour a<x<l/2:

a’ x )" [ 5
v(x)zéo?(3—2;j +§0a‘[3—2x—§§0a2 (V.19)
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Tragons I’évolution de la fleche en milieu de poutre :

- PourF=Fo:
3 2
N T 4" (V.20)
2 48E1 12Eh
- PourF=F;:
~ ~ 2
a:ﬁziﬁzizv[ij:—ééoaz:—5001 (V.21)
F 26, 3 2 3 27Eh
T F/E,
ruine de la structure
1.5 | >
phase élasto-plastique
décharge
1 élastique
phase élastique
—1"(7(]12
4 L7
\ 05 i

fleche résiduelle

Figure V.12: Phases d’évolution et fleche résiduelle

La fleche résiduelle apres décharge élastique est :

L[L\_3e K _oli(5 1 ’)
\2)727En 48EI  En \27 8 (v-22)

L’essai de flexion simple que nous venons d’étudier a mis en évidence le comportement

asymptotique de la courbure. Les deux parties de la poutre de part et d’autre de la section £/2
peuvent tourner, le moment restant constant (matériau parfaitement plastique). Nous

modélisons cette propriété par une rotule plastique (rotule avec frottement sec).
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V.6. Exercice

> Exercice n°1 : Flexion d’une poutre de section rectangulaire

La poutre de la figure V.13 posséde une section rectangulaire, de hauteur 24 et de largeur
b. Elle est chargée en flexion pure (cisaillements négligés), et on suppose qu’une section

droite de normale x1 reste droite. Le comportement du matériau qui la constitue est ¢lastique

(E,v) parfaitement plastique (cy).

A%3 Epaisseur b

Figure V.13: Géométrie et chargement de la poutre.
v Quelle est la distribution de contrainte et de déformation en élasticité ?

> Solution de P’exercice n°01 :

L’état de flexion pure autour de x» d’un barreau d’axe x; est caractéris€é par une
déformation €11 linéaire en X3 et, en élasticité, par une contrainte 611 également linéaire en xs.
On pose o11 = kx3. Toutes les autres composantes du tenseur de contrainte sont nulles. Les
tenseurs de contrainte et de déformation €lastique sont respectivement représentés par les

matrices :

% 0 0
et| 0 _U% 0 (V.23)

0 0 —U%

Le vecteur contrainte sur une section courante de normale e; se réduit a oiie1. On déduit

o © 9
S O O
oS O O

immédiatement de la géométrie de la section (0 < x2 < b et —h < x3 < h) que la résultante est
nulle sur une facette normale a 1’axe x;. Le moment des efforts intérieurs sur la section de la

poutre s’écrit, en tenant compte du fait que les composantes de OM sont (0, x2, X3) :
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M = [[(OM xT)ds = M e, +M e, (V.24)
Avec :

M, = [[ x,o,,dx,dx, = [[ Kx;dx,dx, (V.25)

M, =—[| x,0,,dx,dx, = —(] Kx,x,dx,dx, (V.26)

La composante M3 est nulle (intégrale de x3 entre —h et h). L expression obtenue pour Ma, que

I’on désignera dans la suite par M :

+h
M =kb [ x2dx, = %kbiﬁ (V.27)
iy

On peut donc exprimer k en fonction du moment, et, en posant I = 2bh> /3, on trouve la valeur

courante de o1; sur la section :
o,=0(x;)=Mx,/1 (V.28)

I1 s’agit d’une fonction impaire en x3, dont la valeur maximale, om, atteinte en x3 = h, vaut

3M/2bh?,
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