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Préface 

S'appuyant sur la documentation riche et disponible dans le domaine, nous avons mis au point 

ce travail, présenté comme un support du cours sur la Théorie de la Plasticité. Ce dernier a pour 

objet d’initier l'étudiant aux notions théoriques de la théorie de la plasticité des structures. Des 

connaissances préalables recommandées pour les étudiants afin de mieux comprendre la théorie 

de plasticité tels que l’algèbre, Mécanique des milieux continus, Mécanique rationnelle, 

Mécanique des fluides et Résistance des matériaux. 

On définit dans cette polycopie cinq chapitres essentiels, chapitre 1 sera consacré pour les 

différents essais mécaniques et le chapitre 2 sera consacré pour les différents modèles 

rhéologique afin de modéliser la plasticité des matériaux, chapitre 3 sera consacré pour les 

différents critères de plasticité et chapitre 4 et 5 seront initiation de la plasticité des barres et des 

poutres respectivement. 

Avec les développements détaillés des mécaniques des milieux continues accompagnés de 

quelques exercices ; ce polycopié constitue une référence pédagogique orientée au niveau de 

l’université de Tiaret, dont l'objectif de faciliter toutes consultations ou enseignement du module 

concerné. 

Ce polycopié s’adresse aux étudiants de Master 1 option Voies et Ouvrages d’Art.  Il est 

rédigé de manière que l’attention du lecteur se concentre sur les applications pratiques du sujet 

traité.  
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I.1. Généralité 

Les essais mécaniques sont l'étape indispensable pour accéder aux grandeurs 

caractéristiques des matériaux, du module d'Young à la limite d'élasticité, en passant par la 

ténacité ou la résistance à la fatigue, et ce dans des conditions variables, par exemple de 

température ou de sollicitation. Le propos de ce cours est de présenter les techniques 

expérimentales les plus couramment utilisées, aussi bien dans les laboratoires universitaires 

qu'industriels, pour caractériser le comportement mécanique des matériaux. Les techniques 

abordées seront :  

• Les essais uniaxiaux (quasi- statiques et dynamiques), 

• Les essais multiaxiaux,  

I.2. Essais mécaniques uniaxiaux 

I.2.1. Essais de traction  

L'essai de traction constitue un des essais les plus utilisés pour la caractérisation mécanique 

des matériaux. Etant purement uniaxial, d’aboutir directement à une loi de comportement 

uniaxiale. Il permet de déterminer de nombreuses grandeurs normalisées, comme : 

• La limite d'élasticité, 

• La contrainte maximale, 

• La contrainte à la rupture etc.  

Nécessaires dans les calculs de structure. Nous donnons ici tout d'abord la description 

générale d'une machine de traction, puis des éléments concernant les éprouvettes, les mesures 

de déformation et de charge appliquée. 

I.2.1.1. Objectifs de l’essai  

L’essai de traction est le moyen le plus couramment employé pour caractériser le 

comportement mécanique d’un matériau sous une sollicitation progressive à vitesse de 

chargement faible ou modérée. L’essai permet, en outre, l’étude et l’identification des 

mécanismes physiques de déformation plastique.  
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I.2.1.2. Description générale d'une machine de traction  

Une machine de traction est constituée d'un bâti portant une traverse mobile. L'éprouvette 

de traction, vissée ou enserrée entre des mors, selon sa géométrie, est amarrée à sa partie 

inférieure à la base de la machine et à sa partie supérieure à la traverse mobile (dans le cas 

d'une machine mécanique) ou au vérin de traction (dans le cas d'une machine hydraulique). Le 

déplacement de la traverse vers le haut réalise la traction. Une machine de traction comporte 

une cellule de charge, qui permet de mesurer l'effort appliqué à l'éprouvette et le déplacement 

de l'éprouvette peut être suivi de diverses façons. Les dispositifs expérimentaux sont 

généralement asservis et peuvent être pilotés à vitesse de montée en charge, à charge 

constante, à vitesse de déformation constante, etc. selon ce qui peut être proposé par le 

système de pilotage.  

 

 

 

 

 

 

Figure I.1 : Dispositif de traction du Centre des Matériaux. 

I.2.1.3. Eprouvettes  

 Les éprouvettes de traction adoptent deux géométries : cylindrique ou plate. La section 

doit être constante sur une longueur suffisante pour obtenir un état de contrainte homogène 

pendant l'essai. Aux deux extrémités sont usinées des têtes d'amarrage avec des rayons de 

courbures suffisamment grands pour éviter des concentrations de contrainte excessives. Dans 



Chapitre I 

 

3 

le cas des éprouvettes plates, le centrage de l'éprouvette peut devenir problématique si des 

trous calibrés ne sont pas percés dans les têtes. 

 

 

 

 

 

 

Figure I.2 : Éprouvettes de traction cylindriques et plates. 

 

Figure I.3 : Exemple d'une éprouvette de traction. 

I.2.1.4. Diagramme de traction 

Les valeurs mesurées directement lors d'un essai de traction sont la force F et l'allongement 

∆L, plutôt que les contraintes et la déformation. La contrainte , rapportée dans un 

diagramme de traction est la force divisée par la section initiale S0 de l'éprouvette (contrainte 

nominale). 

0

F

S
 =                                                              (I.1) 

 

d0 = Ø partie calibrée 

d1 = Ø des têtes filetées 

L0 = longueur entre repère = 5 d0 

LC = longueur calibrée 

h = longueur des têtes 



Chapitre I 

 

4 

De même la déformation , se réfère à la longueur initiale L0 de la partie délimitée par 

l’extensomètre (déformation nominale). 

                                                   
0

L

L



=                                                             (I.2) 

On parle de diagrammes rationnels quand on détermine les contraintes et les déformations 

vraies. Ils sont obtenus en divisant la force ou l'allongement par la section, respectivement la 

longueur instantanée. Ici nous nous contentons du premier type de diagramme qui est 

d'ailleurs le diagramme d'usage commun. La figure I.4 illustre l'allure que peuvent avoir les 

courbes de traction de différents matériaux. 

 

 

 

 

 

Figure I.4 : Schéma représentant 2 types différents de courbes de traction. 

Pour les matériaux élastiques (les aciers, par exemple), la courbe «effort-allongement» est 

composée d’une partie linéaire « OA » et d’une partie de ligne courbe « AB » 

 Domaine élastique  

Il correspond à la partie linéaire « OA ». Cette droite nous montre que l’allongement est 

faible et que cette déformation est proportionnelle l’effort exercé sur l’éprouvette.  Le 

domaine élastique est limité au point « A » d’ordonnée « Fe »  

Fe : (intensité de la force de traction à la limite apparente d’élasticité de l’éprouvette).  

Pour les aciers doux, on définit une résistance limite élastique comme étant le rapport de 

Fe par l’aire la section utile S0 de l’éprouvette : 
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0

[ ]
[ ]

[ ²]

e
e

F N
MPa

S mm
 =                                                  (I.3) 

Pour les aciers durs et les fontes, on définit une résistance limite conventionnelle 

d’élasticité notée σe0.2. Cette résistance est calculée à partir d’un effort Fe0.002 (effort qui 

engendre un allongement rémanent de l’éprouvette de 0.2% (A% = 0.2)).  

                                                  
0.002

0.2

0

e
e

F

S
 =                                                        (I.4)              

 Domaine des déformations permanentes   

a) Zone d’écrouissage   

Au-delà de la charge à la limite d’élasticité (entre A et C), la suppression de l’effort F 

n’entraîne plus une disparition totale de la déformation. 

L’amplitude de la déformation rémanente est déterminée sur le diagramme en menant du 

point B de la courbe correspondant à l’effort F une parallèle à la droite (A,O). On obtient 

ainsi la droite ( B,O’).  

 

Figure I.5. Courbe de traction (force-déformation) pour la zone d’écrouissage. 

Entre « A » et « B » il se produit un phénomène d’écrouissage du métal, il en résulte une 

augmentation de la résistance élastique du matériau.  
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En effet si on applique sur cette même éprouvette à nouveau un effort  F croissant, la 

courbe partira cette fois-ci de « O’ » et elle ira linéairement jusqu’à « B ». En « B » apparaîtra 

cette fois-ci la force de traction « Fe » : force à la limite apparente d’élasticité du matériau.  

« Fe » est égal à l’effort « F » qui a engendré l’écrouissage de l’éprouvette. « Fe » étant 

plus important après écrouissage qu’avant, la résistance élastique σe sera aussi plus 

importante. 

b) Effort maxi et la zone de striction  

• Résistance à la rupture  

  

Figure I.6. Courbe de traction (force-déformation) pour la zone de stinction. 

Entre « A » et « C » le fait d’allonger encore l’éprouvette, augmente en conséquence 

l’effort de traction.  

En « C » l’effort de traction atteint son maximum. Celui-ci est noté « Fm » et est appelé 

effort maxi de traction.  

Pour tous les métaux, on définit une résistance à la rupture comme étant le rapport de Fm 

par l’aire la section utile S0 de l’éprouvette. Cette résistance à la rupture est notée σr : 

0

m
r

F

S
 =                                                      (I.5) 
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• Étranglement et la zone de striction : 

Au moment où l’effort de traction atteint son maximum (en « C ») commence une 

réduction de diamètre très visible de l’éprouvette en son milieu.  

Ce phénomène correspond à un réarrangement atomique qui provient d’un glissement des 

particules.  

Entre « C » et » D » le déplacement relatif des 2 têtes d’amarrage (allongement de 

l’éprouvette) ne provoque plus une augmentation de l’effort de traction mais une diminution. 

En «D» il se produit une rupture brutale de l’éprouvette. 

c) Exploitation des résultats de l’essai de traction  

• Détermination du coefficient d’allongement A% : 

  

Figure I.7 : Eprouvette de traction cylindrique et de son évolution en cours d’essai 

Soit L0 : longueur initiale (la distance entre les deux repères A et B tracés sur l’éprouvette 

avant l’essai).  

Soit Lu : longueur ultime (longueur [A, B] mesurée en raboutant les deux morceaux de 

l’éprouvette cassée).  

On définit un indicateur sur la ductilité du matériau en calculant le coefficient 

d’allongement noté A%. 
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0

0

% 100uL L
A

L

−
=                                            (I.6) 

Tableau I.1 : la classification des matériaux selon le coefficient d’allongement 

A% 
> 5 % les matériaux sont considérés comme ductiles. 

< 5 % les matériaux sont considérés comme fragiles ou «cassants. 

• Détermination du coefficient de striction Z%   

So : Section initiale (calculée en mm2 à partir du diamètre « do » mesuré entre les deux 

repères A et B tracés sur l’éprouvette avant l’essai.  

Su : Section ultime (calculée en mm2 à partir du diamètre « du » mesuré à l’endroit de la 

cassure de l’éprouvette cassée.  

On définit un autre indicateur sur la ductilité du matériau en calculant le coefficient de 

striction noté Z% 

0

0

% 100uS S
Z

S

−
=                                                     (I.7) 

• Module d'élasticité longitudinale E 

Il caractérise la pente de la droite de proportionnalité précédente donc l'élasticité du 

matériau testé. Plus E est grand, plus le matériau est rigide et inversement.  

 

 

 

 

 

Figure I.8 : Lois de comportement (contrainte_ déformation) 

La forme de la courbe donnant la contrainte σ  en fonction de l’allongement unitaire ε 

est identique aux échelles près, à celle enregistrée sur la machine de traction.  
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• En lieu et place de la force maxi « Fm » nous retrouvons la résistance à la rupture σr  

• En lieu et place de la force limite élastique « Fe » nous retrouvons la résistance 

élastique σe. 

Dans la zone élastique il y a proportionnalité entre la contrainte et l’allongement unitaire 

(OA est une droite).  

L’équation de cette droite est de type « σ = E. ε » ou « E » est le coefficient directeur de la 

droite. Si « Ψ » est l’angle d’inclinaison de cette droite alors E = tan Ψ  

La loi de proportionnalité entre la contrainte et l’allongement unitaire est appelée loi de 

HOOKE. Elle s’écrit :  

E =                              (I.8) 

E : Module d’élasticité longitudinale ou encore module de YOUNG. Ce module est une 

constante pour chaque famille de matériaux 

Tableau I.2 : Valeur typique du module d'élasticité pour différent métaux. 

Matériaux Module d'élasticité (GPa) 

Acier Carbone 210 

Fer 211 

Alliage de cuivre 124 

Cuivre 130 

Alliage d'aluminium 72 

Aluminium 70 

I.2.2. Essai de fluage  

Le fluage est le phénomène physique qui provoque la déformation irréversible différée 

c'est-à-dire non-instantanée) d’un matériau soumis à une contrainte constante (notée σ0), 

inférieure à la limite d'élasticité du matériau, pendant une durée suffisante. Le fluage ainsi que 

la relaxation de contrainte sont deux méthodes en quasi statique de caractérisation des 

matériaux visqueux (cas du béton). 

 

https://fr.wikipedia.org/wiki/D%C3%A9formation_d%27un_mat%C3%A9riau
https://fr.wikipedia.org/wiki/D%C3%A9formation_plastique
https://fr.wikipedia.org/wiki/Mat%C3%A9riau
https://fr.wikipedia.org/wiki/Contrainte
https://fr.wikipedia.org/wiki/Limite_d%27%C3%A9lasticit%C3%A9
https://fr.wikipedia.org/wiki/Loi_de_comportement#Fluage_et_relaxation_de_contrainte
https://fr.wikipedia.org/wiki/Relaxation_de_contrainte
https://fr.wikipedia.org/wiki/Caract%C3%A9risation_des_mat%C3%A9riaux
https://fr.wikipedia.org/wiki/Caract%C3%A9risation_des_mat%C3%A9riaux
https://fr.wikipedia.org/wiki/B%C3%A9ton
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I.2.2.1. Eprouvettes  

Les éprouvettes de fluage sont analogues à celles utilisées en pour les essais de traction 

uniaxiale ordinaires : éprouvettes cylindriques ou plates, encore que d'autres géométries 

peuvent être utilisées selon la disponibilité du matériau ou les contraintes géométriques. Il est 

préférable, toutefois, étant donnée la faible vitesse de déformation, de disposer d'éprouvettes 

relativement longues pour augmenter la précision de la mesure du déplacement. 

I.2.2.2. Dispositif d'application de la charge  

Lors d'une expérience de fluage, il est plus courant de travailler à charge qu'à contrainte 

constante, toutefois il est possible d'effectuer des essais à contrainte constante, ce qui 

implique de faire varier la charge appliquée au fur et à mesure de la déformation de 

l'échantillon. Les dispositifs de fluage sont généralement composés d'un poids et d'un bras de 

levier relié à un mors sur lequel l'éprouvette est fixée (figure I.9 montre un montage de fluage 

type). Il faut porter une attention particulière à l'alignement des têtes d'amarrage, afin de 

limiter les moments de flexion imposés à l'éprouvette (la norme ASTM recommandé une 

déformation en flexion inférieure à 10 % de la déformation axiale). Une étape sensible de 

l'essai de fluage est la mise en charge qui doit être accomplie de façon soignée pour éviter de 

perturber l'essai.  

L'éprouvette doit déjà être à la température de l'essai pour cette opération. La mise en 

charge peut être réalisée soit de manière "instantanée" pour s'approcher de la courbe théorique 

de fluage, mais cela peut entraîner une perturbation du dispositif de mesure de la déformation 

ou un effet de choc sur l'éprouvette qui entraîne l'apparition d'un transitoire. Autrement, on 

peut procéder à un chargement progressif qui a l'avantage d'être reproductible, soit par paliers 

discontinus (ajout de masses), soit en augmentant continûment la charge, typiquement à l'aide 

de petites billes de plomb.  
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Figure I.9 : Dispositif d'essai de fluage. 

I.2.2.3. Four  

Les fours utilisés sont en général des fours tubulaires à résistance électrique qui chauffe par 

radiation. Les variations de température ayant un impact fort sur les résultats de fluage, il est 

important d'assurer un contrôle précis de la température (la norme fixe une variation 

maximale de ± 1,7°C au-dessous de 980 °C et ± 2,8 °C au-dessus. La montée en température à 

elle seule peut durer plusieurs heures pour éviter de dépasser la température d'essai, ce qui 

invaliderait les résultats. La mesure de température est généralement effectuée par un 

thermocouple fixé sur l'échantillon. Les éprouvettes longues peuvent imposer d'utiliser 

plusieurs thermocouples afin de s'assurer de l'homogénéité de la température. 

I.2.2.4. Mesure du déplacement 

La mesure du déplacement est effectuée par Extensométrie. Dans le cas des essais de 

fluage, la température élevée interdit le plus souvent de placer l'extensomètre directement 

dans le four et on utilise un système de tiges capables de supporter la température d'essai, 
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transférant la déformation à un LVDT comme présenté sur la figure I.10. Il est aussi possible 

de faire appel à de l'Extensométrie sans contact, ce qui implique de disposer d'une fenêtre 

dans le four pour suivre le déplacement des points de la surface pris comme repères. 

 

 

 

 

 

Figure I.10 : Dispositif de mesure de la déformation pour essai de fluage. 

I.2.2.5 Résultats types  

Lorsqu’une éprouvette est soumise à une traction simple (essai monodimensionnel sous 

une contrainte σ et une déformation ε), si, à partir d’un certain état, la contrainte est 

maintenue constante, la déformation restera constante (absence de déformations différées dans 

le temps) s’il n’y a aucune viscosité. Lorsqu’on dépasse le tiers de la température de fusion 

dans les alliages métalliques, on observe au contraire des déformations liées au caractère 

visqueux du comportement. On distingue classiquement 3 stades dans un essai de fluage, 

comme indiqué sur la figure I.11.a. 

• Fluage primaire (I), ou transitoire, pendant lequel la vitesse de déformation diminue 

avec le temps, ce qui traduit une augmentation de la résistance du matériau. Cette 

tendance provient en général d’un accroissement de la densité de dislocations 

jusqu’à saturation. 

• Fluage secondaire (II), ou stationnaire, pendant lequel la vitesse de déformation se 

stabilise. Cette phase correspond à l’équilibre atteint entre les phénomènes de 

durcissement et ceux de restauration à l’échelle des dislocations. 
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• Fluage tertiaire (III) où la vitesse de déformation augmente jusqu’à rupture de 

l’éprouvette. La densité et la mobilité des dislocations augmentent. En parallèle, 

des phénomènes de cavitation interne et d’endommagement en surface vont mener 

à la création de fissures. Ces dernières vont diminuer la surface portante de 

l’éprouvette entraînant la rupture par augmentation de la contrainte macroscopique. 

 

 

 

 

 

 

 

 

 

 

Figure I.11.a : Courbe schématique représentant les différents stades de fluage 

La figure I.11.b montre quant à elle le résultat obtenu pour différents niveaux de 

chargement sur une fonte à 800°C. 

 

Figure I.11.b : Fluage d’une fonte à 800°C. 
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I.2.3. Essai de résilience  

I.2.3.1. Objectif et principe de l’essai  

La connaissance des caractéristiques mécaniques déduites de l’essai de traction peut être 

insuffisante, puisque des ruptures peuvent être obtenues en dessous de la limite d’élasticité 

dans des conditions particulières qui rendent le matériau fragile. Les facteurs fragilisant sont :  

• Le triaxialité des contraintes ;  

• L’abaissement de la température ;  

• L’augmentation de la vitesse de déformation.  

Le principe de l’essai consiste à rompre par choc du mouton pendule une éprouvette 

entaillée reposant sur deux appuis. On détermine l’énergie absorbée caractérisant la résistance 

aux chocs du matériau métallique essayé. La résistance aux chocs, donc l’énergie nécessaire 

pour produire la rupture de l’éprouvette, exprimée en joule par centimètre carré.  

 
Energie absorbé par rupture (J)

Section au droit de l'entaille (cm²)
Résilience =                                  (I.9) 

I.2.3.2. Eprouvette   

L'effet de la forme de l'éprouvette sur l'énergie de rupture est très prononce. La Figure I.12 

montre les formes et dimensions géométriques de 3 types d'éprouvettes standardisées. Elles 

ont toutes une longueur de 55 mm et une section nominale de 10 x 10 mm², mais se 

distinguent dans leur forme et leur profondeur d'entaille qui se trouve sur le cote oppose à 

l'endroit où le marteau frappe (Figure I.13). Elle a pour objet de garantir un état de contrainte 

triaxiale, déjà lors de l'amorçage de la fissure, plutôt que de provoquer l'effet d'entaille. C'est 

pour cette raison que le fond de l'entaille n'est pas pointue mais cylindrique (rayon de 0.25 ou 

de 1 mm selon type d'éprouvette). L'aire de la section restant à l'endroit de l'entaille est, selon 

la définition de la résilience ako, la section à utiliser pour le calcul de sa valeur. Notez que 

seuls des résultats obtenus sur des éprouvettes de dimensions identiques devraient être 

compares. Il n'y a pas de méthode générale de conversion de valeurs de résilience, obtenues 

par une méthode d'essai, en valeurs qui seraient obtenues par une autre méthode d'essai.  
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Figure I.12 : Eprouvettes Charpy standardisées.  

I.2.3.3. Principe de l’essai  

Un marteau de masse m est fixé à l'extrémité d'un pendule (figure I.13). Ce pendule peut 

tourner dans le plan vertical autour d'un axe horizontal. L'éprouvette repose sur un support et 

se trouve au point le plus bas sur la trajectoire du marteau. Pour effectuer un essai, on écarte 

le bras jusqu'à ce que le marteau atteigne sa position initiale P et on le lâche. Quand le 

pendule vient frapper l'éprouvette, il a une énergie cinétique qui est égale à l'énergie 

potentielle qu'il avait à sa position de départ (mgH), H étant la hauteur du marteau par rapport 

à sa position d'équilibre. Après la rupture, le marteau remonte. Dans son point culminant 

(hauteur h), l'énergie cinétique résiduelle s'est de nouveau transformée en énergie potentielle 

(mgh). L'énergie K dépensée ou absorbée pour rompre l'éprouvette vaut alors :  

Avec : mg est le poids de la pendule,     ( )W mg H h= −                                      (I.10) 

 

 

 

 

 

 

Figure I.13 : Principe de l’essai (en haut) et du montage de l’éprouvette (en bas). 
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I.2.3.4. Machine de l’essai  

Le mouton Pendule Charpy permettant de réaliser des essais de résilience avec une 

capacité disponible qui peut atteindre 750 J selon les versions. L'essai permet de déterminer 

l'énergie absorbée lors de la rupture d'une éprouvette entaillée. Le pendule est constitué d'une 

base en fonte et de deux colonnes d'appui pour le support des éprouvettes CHARPY, un 

mouton-pendule avec son bras, un système de levage du mouton motorisé et un mécanisme de 

déclenchement (figure I.14). 

Un afficheur numérique permet la lecture de l'énergie absorbée par l'éprouvette testée et un 

frein motorisé assure la réaction sur le mouton en ralentissement rapide des oscillations. 

L'équipement est disponible en différentes versions ; 150, 300, 450 et 750 Joules et avec 

différents couteaux d'impact pour répondre aux normes en rigueurs. La sécurité est assurée 

par un carter de protection transparent avec micro contacteur de sécurité conforme aux 

normes CE. 

I.2.3.5. Conduite de l’essai et exploitation des résultats 

Le plan d’oscillation du mouton doit passer sensiblement par le centre de gravité de la 

cabote. Le point d’impact coïncide avec le centre de percussion du mouton. Pour l’essai 

normal, l’énergie disponible du mouton doit être égale 294 Joule. La résilience obtenue avec 

un tel mouton est désignée par le symbole K.  

L’éprouvette est placée sur le porte-éprouvette de telle sorte que l’arête du couteau vienne 

la frapper dans le plan de symétrie de l’entaille et sur la face opposée à celle-ci. La valeur 

qu’en donne la quantité K est alors généralement approchée par excès en raison du frottement 

des extrémités de l’éprouvette sur les portes-éprouvettes ; mention de cette particularité doit 

donc, le cas échéant, accompagner les résultats d’essai. 

 

 

 

 

Figure I.14 : Disposition avant et après l’essai Charpy 
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En principe, il serait bien utile de connaître les contraintes critiques qui provoquent la 

rupture sous l'effet d'un choc. Néanmoins dans la pratique et dans la théorie, le phénomène de 

la rupture dynamique est très complexe. Même au niveau expérimental, la détermination d'une 

contrainte critique s'avère déjà extrêmement difficile. Comme la fissuration sous l'effet du 

choc avance à très grande vitesse et que de ce fait les contraintes montent et descendent 

presque instantanément, leur mesure exacte n'est pratiquement pas possible. On doit 

reconnaître que les contraintes du choc se transmettent par une onde acoustique.  

L’essai s’effectue à la machine d’essai (figure I.15) dont la construction et l’installation 

doivent être rigides et convenir à la norme en vigueur. La machine est équipée par l’échelle 

prévue pour le mesurage de l’énergie de choc. Dans les conditions standard l’essai s’exécute à 

une température de 23±5 °C, et avec une énergie initiale nominale de la machine : W0 = 300±5 

Joules. Tout d’abord, le Mouton pendule est mis en position initiale à une hauteur h0 qui 

correspond ainsi à une énergie de départ W0. 

Figure I.15 : Éprouvette Charpy normalisée (A gauche : entaille en U ; A droite : en V) 

                              

Figure I.16 : Exemple des éprouvettes après l’essai de résilience. 
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I.3. Essais multiaxiaux  

Les essais multiaxiaux apportent une information précieuse pour tester les modèles de 

déformation, mais ils sont malheureusement peu pratiqués en raison des difficultés 

expérimentales. Les essais possibles, classiquement, sont les essais de traction (ou 

compression) - torsion, les essais de traction bi axiale et les essais de compression triaxiale. 

L'essai de traction cisaillement est le plus riche pour tester les aspects d'anisotropie. Nous 

présenterons ici les essais de traction bi axiale et les essais de traction - torsion. 

Les essais multiaxiaux peuvent être effectués suivant deux modes : en phase ou hors phase, 

selon que l'éprouvette subit simultanément ou non les différentes sollicitations. Les 

déplacements et les forces appliquées peuvent enregistrées de la même façon que dans le cas 

des essais de traction uniaxiale. Ces essais sont utilisés soit dans des conditions quasi 

statiques soit dans le cadre d'essais de fatigue multiaxiale. 

I.3.1. Traction bi axiale 

Les essais de traction bi axiale consistent à exercer une contrainte dans deux directions 

perpendiculaires sur une même éprouvette. Ceci impose d'utiliser des éprouvettes 

cruciformes, comme celle présentées figure (I.17). Pour réaliser des états de contrainte 

uniformes, il faut que les bras de la croix aient des rigidités transversales assez faibles, ce que 

l'on peut obtenir en les évidant.  

 

        

 

 

 

 

Figure I.17 : éprouvette de traction biaxiale montée.  
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I.3.2. Traction-torsion 

Ce type d'essai permet d'étudier des trajets de chargement avec modification des directions 

principales des contraintes. La machine est constituée d'un vérin linéaire et d'un vérin torique 

avec dispositif de découplage. La figure (I.18) présente un dispositif de traction-torsion du 

Centre des Matériaux et un exemple de chemin mécanique dans l'espace des contraintes 

pouvant être appliqué à une éprouvette. 

 

Figure I.18 : dispositif de traction-torsion du Centre des Matériaux. 

I.4. Exercices  

➢ Exercice 1 

On réalise un essai de traction sur une éprouvette d’un certain métal. L’aire de la section 

est S= 39,41 cm2 et la base de mesure vaut L = 200 mm. Les appareils de mesure fournissant 

les valeurs suivantes (charge F, allongement ΔL). 

Mesure N° 1 2 3 4 5 6 7 8 9 10 11 

F [KN] 200 400 600 800 1000 1100 1200 1250 1300 1350 1380 

ΔL [mm] 0.142 0.280 0.422 0.661 0.702 0.771 0.864 0.948 1.200 1.710 2.501 

1) Tracer le diagramme (σ, ε) du matériau. 

2) En déduire la valeur du module d’élasticité E. De quel métal s’agit-t-il probablement ? 

3) En déduire la valeur de la limite d’élasticité conventionnelle σe0.2. 

Calculer le coefficient de striction Z% si la section Du à la rupture est Su =11.66 mm 
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Solution Exercice  n° 01 : 

Traçage du diagramme (σ, ε) du matériau : 

0

( / ²)
F

KN m
S

 =  5.07 10.15 15.22 20.30 25.37 27.91 30.45 31.72 32.99 24.26 35.02 

0

00

0

( / )
L

L



=  0.71 1.40 2.11 3.31 3.51 3.86 4.32 4.74 6.00 8.55 12.51 

 
 

2. Détermination de la valeur de E : 

3

15.00
tan 7212 / ²

2.0810
E KN m

−
= =   

Il s’agit d’alliage d’aluminium (Voir tableau- Rappel du cours). 

     3. Détermination de la limite d’élasticité conventionnelle 0.2e  : 

0.2 33.50 / ²e KN cm =  

4. Calcul du coefficient de striction : 

11.66 39.41
% 100 70.42%

39.41
Z

−
=  =  

➢ Exercice 2 

On réalise un essai de traction sur une éprouvette d’acier 1060 de longueur L0=100 mm et 

de diamètre D=12 mm d’acier à l’état recuit. Les vues générale et agrandie de la courbe brute 

de traction F = f(Δl) sont données par les courbes suivantes : 
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1- Quelle est la valeur du module d’Young E (en GPa) de l’acier 1060 ? 

2- Quelle est la limite proportionnelle d’élasticité σe (en MPa) de l’acier 1060 ? 

3- Quelle est la limite conventionnelle d’élasticité σe0,2 (en MPa) de l’acier 1060 ? 

4- Quelle est la résistance à la traction σm (en MPa) de l’acier 1060 ? 

5- Quelle est la valeur de la déformation permanente A (en %) après rupture de l’éprouvette ? 

Solution de l’exercice N° 2 : 

1. La valeur du module d’Young E : 

( ) 235E tg GPa=   

2. La limite proportionnelle d’élasticité σe 

354
12²

4

e e
e

F F
MPa

S



= = =

 

3. La limite conventionnelle d’élasticité σe0,2 : 

3

0.2 0.2
0.2

50 10
442.1

² 12²

4 4

e e
e

F F
MPa

DS


 


= = = =

 

4. La résistance à la traction σm : 

3

max 88 10
778

12²

4

m

F
MPa

S





= = =  

5. La valeur de la déformation permanente A : 

0

23.5
100 23.5%

100

L
A

L


= =  =  
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➢ Exercice 3  

On procède à un essai de résilience sur une éprouvette E à l'aide d'un mouton pendule dit 

de Charpy. Le marteau est lâché sans vitesse initiale à partir d'une position horizontale ; on 

note G0 la position initiale du centre de gravité. Le centre de gravité décrit l’arc 0G E , et, 

après rupture de l'éprouvette, décrit l’arc EG  

Données : 

• Masse du bras marteau m = 40 kg. 

• Angle de remontée θ = 20°. 

• Longueur: OG0 = 800 mm. 

• Section de l'éprouvette S = 0,7 cm². 

1. Déterminer l'énergie initiale.  

2. Après le choc, le marteau s'écarte de l’angle θ. 

a. Calculer OH ;  

b. En déduire h2 ;  

c. Calculer l’énergie absorbée par la rupture de l’éprouvette. 

3. Calculer la résilience de l'échantillon. 

Solution de l’exercice N° 3 : 

1. Energie initiale: 

 
2.  

a) Calcul de OH: 

 

 
b) Calcul de h2: 
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c) Calculer l’énergie absorbée par la rupture de l’éprouvette: 

 

( )1 2( ) 40 9.81 0.8 0.05 294.3r rW mg h h W j= − → =   − =  

3. Calcul de la résilience de l'échantillon :  
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II.1. Généralité  

Les modèles rhéologiques sont utilisés pour modéliser le comportement d’un matériau, 

c’est-à-dire pour simuler sa réponse à une sollicitation mécanique. Concernant la 

viscoélasticité linéaire, des modèles analogiques empiriques ont été proposés ; ils sont 

composés d’une combinaison de connexions en série et/ou parallèle de ressorts (de 

coefficients d’élasticité Ei) et d’amortisseurs (de coefficients de viscosité ηi) élémentaires, 

représentant les composantes élastique et visqueuse, respectivement. Il existe des modèles 

performants pour décrire la viscoélasticité, approchant de façon satisfaisante les courbes de 

caractérisation mécanique, mais de complexité mathématique élevée. Certaines lois de 

comportement sont intégrées dans des logiciels de calcul par éléments finis traitant la 

viscoélasticité. Les fluides viscoélastiques peuvent aussi être représentés par des modèles 

analogiques électriques. 

II.2. Les briques de base du comportement non linéaire  

L’allure qualitative de la réponse des matériaux à quelques essais simples permet de les 

ranger dans des classes bien définies. Ces comportements de base, qui peuvent être 

représentés par des systèmes mécaniques élémentaires, sont l’élasticité, la plasticité et la 

viscosité. Les éléments les plus courants sont reportés en figure II.1, où le point au-dessus 

d’une variable désigne la dérivée temporelle : 

1. Le ressort, qui symbolise l’élasticité linéaire parfaite, pour laquelle la déformation est 

entièrement réversible lors d’une décharge, et où il existe une relation biunivoque entre les 

paramètres de charge et de déformation (figure II.1.a). 

2. L’amortisseur, qui schématise la viscosité, linéaire (figure II.1.b) ou non–linéaire 

(figure II.1.c). La viscosité est dite pure s’il existe une relation biunivoque entre la charge et la 

vitesse de chargement. Si cette relation est linéaire, le modèle correspond à la loi de Newton. 

3. Le patin, qui modélise l’apparition de déformations permanentes lorsque la charge est 

suffisante (figure II.1.d). Si le seuil d’apparition de la déformation permanente n’évolue pas 

avec le chargement, le comportement est dit plastique parfait. Si, de plus, la déformation 

avant écoulement est négligée, le modèle est rigide–parfaitement plastique. 

https://fr.wikipedia.org/wiki/Mod%C3%A8le_math%C3%A9matique
https://fr.wikipedia.org/wiki/Visco%C3%A9lasticit%C3%A9
https://fr.wikipedia.org/wiki/Ressort_(m%C3%A9canique_%C3%A9l%C3%A9mentaire)
https://fr.wikipedia.org/wiki/Module_d%27%C3%A9lasticit%C3%A9
https://fr.wikipedia.org/wiki/Unit%C3%A9_imaginaire
https://fr.wikipedia.org/wiki/Amortisseur
https://fr.wikipedia.org/wiki/Viscosit%C3%A9
https://fr.wikipedia.org/wiki/Syst%C3%A8me_complexe
https://fr.wikipedia.org/wiki/Loi_de_comportement
https://fr.wikipedia.org/wiki/Loi_de_comportement
https://fr.wikipedia.org/wiki/Mise_en_%C5%93uvre
https://fr.wikipedia.org/wiki/Logiciel
https://fr.wikipedia.org/wiki/M%C3%A9thode_des_%C3%A9l%C3%A9ments_finis
https://fr.wikipedia.org/wiki/Fluide_(mati%C3%A8re)
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Figure II.1. Les modèles de base pour la représentation des comportements 

Ces éléments peuvent être combinés entre eux pour former des modèles rhéologiques. 

Ceux-ci représentent des systèmes mécaniques qui servent de support dans la définition des 

modèles. Il ne faut en aucun cas leur accorder un trop grand crédit pour ce qui concerne la 

représentation des phénomènes physiques qui sont à la base des déformations. Ils sont 

néanmoins brièvement présentés ici, car ils permettent de comprendre la nature des relations à 

introduire pour chaque type de comportement, en pratiquant par exemple l’exercice qui 

consiste à combiner deux à deux les modèles élémentaires. C’est aussi l’occasion d’introduire 

l’ensemble du vocabulaire qui sera utile dans le cas général des chargements 

tridimensionnels. En fonction du type de chargement imposé, la réponse de ces systèmes peut 

être jugée dans 3 plans différents : 

• Plan déformation–contrainte, −, pour l’essai de traction simple, ou d’écrouissage, 

augmentation monotone de la charge ou de la déformation ; 

• Plan temps–déformation, −, pour l’essai de fluage, sous charge constante ; 

• Plan temps–contrainte, −, pour l’essai de relaxation, sous déformation constante. 

II.3. Plasticité uniaxiale 

II.3.1. Modèle élastique–parfaitement plastique  

L’association d’un ressort et d’un patin en série (figure II.2 a) produit un comportement 

élastique parfaitement plastique, modélisé en figure II.2 c. Le système ne peut pas supporter 

une contrainte dont la valeur absolue est plus grande que . Pour caractériser ce modèle, il 

faut considérer une fonction de charge dépendant de la seule variable σ, et définie par : 
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                                   (II.1) 

Le domaine d’élasticité correspond aux valeurs négatives de f , et le comportement du 

système se résume. 

 

Figure II.2. Associations en série ou parallèle de patin et ressort. 

Alors aux équations suivantes : 

• Domaine d’élasticité si :                                           (II.2) 

• Décharge élastique si :                              (II.3) 

• Écoulement plastique si :                                        (II.4) 

En régime élastique, la vitesse de déformation plastique est bien entendu nulle, la vitesse 

de déformation élastique devenant à son tour nulle pendant l’écoulement plastique. Ceci 

implique que l’expression de la vitesse de déformation plastique ne peut pas se faire à l’aide 

de la contrainte. C’est au contraire la vitesse de déformation qui doit être choisie comme 

pilote. 

Le modèle est sans écrouissage, puisque le niveau de contrainte ne varie plus au sortir du 

domaine d’élasticité. Il n’y a pas d’énergie stockée au cours de la déformation, et la 

dissipation en chaleur est égale à la puissance plastique. Le modèle est susceptible d’atteindre 

des déformations infinies sous charge constante, conduisant à la ruine du système par 

déformation excessive. 
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II.3.2. Modèle de Prager  

L’association en parallèle de la figure 2.2b correspond au comportement illustré en figure 

II.2.d. Dans ce cas, le modèle présente de l’écrouissage. Il est dit cinématique linéaire (Prager, 

1955), car dépendant linéairement de la valeur actuelle de la déformation plastique. Sous cette 

forme, le modèle est rigide– plastique. Il devient élasto-plastique si l’on rajoute un ressort en 

série. La forme de la courbe dans le plan  est due au fait que, lors de l’écoulement 

plastique, la contrainte qui s’établit dans le ressort vaut . Par ailleurs, cet 

écoulement ne se produit que si la valeur absolue de la contrainte dans le patin, soit 

 est égale à σy. Pour une déformation donnée, cette contrainte X est une contrainte 

interne qui caractérise le nouvel état neutre du matériau. 

Ce deuxième exemple offre l’occasion d’écrire un modèle plus complet que 

précédemment. La fonction de charge dépend maintenant de la contrainte appliquée et de la 

contrainte interne. Elle s’écrit  

                                        (II.5) 

Il n’y aura présence d’écoulement plastique que si on vérifie à la fois  et . 

Ceci conduit à la condition suivante : 

                                         (II.6) 

D’où : 

                           (II.7) 

                                          (II.8) 

Dans ce cas, la contrainte augmente au cours de l’écoulement plastique, si bien qu’elle peut 

servir de variable de contrôle. Mais il est aussi toujours possible d’exprimer la vitesse 

d’écoulement plastique en fonction de la vitesse de déformation totale, en utilisant la 

décomposition de la déformation combinée avec l’expression de la vitesse de déformation 

plastique, le cas où H = 0 redonnant bien entendu le cas du matériau parfaitement plastique : 

                                                            (II.9) 
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II.4. Viscoélasticité uniaxiale 

II.4.1. Un exemple de modèle rhéologique  

Le modèle de Maxwell regroupe un amortisseur et un ressort en série (figure II.3.a), celui 

de Voigt un amortisseur et un ressort en parallèle (figure II.3.b). Leurs équations respectives 

sont : 

▪ Maxwell 

         

▪ Voigt  

 

La particularité du modèle de Voigt est de ne pas présenter d’élasticité instantanée. Ceci 

entraîne que sa fonction de relaxation n’est pas continue et dérivable par morceaux, avec un 

saut fini à l’origine : 

L’application d’un saut de déformation en t = 0 produit une contrainte infinie. Ce modèle 

n’est donc pas utilisable en relaxation, sauf si la mise en charge est progressive, et sera pour 

cette raison associé à un ressort en série pour effectuer des calculs de structure (modèle de 

Kelvin–Voigt du paragraphe suivant). Sous l’effet d’une contrainte σ0 constante en fonction 

du temps, la déformation tend vers la valeur asymptotique σ0/H, le fluage est donc limité 

(figure II.3.c). Par ailleurs, si, après une mise en charge lente, la déformation est fixée à une 

valeur ε0, la contrainte asymptotique sera (H*ε0). Il n’y a donc pas dans ce dernier cas 

disparition complète de la contrainte. Au contraire, dans le cas du modèle de Maxwell, la 

vitesse de fluage est constante (figure II.3.c), et la disparition de contrainte au cours d’une 

expérience de relaxation est totale (figure II.3.d). 

 

 

 

 

 (II.10) 

 (II.11) 
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Figure II.3. Fonctionnement des modèles de Maxwell et Voigt. 

II.4.2. Écriture générale des équations de l’élasto-plasticité uniaxiale 

Dans le cas général, les conditions de «charge–décharge» s’expriment donc : 

✓ Domaine d’élasticité si : ( , ) 0                                 ( / )if A E   =


          (II.12) 

✓ Décharge élastique si : ( , ) 0  et  ( , ) 0        ( / )i if A f A E   =  =


           (II.13) 

✓ Écoulement plastique si : ( , ) 0  et  ( , ) 0     ( / )
P

i if A f A E    = = = +


   (II.14) 

Dans le cas général, le module H dépend de la déformation et/ou des variables 

d’écrouissage. La valeur du module plastique au point (σ,Ai) s’obtient en écrivant que le point 

représentatif du chargement reste sur la limite du domaine d’élasticité au cours de 

l’écoulement. L’équation qui en découle s’appelle la condition de cohérence : 

( , ) 0if A =


                                                           (II.15) 

Ce formalisme peut paraître un peu lourd dans le cadre d’un chargement uniaxial, mais il 

est utile de le mettre en place, car ce sont les mêmes outils qui seront ensuite utilisés dans le 

cas plus complexe des chargements multiaxiaux. Dans les deux exemples qui ont été décrits, 

le domaine d’élasticité est soit fixe, soit mobile, sa taille étant conservée. Le premier cas ne 

nécessite bien entendu aucune variable d’écrouissage, le second fait intervenir une variable X 
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qui dépend de la valeur actuelle de la déformation plastique. Cette variable deviendra 

tensorielle dans le cas général. 

II.4.3. Modèles composés 

II.4.3.1. Modèle de Kelvin–Voigt   

Il présente respectivement les réponses suivantes, pour 0   , en fluage sous une 

contrainte σ0, en posant /f H =  , et en relaxation pour une déformation
0 , en posant  

( )0/f H E = +  : 

              0 0

0

1 1
( ) ( ) 1 exp

f

t
t C t

E H
  



   
 = = + − −  

      

                                    (II.16)                     

          
0

0 0 0

0 0

( ) ( ) exp
f

EH t
t E t E

H E H E
  



   
 = = + −  

  + +     

                (II.17) 

      

Figure II.4. Exemple de modèles composés 

II.4.2.1. Modèle de Zener :  

Il peut se ramener au modèle de Kelvin–Voigt, à l’aide du double changement de variable 

                                                                                       (II.18) 

Ce qui prouve que les deux modèles sont en fait identique. La même observation peut être 

faite en fluage. Ce modèle correspond au comportement du béton frais. Les modèles indiqués 

peuvent être encore améliorés : 
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• Le modèle de Kelvin–Voigt généralisé est obtenu en ajoutant en série d’autres 

modules amortisseur-ressort (H, η) dans le cas du premier modèle; ce modèle 

représente en général correctement le comportement des polymères fortement 

réticulés. 

• Le modèle de Maxwell généralisé est obtenu en ajoutant en parallèle d’autres 

modules amortisseur-ressort (E2, η) au second modèle ; ce modèle représente 

qualitativement le comportement des polymères thermoplastiques. 

II.5. Exercices 

➢ Exercice 1 

On considère un modèle viscoélastique de Maxwell, composé par l’assemblage en série 

d’un amortisseur de viscosité  et d’un ressort de module E. 

1) Donner l’équation qui caractérise le comportement de ce modèle. 

 

Solution de l’exercice n°01 :  

L’association du patin et du ressort est en série, donc: 

1 2 3  = =  

 

1 2  = +  

Pour le patin: 

.  
•

=  

Pour le ressort: 

E =   

L’équation qui caractérise le comportement du modèle  de  Maxwell: 

E

 



= +



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E


  = +



 

➢ Exercice 2 

On considère un modèle viscoélastique de Kelvin-Voigt, composé par l’assemblage en 

série d’un amortisseur de viscosité  et d’un ressort de module E. 

1) Donner l’équation qui caractérise le comportement de ce modèle. 

 

 

 

Solution de l’exercice n°02 :  

L’association du patin et du ressort est en série, donc: 

1 2 3  = =  

 

1 2  = +  

Pour le patin: 

.  
•

=  

Pour le ressort: 

E =   

L’équation qui caractérise le comportement du modèle de Kelvin-Voigt: 

E   =  + 


 

  




− 
=


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III.1. Introduction  

Un critère de plasticité, ou critère d'écoulement plastique, est un critère permettant de 

savoir, sous des sollicitations données, si une pièce se déforme plastiquement ou si elle reste 

dans le domaine élastique. De nombreux essais ont montré que l'on pouvait utiliser deux 

critères principaux : le critère de Tresca-Guest ou le critère de Von Mises. En résistance des 

matériaux, on désire parfois rester dans le domaine élastique, on parle alors de critère de 

résistance. 

La contrainte de comparaison n'est pas une contrainte réelle existant à un instant donné à 

l'intérieur d'un solide, mais elle est utilisée en mécanique pour prédire la rupture. Néanmoins, 

la plupart des spécialistes l'utilisent pour déterminer si un champ de contrainte donné dans une 

pièce est acceptable ou non. On parle aussi de contrainte équivalente ou de contrainte 

effective. Elle découle des critères de plasticité. Cette contrainte est comparée à la limite 

d'élasticité ou encore la contrainte de rupture obtenue par essai de traction. 

III.2. Contraintes principales  

Le tenseur des contraintes caractérise les efforts intérieurs définis pour chaque volume 

unitaire de matière. Il permet de décrire précisément l’état de contrainte en chaque point et est 

noté : 

                                                ( )
11 12 13

12 22 23

13 23 33

M

  

   

  

 
 

=  
 
 

                                          (III.1) 

Sachant que les termes hors diagonale correspondent à du cisaillement, et appartenant 

souvent à la base vectorielle (X, Y, Z), il peut aussi s’écrire : 

                                                ( )
xx xy xz

xy yy yz

xz yz zz

M

  

   

  

 
 

=  
 
 

                                          (III.2) 

Les contraintes peuvent être exprimées dans une base telle que le tenseur des contraintes 

est une matrice diagonale : on parle de contraintes principales : 

https://fr.wikipedia.org/wiki/D%C3%A9formation_plastique
https://fr.wikipedia.org/wiki/D%C3%A9formation_%C3%A9lastique
https://fr.wikipedia.org/wiki/R%C3%A9sistance_des_mat%C3%A9riaux
https://fr.wikipedia.org/wiki/R%C3%A9sistance_des_mat%C3%A9riaux
https://fr.wikipedia.org/wiki/Contrainte
https://fr.wikipedia.org/wiki/Limite_d%27%C3%A9lasticit%C3%A9
https://fr.wikipedia.org/wiki/Limite_d%27%C3%A9lasticit%C3%A9
https://fr.wikipedia.org/wiki/Essai_de_traction
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                                                ( )
1

2

3

0 0

0 0

0 0

M



 



 
 

=  
 
 

                                              (III.3) 

Les contraintes principales permettent d'interpréter immédiatement le(s) type(s) de 

sollicitations subi(s) par la matière, traction, compression, cisaillement, à la différence des 

critères de Von Mises et Tresca comme présenté ci-après. 

• désigne les points qui peuvent se ramener à de la traction simple, (o) ceux qui peuvent 

se ramener à la compression simple (par exemple un chargement biaxial, car un état ou les 

seules contraintes non nulles sont  est équivalent à ), est un état de 

cisaillement. 

 

 

 

 

Figure III.1: Etats de contraintes caractéristiques dans le plan déviateur. 

III.3. Critères de Plasticité 

III.3.1. Critère Von Mises 

Le critère de plasticité permet de se positionner par rapport à la limite d’élasticité σe : 

• : non-plastification, d'où existence d'un potentiel de tenue en fatigue 

•  : plastification, potentiel de tenue en fatigue réduit, voire inexistant 

Le critère de Von Mises est le plus couramment utilisé. Sous contrainte principale on 

obtient : 

                         ( ) ( ) ( )
2 2 2

1 2 2 3 3 1

1

2
VM       = = − + − + −                     (III.4) 

Ou bien sous le tenseur de contraintes :  

https://www.mecastyle.com/calcul-de-structure-loi-comportementale
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( ) ( ) ( ) ( )
2 2 2 2 2 2

11 22 22 33 33 11 12 13 23

1
6

2
VM          = = − + − + − + + +                (III.5) 

La fonction d'écoulement plastique peut s'écrire : 

( ) VM ef   = −             (III.6) 

Ce critère prend compte des composantes de contraintes en traction, compression et 

cisaillement pour donner un niveau de contrainte isotrope (le même dans toutes les 

directions). 

Le critère de Von Mises n'indique pas le type de sollicitations : traction, compression, 

cisaillement, ... 

III.3.2. Critère de Tresca 

L’expression du critère de Von Mises fait intervenir les cisaillements maximaux dans 

chaque plan principal, représentés par les quantités . La spécificité du critère de 

Tresca est de ne retenir que le plus grand d’entre eux. Le fait de rajouter une pression à 

chaque terme de la diagonale ne modifie pas, comme prévu, la valeur du critère. 

Contrairement au cas précédent, cette expression ne définit en général pas une surface 

régulière (discontinuité de la normale, points anguleux) : 

,
maxT i j

i j
  = −                                          (III.7) 

La fonction d'écoulement plastique peut s'écrire :  

( ) T ef   = −                                                (III.8) 

III.3.3. Comparaison des critères de Tresca et Von Mises : 

Comme il n’est bien entendu pas question de se placer dans l’espace des 6 (ou 9) 

composantes du tenseur des contraintes, il faut se résoudre à ne visualiser les frontières du 

domaine d’élasticité que dans des sous–espaces à deux ou trois dimensions. Les 

représentations les plus courantes s’effectuent : 
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Dans le plan traction cisaillement (figure III.2.a), lorsque seules les composantes  

et sont non nulles ; les expressions des critères se réduisent alors à : 

• Von Mises :  
2 23VM  = +                                                                          (III.9) 

• Tresca :    
2 24T  = +                                                                                (III.10)            

 

 

Figure III.2 : Comparaison des critères de Tresca (en pointillés) et de von Mises (traits 

pleins). En traction-cisaillement, (b) En traction biaxiale 

Dans le plan des contraintes principales  (figure III.2.b), lorsque la troisième 

contrainte principale  est nulle : 

• Von Mises :    

• Tresca :                               si             

                                        si       

                                  si             

Dans le plan déviateur (figure III.1), le critère de Von Mises est représenté par un cercle, 

ce qui est cohérent avec son interprétation par le cisaillement octaédral, le critère de Tresca 

par un hexagone ; 

Dans l’espace des contraintes principales, chacun de ces critères est représenté par un 

cylindre de génératrice (1,1,1), qui s’appuie sur les courbes définies dans le plan déviateur. 
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III.4. Critères faisant intervenir la pression hydrostatique 

Ces critères sont nécessaires pour représenter la déformation plastique des matériaux 

pulvérulents, des sols ou en présence d’endommagement du matériau. Ils expriment le fait 

qu’une contrainte hydrostatique de compression rend plus difficile la déformation plastique. 

Une des conséquences de leur formulation est qu’ils introduisent une dissymétrie traction–

compression. 

III.4.1. Critère de Drucker–Prager  

C’est une extension du critère de Von Mises, combinaison linéaire du deuxième invariant 

du déviateur et de la trace du tenseur des contraintes. C’est toujours un cercle dans le plan 

déviateur, mais qui dépend de l’altitude sur la trisectrice des axes σ1, σ2, σ3 de contraintes 

principales (figure III.3.a) : 

 

Figure III.3 : Représentation du critère de Drucker–Prager, (a) dans l’espace des 

contraintes principales, (b) dans le plan I1−J 

                                          ( ) 1( ) 1f J I  = − +                                             (III.11) 

Avec : 

                            ( ) ( ) ( )
2 2 2

1 2 2 3 3 1

1

2
J      = − + − + −                   (III.12)    

      ( )1 iiI trace  = =                                        (III.13) 
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La limite d’élasticité en traction reste σe, et la limite d’élasticité en compression est 

. Le coefficient α dépend du matériau, il est bien entendu compris entre 0 et 

1/2, et on retrouve le critère de von Mises pour α = 0 (figure III.3.b). 

III.4.2. Critère de Mohr–Coulomb  

Il est apparenté au critère de Tresca, faisant intervenir comme lui le cisaillement maximal, 

mais en même temps la contrainte «moyenne», représentée par le centre du cercle de Mohr 

correspondant au cisaillement maximum, soit : 

                            ( )1 3 1 3( ) sin 2 cosf C      = − + + −                          (III.14)     

Avec : 3 2 1     

Ce critère est sous–tendu par la notion de frottement, et suppose que le cisaillement 

maximal que peut subir le matériau (Tt en figure III.4.a) est d’autant plus grand que la 

contrainte normale de compression est élevée. La limite admissible constitue une courbe 

intrinsèque dans le plan de Mohr. La formule énoncée ci–dessus est obtenue avec une règle de 

frottement linéaire : 

                                                      ( )tant nT T C − +                                         (III.15) 

La constante C est la cohésion, correspondant à la contrainte de cisaillement qui peut être 

supportée par le matériau sous contrainte moyenne nulle. L’angle ϕ désigne le frottement 

interne du matériau. Si C est nul et ϕ non nul, le matériau est dit pulvérulent. Si ϕ est nul et C 

non nul, comme dans le cas du critère de Tresca, le matériau est purement cohérent. 

Le critère peut également s’exprimer sous la forme suivante, en fonction de la poussée Kp 

et de la limite d’élasticité en compression, Rp : 

( ) 1 3p pf K R  = − −                                   (III.16) 

Avec : 

        
1 sin 2 cos

;
1 sin 1 sin

p p

C
K R

 

 

+
= =

− −
                                    (III.17) 
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Dans le plan déviateur (figure III.4.b) on obtient un hexagone irrégulier, caractérisé par les 

valeurs suivantes (avec ) : 

( )6 cos sin
2

3 sin
t

C p 




−
=

+
                                            (III.18) 

( )6 cos sin
2

3 sin
c

C p 




− +
=

−
                                         (III.19) 

 

Figure III.4 : Représentation du critère de Mohr-Coulomb, (a) dans le plan de Mohr, (b) 

dans le plan déviateur 

III.5. Modélisation de l’écrouissage 

Lorsque l’état de contrainte atteint la surface de charge initiale et que le chargement du 

matériau se poursuit, celui-ci se déforme plastiquement. Selon le matériau, cet état de charge 

peut progresser dans l’espace des contraintes en modifiant la géométrie de la surface de 

charge initiale, de sorte que cet état de charge reste toujours sur la surface de charge. On parle 

d’écrouissage au sens où la charge a modifié la géométrie du domaine élastique. Une 

décharge de l’éprouvette montrera d’ailleurs un retour dans ce domaine élastique qui vient 

d’être modifié.  

L’écrouissage dépend bien entendu du trajet de charge parcouru hors du domaine 

d’élasticité initial. Les modifications subies par la surface de charge peuvent être de trois 

sortes : 

➢ une expansion isotrope de la surface ; 
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➢ une translation du centre du domaine d’élasticité initial. Ce déplacement est à l’origine 

de l’effet Bauschinger observé sur un essai unidimensionnel : cette translation rompt 

la symétrie traction/compression du seuil de plasticité ; 

➢ une distorsion ou un changement de forme de la surface. Initialement elliptique, 

comme illustré sur la figure (III.5) dans un plan (σ; τ), cette surface peut se distordre 

jusqu’à présenter un point plus ou moins anguleux dans la direction de chargement. 

Pour d’autres matériaux, la nouvelle surface seuil obtenue après écoulement plastique 

s’avère être identique à la surface de charge initiale, on parlera de matériau élastique 

parfaitement plastique. 

 

 

 

 

 

 

 

Figure III.5 : Essai de traction-torsion sur cuivre : surface seuil initiale. En trait plein la 

surface seuil prédite par le critère de Von Mises. 

Dans la suite, nous nous limitons à la modélisation du changement de taille de la surface 

(écrouissage isotrope) et à la translation du centre du domaine (écrouissage cinématique). 

III.5.1. Écrouissage isotrope 

Ce type d’écrouissage tient compte d’une expansion du domaine d’élasticité avec la 

déformation plastique. Cette expansion correspond à une homothétie de centre 0. Aussi, on ne 

tient pas compte de l’effet Bauschinger, la surface reste centrée sur l’origine. Supposons que 

la surface de charge puisse s’écrire sous la forme : 
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( ) ( ), eqf p p  = −                                            (III.20) 

Où ( )p est une fonction croissante de la déformation plastique équivalente cumulée, 

cette dernière étant définie de la façon suivante : 

( )
0

2
; :

3

t
P Pp p d p   = =



                                           (III.21) 

La fonction ( )p est supposée connue expérimentalement, on verra qu’on peut en 

proposer plusieurs modèles. Cette fonction scalaire est astreinte à valoir la limite d’élasticité 

initiale lorsque la déformation plastique équivalente cumulée est nulle, soit formellement : 

                                                                   ( ) 00p = =                                                 (III.22) 

La figure (III.6) montre l’expansion du domaine d’élasticité décrite par ce type d’écrouissage. 

 

 

 

 

 

 

Figure III.6 : Expansion du domaine d’élasticité de Von Mises : écrouissage isotrope. 

L’écriture la plus simple pouvant être considérée ( )p est une fonction affine de la 

déformation plastique cumulée p, de sorte que ( ) 0pp Q = + , Q étant une constante. On 

peut aussi écrire cette fonction comme une loi puissance ( ) 0

n

Pp K = + , c’est la loi de 

Ramberg-Osgood. 
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III.5.2. Écrouissage cinématique 

L’écrouissage cinématique correspond à une translation du centre du domaine d’élasticité, 

sans changement de forme ni de taille, et permet donc de prendre en compte l’effet 

Bauschinger identifié lors de l’essai unidimensionnel. On introduit alors le tenseur déviateur 

( )0X trX =  pour décrire la position du centre du domaine d’élasticité. Ce tenseur est nul pour 

le domaine initial centré en 0. Aussi le critère actuel de plasticité s’applique à présent à l’état 

de contrainte « décentré » X − , et s’écrit : 

( ) 0f X −                                                          (III.23) 

Par exemple la contrainte équivalente de Von Mises prend la forme suivante : 

( ) ( )
3

:
2

VM

eq s X s X = − −                                                (III.24) 

Où on rappelle que s est le déviateur des contraintes. Physiquement, X correspond à 

l’existence de contraintes internes à l’échelle microscopique dues aux défauts et aux 

hétérogénéités qui représentent des obstacles à la migration des dislocations dans les grains. 

 

 

 

 

 

 

Figure III.7 : Translation du domaine d’élasticité de Von Mises : écrouissage cinématique. 

La figure (III.7) illustre la translation du domaine d’élasticité paramétrée par le tenseur X. 

Il existe de nombreux modèles d’évolution de X dont certains assez complexes dont nous 

reparlerons au second chapitre. Le modèle le plus simple consiste à piloter son évolution de 

façon linéaire avec la vitesse de déformation plastique : 
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PX H =


                            (III.25)                                              

Où H est un paramètre. L’évolution linéaire est connue sous le nom de loi de Prager. 

 

Figure III.8 : Écrouissage cinématique : essai de traction 

Soit, par application du critère, l’état de contrainte actuel s’exprime comme 0 X = + =  

0

pH + . Ce décentrement correspondant à l’effet Bauschinger est illustré dans le cas de 

l’essai de traction sur la figure III.8. 

L’expérience montre que ce type d’écrouissage est de première importance dès qu’une 

structure subit des chargements cycliques, dans lesquels des états de contrainte de 

traction/compression peuvent se succéder dans chaque cycle. Si ces chargements sont 

suffisamment importants pour générer un écoulement plastique (par exemple en fatigue 

oligocyclique), la prise en compte d’une dissymétrisation traction/compression de la surface 

d’élasticité au travers de sa translation s’avère nécessaire pour pouvoir prédire correctement le 

comportement de l’élément de matière. Dans la pratique, on utilise des modèles qui 

combinent les écrouissages isotrope et cinématiques pour de nombreux matériaux 

métalliques. 
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III.6. Exercices  

➢ Exercice 1  

Tracer dans le plan des contraintes principales σ1–σ2 la limite du domaine d’élasticité en 

accord avec les critères de Von Mises et de Tresca, dans le cas où les seules composantes non 

nulles du tenseur des contraintes sont σ1 et σ2. 

➢ Solution d’exercice n°01 :  

Le critère ne doit pas être modifié par l’addition d’un tenseur sphérique. On en déduit que 

la forme du critère pour l’état de contrainte : (σ1, σ2, σ3) est la même que celle obtenue pour : 

(σ1 − σ3, σ2 − σ3, 0). 

La forme cherchée dans le plan σ1–σ2 est donc obtenue par simple translation dans la 

direction de la première bissectrice. Ce résultat, illustré en figure III.9 dans le cas du critère de 

Von Mises, est également valable pour le critère de Tresca. 

 

Figure III.9 : Tracé du critère de Von Mises dans le plan σ1–σ2, en contrainte plane et 

pour σ3 ≠ 0. 
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IV.1. Introduction  

Ce chapitre introduit les principales notions d’élasto-plasticité à partir de l’analyse de la 

réponse d’une éprouvette soumise à un essai de traction–compression. La modélisation de cet 

essai permet de présenter différentes schématisations couramment utilisées pour traiter des 

problèmes d’évolution élasto-plastique. Ces modèles sont ensuite soumis aux calculs 

analytique puis numérique des structures treillis. 

IV.2. Essai de traction 

Intéressons-nous à l’aspect phénoménologique de l’essai dans le cadre de l’élasto-plasticité 

classique, à savoir hypothèses de transformations quasi-statiques en petites déformations et à 

température  

 

 

 

Figure IV.1: Eprouvette de traction 

Considérons une éprouvette de traction sous la forme d’un cylindre homogène droit de 

section S0 et de longueur l0. Cette éprouvette est soumise à un effort de traction F comme sur 

la figure (IV.1). Pour des petites déformations de l’éprouvette, l’état de contrainte peut être 

supposé uniforme et uniaxial (la diminution de section est négligée). Nous posons ε = εxx = 

∆ℓ/ℓ0 et σ = σxx = F/S0. Considérons les graphes (σ, ε) obtenus pour trois essais de traction 

avec décharge. Selon le niveau de sollicitation lors du chargement, nous obtenons les allures 

de la figure (IV.2). 

 

Figure IV.2: Traction avec décharge. 
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➢  : le système se situe dans le domaine élastique et le comportement du 

matériau est réversible. Il est supposé par la suite que la loi de comportement dans le 

domaine élastique est linéaire, soit σ = E εe où E est le module d’Young du matériau ; 

➢  σ = σ0 : cet essai est impossible à réaliser physiquement. La limite d’élasticité σ0, seuil 

à partir duquel il existe des déformations irréversibles, est définie de façon 

conventionnelle et correspond à une fraction de déformation permanente ; 

➢   : la décharge à partir du point A (chargement maximum) s’effectue 

parallèlement à la charge élastique, on parle de décharge élastique. En B (charge nulle) 

ne subsiste que la déformation plastique ou déformation permanente εp. 

En tout point de la courbe, la déformation est ε = εe + εp. Effectuons maintenant une série 

de charges–décharges consécutives. L’allure de la courbe de réponse est représentée sur la 

figure (IV.3). Nous observons une évolution de la limite d’élasticité en traction due à 

l’écrouissage. En première approximation, nous pouvons considérer que : 

– lors des chargements consécutifs la limite d’élasticité suit la courbe du chargement 

monotone ; 

– l’écoulement plastique ne modifie pas le module d’élasticité. 

 

 

 

 

Figure IV.3: Réponse à une série de charges-décharges consécutives 

Par conséquent, connaissant la déformation plastique, le seuil de plasticité actuel peut être 

défini à partir de la courbe d’écrouissage obtenue pour un chargement monotone. 

En fait le problème de l’évolution du domaine d’élasticité est une des difficultés majeures 

de la plasticité. Prenons l’exemple d’un chargement cyclique pour montrer que la 

connaissance de l’état actuel (σ, εp) ne suffit pas a priori pour définir le domaine d’élasticité 

actuel. Sur la figure (IV.4), après décharge nous obtenons le point O′, la déformation plastique 
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est définie par le segment OO′. Or dans cet état, la limite d’élasticité est différente au premier 

et au deuxième passage. Cet exemple montre que les lois décrivant l’évolution du domaine 

d’élasticité ont un caractère essentiellement incrémental. De plus, il faut distinguer deux cas : 

 

 

 

 

 

 

Figure IV.4: Historique d’un cycle de chargement OA-AB-BC 

Charge plastique : Il y a variation des paramètres d’écrouissage et de la déformation 

plastique. 

Charge ou décharge élastique : Il n’y a pas de variation des paramètres d’écrouissage ni 

de la déformation plastique. 

En résumé, l’évolution plastique ne peut se traduire que par des lois incrémentales reliant à 

un instant donné les incréments des paramètres d’écrouissage et de déformation plastique à 

partir de l’état actuel. Pour l’étude des problèmes quasi–statique d’élasto-plasticité (sans 

vieillissement ni viscosité), nous utilisons donc un temps cinématique t pour repérer les états 

successifs du matériau en fonction de l’historique des sollicitations. 

IV.2. Modélisation du comportement en traction–compression 

Pour modéliser la courbe d’écrouissage de l’essai de traction–compression obtenue pour un 

chargement monotone, le plus simple est d’utiliser un modèle construit à partir de segments 

de droite. La figure (IV.5) représente un modèle multilinéaire. Dans la suite, nous limiterons 

la présentation à des modèles bilinéaires ayant la même limite d’élasticité initiale en traction 

et en compression. 
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Figure IV.5: Modèle d’écrouissage multilinéaire 

IV.2.1. Modèles avec écrouissage 

Le modèle rigide plastique peut être utilisé lorsque les déformations plastiques sont très 

importantes par rapport aux déformations élastiques : c’est, par exemple, le cas pour les 

problèmes de mise en forme. 

Lorsqu’il y a écrouissage, il faut se donner un modèle pour représenter l’évolution du 

domaine d’élasticité. Les deux modèles les plus simples sont l’écrouissage isotrope et 

l’écrouissage cinématique. Ils sont basés sur l’utilisation de la courbe d’écrouissage du 

chargement monotone, illustrée sur la figure (IV.6). 

Figure IV.6: Modèles d’écrouissage monotone. 
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a) Écrouissage isotrope  

Ce modèle suppose une dilatation homothétique du domaine d’élasticité par rapport au 

domaine initial supposé connu. Le coefficient de dilatation dans le cas de l’écrouissage 

linéaire est défini par le module tangent ET.  

Pour un essai cyclique, l’hypothèse d’écrouissage isotrope donne une courbe similaire à 

celle représentée sur la figure (IV.7). La limite d’élasticité en compression augmente comme 

celle de traction. On note que dans ce modèle l’énergie de déformation élastique pouvant être 

absorbée est de plus en plus importante et toujours identique en traction et compression. 

 

 

 

 

 

Figure IV.7: Hypothèse d’écrouissage isotrope 

b) Écrouissage cinématique  

Ce modèle suppose une translation sans déformation du domaine d’élasticité initial 

supposé connu. La translation est définie à partir de la courbe d’écrouissage monotone. 

Le modèle cinématique respecte l’effet Bauschinger couramment observé pour les 

matériaux métalliques, à savoir un durcissement dans un sens (sens de l’écoulement plastique) 

et un adoucissement d’égale amplitude dans le sens contraire (décharge élastique). La courbe 

correspondant à un essai cyclique avec écrouissage cinématique est indiquée sur la figure 

(IV.8). L’amplitude du domaine d’élasticité reste constante mais l’énergie élastique absorbée 

et pouvant être restituée dans un sens est toujours différente de celle dans l’autre sens. En 

pratique, lors d’un essai cyclique, aucune de ces allures ne peut être observée. Il est possible 

de combiner ces deux modèles d’écrouissage pour essayer de se rapprocher au mieux de la 

réponse au chargement cyclique donné. 
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Figure IV.8: Hypothèse d’écrouissage cinématique 

IV.2.2. Modèles parfaits 

Ces modèles négligent l’écrouissage du matériau. Le modèle élasto-plastique parfait est 

surtout utilisé du point de vue académique pour simplifier la résolution analytique des 

problèmes posés. 

Figure IV.9: Modèle de courbe d’écrouissage monotone 

Pour ce modèle, donnons une interprétation énergétique de la courbe d’écrouissage : 

➢ OABD : énergie totale, ou travail des efforts intérieurs pour atteindre B ; 

➢ OABC : énergie de dissipation plastique ; 

➢ BCD : énergie de déformation élastique, elle est restituée à la décharge. 

Le modèle rigide plastique parfait est utilisé pour les problèmes de calcul des charges 

limites (Lorsque l’écrouissage n’est pas négligé, l’énergie élastique restituée après 

plastification est toujours plus importante dans le sens de la déformation plastique). Pour ces 
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deux modèles, au-delà d’une valeur limite du chargement il y aura écoulement libre du 

matériau et perte d’équilibre. 

IV.3. Exercices 

➢ Exercice 1 

On considère la structure treillis de la figure IV.10 composée de trois barres, articulées 

entre elles au point d’application du chargement F, et chacune étant articulée par rapport au 

bâti. On suppose que les barres sont à l’état initial sans contraintes, et que le chargement est 

appliqué suffisamment lentement pour rentrer dans le cadre établi précédemment. On suppose 

d’autre part que les trois barres ont un comportement élastique parfaitement plastique 

identique, c’est- à-dire un module d’Young E et une limite d’élasticité σ0, et une section 

identique S. Pour simplifier l’étude, l’angle α est égal à 45. 

On demande d’étudier : 

- La plasticité dans les barres au travers d’une structure treillis composée de trois barres ; 

 

 

 

 

 

 

Figure IV.10 : Structure treillis de trois barres. 

➢ Solution d’exercice n° 1 :  

Phase élastique : Analyse du problème Nous avons trois inconnues N1, N2 et N3, 

représentant les efforts dans les barres, pour deux équations d’équilibre dans le plan. Par 

conséquent, le système est hyperstatique de degré un. Les équations d’équilibre ont la forme 

suivante : 
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                                1 3 1 3 2

2 2 2 2
0; 0

2 2 2 2
N N N N N F− + = + + − =                   (IV.1) 

 Soit, plus simplement : 

    3 1 2 1; 2N N N F N= = −              (IV.2) 

Prenons N1 comme inconnue hyperstatique. L’énergie de déformation s’écrit dans ce cas 

d’étude : 

  ( )2

1 2 3

1
2 2 ² 2 ²W h N hN h N

ES
= + +                     (IV.3) 

Et par conséquent, en fonction de l’inconnue N1, grâce à l’équation (IV.2) : 

  ( )( )
2

1 12 2 2 ² 2
h

W N F N
ES

= + −           (IV.4) 

Appliquons le théorème de Ménabréa : 

                  ( ) 1 1

1

0 2 2 2 2
2 2

w F
N F N

N


=  + =  =

 +
        (IV.5)       

D’où, finalement : 

    3 1 2

2
;

1 2

F
N N N= =

+
                              (IV.6) 
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V.1. Introduction  

Ce chapitre est consacré à l’étude de l’évolution élasto-plastique des poutres. La loi de 

comportement généralisée élasto-plastique est obtenue à partir d’un modèle en flexion pure 

(moment de flexion constant). Ce modèle est appliqué à l’étude élasto-plastique des structures 

portiques. 

V.2. Rappels et notations 

Considérons une poutre longue rectiligne en flexion dans le plan (x.o.y) dans le cadre des 

hypothèses de Bernoulli et des petits déplacements qui entraînent 0,v xz =
 

 et 

( , ) ( , , 0)Tu M t yv x v= −


. 

 

Figure V.1: modèle de Bernoulli : flexion plane. 

Les petites déformations supposent ,xx xxyv = − . Le milieu est isotrope homogène 

élastique et l’état de contrainte est uni-axial, soit xx xxE = . Intégrons les contraintes sur la 

section pour obtenir la loi de comportement généralisée élastique des poutres : 

,f xxM EIv=                                                 (V.1) 

Cette loi relie les deux grandeurs utilisées lors des calculs, le moment de flexion et la 

flèche. En statique, l’équation d’équilibre des moments donne : 

, ,f x xxxT M EIv= − = −                                             (V.2) 
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On note la contrainte généralisée fM =  , la déformation généralisée ,xxv = et la loi de 

comportement généralisée EI =  . 

 

 

 

 

 

Figure V.2: Essai de flexion 

 La loi de comportement du matériau étant définie au niveau local, exprimons les relations 

entre la contrainte physique et la contrainte généralisée, relations utiles par la suite pour 

exprimer les lois de comportement élasto-plastique : 

xx xxEI
EI EI

y y E

 
 

 
= = − = − 

 
                                      (V.3) 

Ce qui entraîne les champs de contraintes et de déformations suivants : 

;xx xx

y
y

I
   = − = −                                                         (V.4) 

V.3. Modèle élasto-plastique 

Ce sont les champs  et   qui sont utilisés lors des calculs. Notre objectif est donc 

d’exprimer la loi de comportement généralisée élasto-plastique ( )f =   en fonction de la 

loi de comportement du matériau. 

Pour simplifier la présentation nous supposons le matériau élasto-plastique parfait. La 

courbe d’écrouissage du matériau identifiée par un essai de traction est représentée sur la 

figure (V.3.a). 
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Figure V.3: modèle de courbe d’écrouissage monotone. 

V.4. Flexion pure 

✓ Évolution élastique  

Considérons un essai de flexion pure réalisé sur une poutre de section symétrique. Le 

moment de flexion M est uniforme le long de la poutre. Pour cet essai, représenté sur la figure 

(V.4), l’effort tranchant est nul. La solution obtenue avec les hypothèses de Bernoulli est donc 

exacte pour les matériaux incompressibles et quasi-exacts pour les matériaux compressibles.  

 

 

Figure V.4 : Essai de flexion pure. 

Compte tenu de la répartition des contraintes dans la section et des hypothèses de symétrie, 

les fibres les plus éloignées situées à une distance h   de la fibre moyenne plastifient les 

premières. Par conséquent, il y a début de plastification lorsque ( ) 0xx y h
 

=
= , soit 

0 0

I

h
 = où 

0  est le moment de début de plastification. La déformation généralisée 

correspondante est
0 0

I

Eh
 = . 

✓ Évolution élasto-plastique 

 Pour
0M   , il y a évolution élasto-plastique du matériau à partir des fibres extérieures. 

Le moment étant uniforme sur la longueur, dans toute section de la poutre, nous obtenons 

l’état de contrainte de la figure (V.5.b). 
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Figure V.5: Flexion pure et zones plastiques symétriques 

Le matériau étant élasto-plastique parfait au-delà de la cote c, la contrainte dans la zone 

plastique est uniforme
0xx =   .  

Conservons l’hypothèse de Bernoulli pour exprimer c en fonction des variables 

généralisées et σ0. En 
0xx = − et 

xx xxE Ec  = = − ce qui entraîne, 0c
E




=


. 

Remarque : Cette dernière relation reste vraie pour un matériau écrouissable. L’hypothèse 

de Bernoulli suppose des déformations plastiques suffisamment sympathiques pour que la 

planéité des sections droites soit vérifiée. 

Comme en élasticité, pour écrire la loi de comportement généralisée, il faut intégrer sur 

une section le champ des contraintes afin d’obtenir une relation entre le moment de flexion et 

la courbure : 

                                       
0

2
h h

f xx xx
h

M y ds y ds  
+

−

= = − = −                                  (V.5) 

Et puisque la section est supposée symétrique : 

0 0
0

2 2
c h

c

y
y ds y ds

c
  

 
= − − +  

 
                                (V.6) 

Notons respectivement le moment quadratique de la zone élastique I(c), le moment statique 

de la zone élastique Z(c) et le moment statique de la section Z(h) : 
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2

0 0 0

( ) 2 ; ( ) 2 ; ( ) 2 ;
c c h

I c y ds Z c yds Z h yds= = =                          (V.7) 

Nous obtenons la loi de comportement généralisée élasto-plastique ( )f =  , en fonction 

du module d’élasticité E et de limite en traction σ0 : 

0

( )
( ) ( )

I c
Z h Z c

c
 

 
= + − 

 
                                       (V.8) 

Avec 0c
E




=


, Montrons que   est une fonction croissante de. Il suffit de montrer que 

c’est une fonction décroissante de c. 

0 2

( ) 1 ( ) ( )d I c dI c dZ c

dc c c dc dc




 
= − + − 

 


                                    (V.9) 

Or : 

   
2 2

0 0 0 0

( ) 2 2 ( )  et ( ) 2 2 ( )
c c c c

I c y ds y L y dy Z c yds yL y dy= = = =         (V.10) 

Ce qui entraîne : 

1 ( ) ( )
2 ( )

dI c dZ c
cL c

c dc dc
= =                                   (V.11) 

Ce résultat est conforme à l’intuition car une augmentation de charge ne peut qu’augmenter la 

zone plastique. 

 

 

 

 

Figure V.6: Loi de comportement généralisée ( )f =  .  
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La figure (V.6) représente la loi de comportement généralisée ( )f =  . Pour c = h, on 

retrouve   (moment de début de plastification). Pour c → 0, il y a plastification complète de 

la section. Le moment correspondant est le moment limite ( )f =  , Le caractère 

asymptotique est dû à l’existence d’une mince zone au voisinage de la fibre moyenne qui 

reste toujours élastique (σxx = 0). En flexion pure, la section ne peut pas plastifier 

complètement. Ce résultat purement théorique n’a pas de réalité physique. Rappelons que la 

loi de comportement généralisée des poutres longues est un modèle basé sur des hypothèses 

simplificatrices contradictoires du point de vue physique. 

Une décharge élastique conduirait au diagramme des contraintes résiduelles de  figure (V.7). 

On comprend aisément qu’il n’est pas possible d’utiliser ce modèle pour traiter des problèmes 

cycliques, sans parler de l’introduction de l’écrouissage. Le rapport  1

0








est le facteur de 

forme plastique de la section : 

1

0

( )hZ h

I




=




                                            (V.12) 

 

 

 

 

 

 

Figure V.7: superposition des diagrammes élasto-plastique et élastique correspondant à un 

chargement −M 

Il caractérise la réserve vis-à-vis de la plastification totale d’une section donnée. Plus ce 

rapport est élevé, plus la phase élasto-plastique est grande, autrement dit, un rapport élevé 
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confère une plus grande sécurité par rapport au chargement élastique limite. En contrepartie, 

la charge limite élastique sera plus petite, il faut donc trouver le bon compromis. 

Le tableau (V.1) indique les facteurs de forme plastiques classés par ordre décroissant pour 

différentes sections. 

Tableau V.1: Facteurs de forme plastiques pour différentes sections. 

 

  
   

0

0






 21

6
bh  

3

4

R
 

22

3
bh  

2eR  
'

6

s
h s
 

+ 
 

 

1

0






 21

3
bh  

34

3

R
 

2bh  24eR  
'

4

s
h s
 

+ 
 

 

1

0








 

2  16
1,7

3
  

1,5  4
1,27


  

12 3 / '

12 2 / '

s s

s s

+

+

 

Plus ce rapport tend vers l’unité, meilleure est la section du point de vue élastique (toutes 

les fibres plastifient en même temps). Dans ce cadre, la section 5 du tableau V.1 est optimale. 

V.5. Flexion simple 

En pratique, il est rare d’obtenir un état de contrainte constant par morceaux. Cela signifie 

que les zones plastiques sont réduites à des sections dont la position évolue au cours du 

chargement. Étudions le cas d’une poutre de section rectangulaire sur deux appuis chargée en 

son centre par une force supposée ponctuelle. Le diagramme du moment de flexion est 

représenté sur la figure (V.8). Les zones plastiques apparaissent dans la section x = ℓ/2 où le 

moment est maximal. Puis les zones plastiques s’étendent aux sections voisines avec 

l’augmentation du chargement. 
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Figure V.8: Essai de flexion simple. 

Modélisation Pour étudier l’évolution élasto-plastique, nous adoptons la loi de 

comportement élasto-plastique obtenue en flexion pure. Les effets de l’effort tranchant dans la 

zone plastique sont négligés. 

Le début de la phase élasto-plastique correspond à 
0Mf =    et 04

F
l


=


 et la section x = 

ℓ/2 est complètement plastifiée pour 
1Mf =  et 14

F
l


=


. La figure (V.9) représente 

l’évolution de la zone plastique selon les phases du chargement. 

Figure V.9 : évolution des zones de plastification en flexion simple 

Étude de la zone plastique L’abscisse de la première section plastifiée est simple à 

exprimer 02
a

F


=


. La forme de cette zone est définie par la cote 0c

E




=


, or pour 

/ 2a x l   : 

0 0

0 1 1

1

3 1 3 1
2

3 1

Fx
c c h

E

  


  



   
=  = −  = −   

     
− 

 

 


 



           (V.13) 
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Or 1
1

4
F

l


=


 d’où :  

1

2
3 1

F x
c h

F l

 
= − 

 
                                             (V.14)  

La figure (V.10) représente la zone plastique qui est limitée par une parabole d’équation 

c(x) définie pour
0 1F F F  . 

 

 

 

 

Figure V.10: Zone plastique en flexion simple 

➢ Étude de la déformation 

L’étude de la déformation est conduite sur deux zones : 

o zone élastique pour x a : 

                                         0
0

2

F x x
x

EI EI EI a a


 = = = =


                                          (V.15)  

o zone élasto-plastique pour / 2a x l   : 

0

1

3 1








=
 
− 

 








                                                    (V.16) 

La figure (V.11) représente l’évolution de la courbure pour les trois phases de chargement de 

la figure (V.9). Pour F = F1, la courbure a un comportement asymptotique et tend vers l’infini. 

Tout se passe comme si la poutre était formée de deux tronçons articulés. 
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Figure V.11: Essai de flexion pure 

Pour obtenir l’expression de la flèche, il faut intégrer les relations qui définissent la 

courbure en fonction de x. 

 Phase élastique : Le chargement est tel que 
0F F et la loi de comportement 

généralisée indique 
2

F
x

EI EI


 = =


  avec (0) 0v =  et 

, ( / 2) 0xv l =  pour cause de symétrie. 

Par conséquent, la flèche prend la forme suivante : 

33 1
( )

4 3 4

Fl x x
v x

EI l l

  
= −     

                                              (V.17) 

 Phase élasto-plastique : Le chargement est alors 
0 1F F F   avec 02

a
F


=


. Les 

fonctions de répartition sont définies dans les équations (V.15) et (V16). Les quatre 

constantes sont calculées en écrivant la condition d’appui en x = 0, la condition de 

symétrie en x = ℓ/2 et la continuité de la flèche et de la rotation en x = a. Tous 

calculs faits, nous obtenons : 

- Pour x a  

30
0

3
( ) 3

6 2

l
v x x a x

a a




 
= + − −  

 


                                 (V.18) 

- Pour / 2a x l   : 

3/22
2

0 0 0

5
( ) 3 2 3

3 3

a x l
v x a x a

a a
  

 
= − + − − 

 
                       (V.19) 
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Traçons l’évolution de la flèche en milieu de poutre : 

- Pour F = F0 : 

3 2

0 0

2 48 12

F l ll
v

EI Eh

 
= − = − 

 
                                              (V.20) 

- Pour F = F1 : 

2
20 0 0

0

1 1

2 55

2 3 2 3 27

ll l l
a v a

F Eh

  




 
= = =  = − = − 

 





          (V.21) 

 

 

 

 

 

 

Figure V.12: Phases d’évolution et flèche résiduelle 

La flèche résiduelle après décharge élastique est : 

2 23

0 01
5 5 1

2 27 48 27 8
r

l lF ll
v

Eh EI Eh

    
= − = −   

   
          (V.22) 

L’essai de flexion simple que nous venons d’étudier a mis en évidence le comportement 

asymptotique de la courbure. Les deux parties de la poutre de part et d’autre de la section ℓ/2 

peuvent tourner, le moment restant constant (matériau parfaitement plastique). Nous 

modélisons cette propriété par une rotule plastique (rotule avec frottement sec).  
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V.6. Exercice 

➢ Exercice n°1 : Flexion d’une poutre de section rectangulaire 

La poutre de la figure V.13 possède une section rectangulaire, de hauteur 2h et de largeur 

b. Elle est chargée en flexion pure (cisaillements négligés), et on suppose qu’une section 

droite de normale x1 reste droite. Le comportement du matériau qui la constitue est élastique 

(E,ν) parfaitement plastique (σy). 

 

Figure V.13: Géométrie et chargement de la poutre. 

✓ Quelle est la distribution de contrainte et de déformation en élasticité ? 

➢ Solution de l’exercice n°01 : 

L’état de flexion pure autour de x2 d’un barreau d’axe x1 est caractérisé par une 

déformation ε11 linéaire en x3 et, en élasticité, par une contrainte σ11 également linéaire en x3. 

On pose σ11 = kx3. Toutes les autres composantes du tenseur de contrainte sont nulles. Les 

tenseurs de contrainte et de déformation élastique sont respectivement représentés par les 

matrices : 

0 0

0 0 0

0 0 0

 
 
 
 
 

 et 

0 0

0 0

0 0

E

E

E







 
 
 −
 
 − 
 

               (V.23) 

Le vecteur contrainte sur une section courante de normale e1 se réduit à σ11e1. On déduit 

immédiatement de la géométrie de la section (0 ≤ x2 ≤ b et −h ≤ x3 ≤ h) que la résultante est 

nulle sur une facette normale à l’axe x1. Le moment des efforts intérieurs sur la section de la 

poutre s’écrit, en tenant compte du fait que les composantes de OM sont (0, x2, x3) : 
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            2 2 3 3( )M OM T ds M e M e=  = +                           (V.24) 

Avec : 

2

2 3 11 2 3 3 2 3M x dx dx Kx dx dx= =                           (V.25) 

3 2 11 2 3 2 3 2 3M x dx dx Kx x dx dx= − = −               (V.26) 

La composante M3 est nulle (intégrale de x3 entre −h et h). L’expression obtenue pour M2, que 

l’on désignera dans la suite par M : 

2 3

3 3

2

3

h

h

M kb x dx kbh
+

−

= =                       (V.27) 

On peut donc exprimer k en fonction du moment, et, en posant I = 2bh3 /3, on trouve la valeur 

courante de σ11 sur la section : 

11 3 3( ) /x Mx I = =                                          (V.28) 

Il s’agit d’une fonction impaire en x3, dont la valeur maximale, σm, atteinte en x3 = h, vaut 

3M/2bh2. 
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