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4.4 Théorème de Rouché . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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Introduction

Ce polycopié est destiné aux étudiants de deuxième année Licence L2
(semestre 4), parcours Sciences et Technologie. Il constitue une suite
naturelle au polycopié de Mathématiques 3, et aborde des notions plus
avancées de l’analyse complexe, ainsi que certaines fonctions spéciales
essentielles en physique et en ingénierie.

L’objectif de ce cours est de doter l’étudiant d’outils analytiques puissants
pour le calcul différentiel et intégral dans le cadre des fonctions d’une
variable complexe. À l’issue de ce module, l’étudiant devra être capable
de manipuler des fonctions holomorphes, de comprendre les séries entières,
d’appliquer les grands théorèmes de la théorie de Cauchy, et de résoudre des
intégrales complexes à l’aide de la méthode des résidus. Une introduction
aux fonctions harmoniques et à leur relation avec les fonctions analytiques
est également proposée.

Ce document met l’accent sur les résultats essentiels, les méthodes de
résolution pratiques, et propose un ensemble d’exemples corrigés suivis
d’exercices à résoudre, permettant à l’étudiant de tester sa compréhension.
Les démonstrations théoriques sont limitées à l’essentiel afin de favoriser
l’apprentissage appliqué.

Structure du polycopié

Ce polycopié s’ouvre sur un bref rappel des propriétés fondamentales des
nombres complexes, leur représentation algébrique et géométrique, ainsi
que les principales opérations. Cette révision est essentielle pour aborder
sereinement les notions avancées qui suivent.

1. Le premier chapitre introduit les fonctions dérivables au sens complexe,
appelées fonctions holomorphes, en mettant l’accent sur les conditions
de Cauchy-Riemann, nécessaires et suffisantes à la dérivabilité
complexe. Ces équations constituent le socle théorique sur lequel
s’appuient les chapitres suivants.

2. Ce chapitre approfondit les notions de développement en séries entières,
avec une étude rigoureuse du rayon et du domaine de convergence.
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L’objectif est de montrer comment certaines fonctions peuvent être
représentées localement par une série de puissances, ce qui ouvre la
voie à de nombreuses applications analytiques.

3. Ce chapitre expose les théorèmes fondamentaux de l’intégration
complexe, notamment le théorème de Cauchy et ses formules intégrales.
Ces résultats jouent un rôle clé dans la caractérisation des fonctions
holomorphes et dans le calcul d’intégrales complexes.

4. Ce chapitre s’appuie sur les résultats précédents pour présenter plusieurs
conséquences majeures de l’holomorphie. On y retrouve le théorème du
maximum, le théorème de Liouville, le théorème de Rouché, ainsi que
le théorème des résidus, un outil essentiel dans le calcul d’intégrales
complexes par la méthode des résidus.

5. Le dernier chapitre se penche sur les fonctions harmoniques, solutions
de l’équation de Laplace, très présentes en physique et en ingénierie.
On y étudie leur lien profond avec les fonctions holomorphes, via le
Laplacien et les équations de Cauchy-Riemann.

Nous espérons que ce document sera un support efficace pour la mâıtrise
des concepts fondamentaux et des techniques analytiques abordés dans le
module Mathématiques 4.
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Chapitre 1

Fonctions holomorphes et les
conditions de Cauchy-Riemann

1.1 Les nombres complexes

Dans le cadre des nombres réels, certaines équations n’admettent pas de
solutions, par exemple

x2 + 1 = 0, x2 + 3 = 0, x2 + 2x+ 5 = 0.

Cependant, en élargissant ce corps en y introduisant le nombre
√
−1, il

devient possible de résoudre de telles équations.
On obtient ainsi un nouvel ensemble, appelé corps des nombres
complexes, dont les éléments peuvent être représentés sous la forme

x+ iy, où i =
√
−1

et x, y ∈ R. Au fil du temps, la nature des nombres complexes a été
progressivement clarifiée grâce aux travaux de grands mathématiciens tels
que Cardan, Wessel, Argand, Gauss ou encore Hamilton. Par la suite,
la théorie des fonctions de variable complexe a été développée par des
figures majeures comme Cauchy, Gauss, Riemann, Weierstrass, Dirichlet,
Poincaré, entre autres.
Dans ce cours, nous utiliserons principalement la représentation des
nombres complexes sous la forme x + iy, qui s’avère la plus adaptée à
l’étude des fonctions. D’autres formes de représentation seront également
introduites ultérieurement.

Définition 1.1.1. On appelle nombre complexe toute expression de la
forme :

z = x+ iy; x, y ∈ R
dite la forme algébrique de z et i définit par la relation : i2 = −1.
x : La partie réelle de z notée Re(z).
y : La partie imaginaire de z notée Im(z).
On écrit donc :

z = Re(z) + iIm(z).

5



1.1. LES NOMBRES COMPLEXES

Propriétés

Soit z = x+ iy et w = a+ ib ; x, y, a, b ∈ R.
1) L’addition de deux nombres complexes sera définie

z + w = x+ iy + a+ ib = (x+ a) + i(y + b).

L’addition est donc une opération fermée sur les complexes. Cette
addition est commutative, c’est-à-dire si z et w sont deux nombres
complexes. alors

z + w = w + z.

2) La soustraction est définie par

z − w = x+ iy − a+ ib = (x− a) + i(y − b).

3) La multiplication s’obtient en multipliant les deux nombres complexes
comme s’ils étaient des binômes algébriques en i et en se rappelant que

i2 =
√
−1 ·

√
−1 = −1.

On définit

z · w = (x+ iy) · (a+ ib) = (xa− yb) + i(xb+ ay).

multiplication est aussi commutative

z · w = w · z.

4) On pourra donc définir la division de deux nombres complexes ainsi

z

w
=

x+ iy

a+ ib
=

(x+ iy)(a− ib)

(a+ ib)(a− ib)
=

(x+ iy)(a− ib)

a2 + b2
; w ̸= 0.

Définition 1.1.2. (Conjugué) On appelle conjugué de z le nombre :

z = x− iy; x, y ∈ R.

Définition 1.1.3. (Module) Soit z = x+ iy; x, y ∈ R, donc :

|z| =
√

x2 + y2.

La forme trigonométrique

Définition 1.1.4. Soit z = x+ iy; x, y ∈ R.
On appelle argument de z l’angle entre l’axe réel et le segment [0, z] et on
note : θ = arg(z); −π < θ ≤ π. Nous voyons d’après figure 1.1 que :{

x = r cos θ,
y = r sin θ.

Donc z = r(cos θ + i sin θ). Cette écriture est appelée la forme
trigonométrique de z.
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CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

Figure 1.1 – Le plan complexe C

Remarque 1.1.1. L’argument d’un nombre complexe z n’est pas unique
puisque arg(z) = θ + 2kπ; −π < θ ≤ π et k ∈ Z est aussi argument de z.
θ est appelé l’argument principal de z.

Figure 1.2 – Le cerle trigonométrique sur ]− π, π].

Définition 1.1.5. (La formule d’Euler) Soit θ ∈ R, on note eiθ le
nombre complexe définit par :

eiθ = cos θ + i sin θ; θ ∈ R.

La forme exponentielle

Définition 1.1.6. Tout nombre complexe z s’écrit de la forme :

z = reiθ; r = |z| et θ = arg(z).

Exemple 1.1.1. Écrire sous forme algébrique, trigonométrique et
exponentielle les nombres complexes suivants :
1) z1 = 3, 2) z2 = 1+i, 3) z3 = −i, 4) z4 = −1+i

√
3.
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1.1. LES NOMBRES COMPLEXES

Solution. On a :

1) z1 = 3 :

• z1 est écrit sous forme algébrique

{
Re(z1) = 3
Im(z1) = 0.

Le module |z1| = 3 et l’argument θ vérifie :

{
cos θ = 1
sin θ = 0.

=⇒ θ = 0 + 2kπ ; k ∈ Z.
Donc la forme trigonométrique et la forme exponentielle de z1 sont
respectivement :

z1 = 3
(
cos 0 + i sin 0

)
= 3ei0.

2) z2 = 1 + i :

• z2 est écrit sous forme algébrique

{
Re(z2) = 1
Im(z2) = 1.

Le module |z2| =
√
2 et l’argument θ vérifie :

{
cos θ =

√
2/2

sin θ =
√
2/2.

=⇒ θ = π/4 + 2kπ ; k ∈ Z.
Donc la forme trigonométrique et la forme exponentielle de z2 sont
respectivement :

z2 =
√
2
[
cos(π/4) + i sin(π/4)

]
=

√
2eiπ/4.

3) z3 = −i :

• z3 est écrit sous forme algébrique

{
Re(z3) = 0
Im(z3) = −1.

Le module |z3| = 1 et l’argument θ vérifie :

{
cos θ = 0
sin θ = −1.

=⇒ θ = −π/2 + 2kπ ; k ∈ Z.
Donc la forme trigonométrique et la forme exponentielle de z3 sont
respectivement :

z3 = 1
[
cos(−π/2) + i sin(−π/2)

]
= 1e−iπ/2.

4) z4 = −1 + i
√
3 :

• z4 est écrit sous forme algébrique

{
Re(z4) = −1

Im(z4) =
√
3.

Le module |z4| = 2 et l’argument θ vérifie :

{
cos θ = −1/2

sin θ =
√
3/2.

=⇒ θ = 2π/3 + 2kπ ; k ∈ Z.
Donc :

z4 = 2
[
cos(2π/3) + i sin(2π/3)

]
= 2e2iπ/3.
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CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

1.2 Les fonctions élémentaires

1.2.1 La fonction exponentielle ez

On définit l’exponentielle d’un nombre complexe z ; z = x+ iy; x, y ∈ R
f : C → C∗

z 7→ f(z) avec f(z) = ez = ex cos y + iex sin y; x, y ∈ R.

Propriétés

1) Re(ez) = ex cos y et Im(ez) = ex sin y.

2)
∣∣ez∣∣ = ex et arg(ez) = y + 2kπ ; k ∈ Z.

3) ez ̸= 0 ; ∀z ∈ C.

1.2.2 Les fonctions trigonométriques

A partir de l’exponentielle ez, on définit les fonctions cosinus, sinus et
tangente :

cos z =
eiz + e−iz

2

sin z =
eiz − e−iz

2i
.

tan z =
sin z

cos z
; z ̸= π/2 + kπ; k ∈ Z.

La plupart des propriétés des fonctions trigonométriques réelles sont encore
valable dans le cas complexe.

1) cos2 z + sin2 z = 1 ; ∀z ∈ C.
2) cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.

3) sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2.

4) cos(−z) = cos z et sin(−z) = − sin z.

5) cos z = 0 si z = π/2 + kπ et sin z = 0 si z = kπ ; k ∈ Z.

Remarque 1.2.1. Pour x ∈ R les fonctions cosx et sinx sont bornées :
−1 ≤ cosx ≤ 1 et −1 ≤ sinx ≤ 1. Par contre pour z ∈ C on peut avoir∣∣ cos z∣∣ > 1 et

∣∣ sin z∣∣ > 1.

1.2.3 Les fonctions hyperboliques

Les fonctions hyperboliques sont définies aussi à partir de ez :
cosh z =

ez + e−z

2

sinh z =
ez − e−z

2
.
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1.2. LES FONCTIONS ÉLÉMENTAIRES

Ona aussi tanh z =
sinh z

cosh z
; z ̸= (π/2 + kπ)i; k ∈ Z.

Les propriétés suivantes sont encore vérifiées :

1) cosh2 z − sinh2 z = 1 ; ∀z ∈ C.
2) cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2.

3) sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2.

4) cosh(−z) = cosh z et sinh(−z) = − sinh z.

5) cosh z = 0 si z = (π/2 + kπ)i et sinh z = 0 si z = kπi ; k ∈ Z.

Remarque 1.2.2. On a les relations suivantes :
1) cos(iz) = cosh z 2) sin(iz) = i sinh z

3) cosh(iz) = cos z 4) sinh(iz) = i sin z.

Propriétés

1) cos z = cosx cosh y + i(− sinx sinh y).

2) sin z = sinx cosh y + i(cosx sinh y).

3) cosh z = coshx cos y + i(sinhx sin y).

4) sinh z = sinhx cos y + i(coshx sin y).

1.2.4 Le logarithme complexe

Soit z ∈ C∗. Le logarithme complexe d’un nombre complexe z est donné
par :

log z = ln |z|+ i(θ + 2kπ); k ∈ Z.

Ici −π < θ ≤ π.

Exemple 1.2.1. Calculer les nombres complexes suivants :
1) log 2, 2) log(1 + i),
3) log(1 + i

√
3), 4) log(−1).

Solution. On a

1) log 2 :
log(2) = ln |2|+ i[0 + 2kπ] = ln 2 + i(2kπ) ; k ∈ Z.

2) log(1 + i) :
log(1 + i) = ln |1 + i|+ i[π4 + 2kπ] = ln

√
2 + i

(
π/4 + 2kπ

)
; k ∈ Z.
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CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

3) log(1 + i
√
3) :

log(1 + i
√
3) = ln |1 + i

√
3|+ i[π3 + 2kπ] = ln 2 + i

(
π/3 + 2kπ

)
; k ∈ Z.

4) log(−1) :
log(−1) = ln | − 1|+ i[π + 2kπ] = iπ(2k + 1) ; k ∈ Z.

Exemple 1.2.2. Résoudre les équations suivantes :
1) 2i sin z + 3e−iz = i,
2) 2 cosh z + 3e−z = 2.

Solution. Résolutions d’équations :

1) 2i sin z + 3e−iz = i :

2i sin z + 3e−iz = i =⇒ 2i

(
eiz − e−iz

2i

)
+ 3e−iz = i =⇒ eiz + 2e−iz = i

×eiz
=⇒ e2iz − ieiz + 2 = 0.

Posons eiz = M ; donc : M 2 − iM + 2 = 0 =⇒ ∆ = −1− 8 = −9 = (3i)2.

{
M1 = 2i =⇒ eiz = 2i =⇒ iz = log(2i) = ln 2 + i(π/2 + 2kπ),
M2 = −i =⇒ eiz = −i =⇒ iz = log(−i) = ln 1 + i(−π/2 + 2kπ).

Donc :
zk =

π

2
+ 2kπ − i ln 2 et zk = −π

2
+ 2kπ; k ∈ Z.

2) 2 cosh z + 3e−z = 2 :

2 cosh z + 3e−z = 2 =⇒ 2

(
ez + e−z

2

)
+ 3e−z = 2 =⇒ ez + 4e−z = 2

×ez
=⇒ e2z − 2ez + 4 = 0.

Posons ez = M ; donc : M 2−2M+4 = 0 =⇒ ∆ = 4−16 = −12 = (2
√
3i)2.

 M1 = 1 +
√
3i =⇒ ez = 1 +

√
3i =⇒ z = log(1 +

√
3i) = ln 2 + i(

π

3
+ 2kπ),

M2 = 1−
√
3i =⇒ ez = 1−

√
3i =⇒ z = log(1−

√
3i) = ln 2 + i(−π

3
+ 2kπ).

1.3 Les fonctions holomorphes

1.3.1 Limite d’une fonction

On dit que f(z) a pour limite w quand z tend vers z0 si pour tout ε > 0 il
existe un η > 0 tel que |f(z)− w| < ε pour o < |z − z0| < η. On écrit

lim
z→z0

f(z) = w.
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1.3. LES FONCTIONS HOLOMORPHES

Exemple 1.3.1. Calculer les limites suivantes si elle existent.

1) lim
z→−1

z2 − 1

z + 1
.

2) lim
z→0

Re(z)

z
.

Solution. 1) On a

lim
z→−1

z2 − 1

z + 1
= lim

z→−1
(z − 1) = −2.

2) Cette limite n’existe pas. Pour la preuve, on va supposer que la limite
existe selon l’axe des x, on obtient alors

lim
z→0

Re(z)

z
= lim

x→0

x

x+ i0
= 1.

Supposons maintenant que la limite existe selon l’axe des y, on aurait

lim
z→0

Re(z)

z
= lim

y→0

0

0 + iy
= 0.

Puisque la limite n’est pas unique donc elle n’existe pas.

Corollaire 1.3.1. On évidement

lim
z→z0

z = z0 existe lim
z→z0

cte = cte.

Propriétés

Soit lim
z→z0

f(z) = w1 et lim
z→z0

g(z) = w2. Alors

1) lim
z→z0

[f(z) + g(z)] = w1 + w2

2) lim
z→z0

[f(z)− g(z)] = w1 − w2.

3) lim
z→z0

[f(z) · g(z)] = w1 · w2.

4) lim
z→z0

cte · f(z) = cte · w1.

1.3.2 Continuité

On dit que f est continue au point z0 dans un domaine D si est seulement si
pour tout ε > 0 donné, il existe un nombre η > 0 tel que |f(z)−f(z0)| < ε
pour tout z ∈ D satisfont o < |z − z0| < η. On écrit

lim
z→z0

f(z) = existe = f(z0).

12
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Remarque 1.3.1. On dit que f : D → C est continue sur D si elle est
continue en tout point de ce domaine.

Théorème 1.3.1. Soit f et g deux fonctions continues. Alors

1) f + g fonction continue.

2) f + g fonction continue.

3) f − g fonction continue.

4) f · g fonction continue.

5)
f

g
fonction continue avec g ̸= 0.

Dans le cas général toute fonction polynôme est continue et toute fonction
rationelle est continue si le dénominateur ̸= 0.

1.3.3 Dérivabilité

Définition 1.3.1. Soit f : D → C est dite holomorphe (dérivable au sens
complexe) au point z0 si :

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0) = existe.

Ici D un domaine simplement connexe.

On va donner quelques exemples des fonctions usuelles.

Exemple 1.3.2. f : C → C ; f(z) = z.

Solution. On a

lim
z→z0

z − z0
z − z0

= lim
z→z0

1 = f ′(z0) = 1.

Exemple 1.3.3. f : C → C ; f(z) = z2.

Solution. On a

lim
z→z0

z2 − z20
z − z0

= lim
z→z0

(z + z0) = f ′(z0) = 2z0.

Définition 1.3.2. Soit f : D → C est dite holomorphe sur D si elle est
holomorphe en tout point de D.

Théorème 1.3.2. Si f est holomorphe en z0 alors f est continue en z0.

13
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Démonstration. Notons que

lim
z→z0

[f(z)− f(z0)] = lim
z→z0

(z − z0)
f(z)− f(z0)

z − z0

= lim
z→z0

(z − z0) · lim
z→z0

f(z)− f(z0)

z − z0
= 0 · f ′(z0) = 0.

Donc
lim
z→z0

f(z) = f(z0).

Remarque 1.3.2. La réciproque n’est pas vraie. Par exemple f(z) = |z|2
est continue par tout mais n’a pas de dérivée sauf au point 0.

1.4 Les conditions de Cauchy-Riemann

Théorème 1.4.1. (Les conditions de Cauchy-Riemann) :
Soit f : D → C

z 7→ f(z) = P (x, y) + iQ(x, y); x, y ∈ R
avec P = Re(f) et Q = Im(f).

f est holomorphe sur D ⇐⇒


∂P

∂x
=

∂Q

∂y

∂P

∂y
= −∂Q

∂x
.

Alors : f ′(z) =
∂P

∂x
+ i

∂Q

∂x
.

Ici
∂P

∂x
,
∂P

∂y
,
∂Q

∂x
et

∂Q

∂y
sont continues sur D.

Remarque 1.4.1. Aucune fonction à valeurs réelles est holomorphe sauf
si elle est constante.

Exemple 1.4.1. Vérifier que les conditions de Cauchy-Riemann sont
satisfaites par les fonctions suivantes :
1) f(z) = z2. 2) f(z) = ez.
3) f(z) = z. 4) f(z) = |z|2.

Solution. On a
1) f(z) = z2 :
f(z) = z2 = x2−y2+2ixy, on peut conclure que : Re(f) = P (x, y) = x2−y2

et Im(f) = Q(x, y) = 2xy; x, y ∈ R

14
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∂P

∂x
= 2x

∂Q

∂y
= 2x

=⇒ ∂P

∂x
=

∂Q

∂y
et


∂P

∂y
= −2y

∂Q

∂x
= 2y

=⇒ ∂P

∂y
= −∂Q

∂x
.

(P,Q) vérifie les conditions de Cauchy-Riemann =⇒ f est holomorphe
∀z ∈ C.

2) f(z) = ez :
f(z) = ex cos y+iex sin y, on peut conclure que : Re(f) = P (x, y) = ex cos y
et Im(f) = Q(x, y) = ex sin y; x, y ∈ R



∂P

∂x
= ex cos y

∂Q

∂y
= ex cos y

=⇒ ∂P

∂x
=

∂Q

∂y


∂P

∂y
= −ex sin y

∂Q

∂x
= ex sin y

=⇒ ∂P

∂y
= −∂Q

∂x
.

(P,Q) vérifie les conditions de Cauchy-Riemann =⇒ f est holomorphe
∀z ∈ C.

3) f(z) = z :
f(z) = x− iy =⇒ Re(g) = P (x, y) = x et Im(g) = Q(x, y) = −y.

Alors :


∂P

∂x
= 1

∂Q

∂y
= −1

=⇒ ∂P

∂x
̸= ∂Q

∂y
.

=⇒ f n’est pas holomorphe sur C.

4) f(z) = |z|2 :
f(z) = x2 + y2 =⇒ Re(g) = P (x, y) = x2 + y2 et Im(g) = Q(x, y) = 0.

Alors :


∂P

∂x
= 2x

∂Q

∂y
= 0

=⇒ ∂P

∂x
̸= ∂Q

∂y
.

=⇒ f n’est pas holomorphe sur C∗.
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1.4.1 Les conditions de Cauchy-Riemann exprimées en coordonnés polaires

Théorème 1.4.2. Soit f : D − {0} → C
z 7→ f(z) = P (r, θ) + iQ(r, θ); r, θ ∈ R

avec P = Re(f) et Q = Im(f).

f est holomorphe sur D − {0} ⇐⇒


∂P

∂r
=

1

r

∂Q

∂θ

∂Q

∂r
= −1

r

∂P

∂θ
.

Ici
∂P

∂r
,
∂P

∂θ
,
∂Q

∂r
et

∂Q

∂θ
sont continues sur D − {0}.

Théorème 1.4.3. En coordonnés polaires, si f est holomorphe alors

f ′(z) = (cos θ − i sin θ)
∂f

∂r
.

1.4.2 Les dérivées
∂f

∂z
et

∂f

∂z̄

À partir de

z = x+ iy, z̄ = x− iy,

on déduit que

x =
z + z̄

2
, y =

z − z̄

2i
.

Admettons que f(x, y) possède des dérivées partielles continues fx et fy. En
appliquant formellement les règles de différentiation partielle, on obtient :

∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
.

On a :
∂x

∂z
=

1

2
,

∂y

∂z
=

1

2i
.

Par conséquent :

∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
. (1.1)

De la même manière :

∂f

∂z̄
=

∂f

∂x

∂x

∂z̄
+

∂f

∂y

∂y

∂z̄
,

mais
∂x

∂z̄
=

1

2
,

∂y

∂z̄
= − 1

2i
.
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CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

Donc :

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (1.2)

Nous définissons ainsi les deux opérateurs différentiels :

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(1.3)

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (1.4)

Ces deux opérateurs se révèlent très utiles en analyse complexe et
permettent de reformuler les conditions de Cauchy-Riemann ainsi que les
critères d’holomorphie.
À partir des relations (1.1) et (1.2), on a :

∂f

∂x
=

∂f

∂z
+

∂f

∂z̄
,

∂f

∂y
= i

(
∂f

∂z
− ∂f

∂z̄

)
.

Nous définissons donc deux autres opérateurs utiles :

∂

∂x
=

∂

∂z
+

∂

∂z̄
(1.5)

∂

∂y
= i

(
∂

∂z
− ∂

∂z̄

)
. (1.6)

Application : Montrons que l’équation

∂f

∂z̄
= 0

est équivalente aux conditions de Cauchy–Riemann.

En effet, en utilisant (1.2) :

0 =
∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Or si f(x, y) = P (x, y) + iQ(x, y), on obtient :

0 =
1

2

(
∂P

∂x
+ i

∂Q

∂x
+ i

∂P

∂y
+ i2

∂Q

∂y

)
,

=
1

2

(
∂P

∂x
− ∂Q

∂y

)
+

i

2

(
∂Q

∂x
+

∂P

∂y

)
.
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Donc, les parties réelle et imaginaire doivent s’annuler séparément, ce qui
donne :

∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
.

Ce sont précisément les conditions de Cauchy–Riemann.

Exemple 1.4.2. La fonction suivante f est-elle holomorphe sur C∗ ?

f : C∗ −→ C, f(z) =
1

z
+ zRe(z).

Solution. Écrivons f en fonction de z et z̄ :

ℜ(z) = z + z̄

2
=⇒ zℜ(z) = z(z + z̄)

2
=

z2 + zz̄

2
.

Ainsi

f(z) =
1

z
+

z2 + zz̄

2
.

Sur C∗, le terme 1/z est holomorphe et vérifie ∂(1/z)/∂z̄ = 0. En revanche,

∂

∂z̄

(
z2 + zz̄

2

)
=

1

2

∂

∂z̄
(z2) +

1

2

∂

∂z̄
(zz̄) = 0 +

z

2
=

z

2
.

Donc, pour tout z ̸= 0,
∂f

∂z̄
(z) =

z

2
̸= 0,

ce qui montre que f n’est pas holomorphe sur C∗.

Formules de dérivation

Soit f et g deux fonctions holomorphes. Donc

1)
d

dz
cte = 0.

2)
d

dz
(f + g) =

df

dz
+

dg

dz
.

3)
d

dz
(f · g) = df

dz
· g + dg

dz
· f .

4)
d

dz
(f/g) =

(df
dz

· g − dg

dz
· f
)
/g2 ; g ̸= 0.

5)
d

dz
zn = nzn−1 ; n ∈ N.
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1.5 Exercices supplémentaires

Exercice 1.1. (i) Trouver les parties réelles et imaginaires, modules et
arguments des nombres complexes suivants :

1) z1 = −2 2) z2 = 3
(1 + i

1− i

)5
3) z3 =

1 + i tanα

1− i tanα
; α ̸= π/2 + kπ ; k ∈ Z 4) z4 = −2 e

π
4 i.

(ii) Déduire les formes algébriques, trigonométriques et exponentielles
pour les nombres complexes précédents.

Exercice 1.2. Soit z ∈ C. Exprimer Re(iz), Im(iz),
Re(iz), Re(z2), Im(z3) en fonction de Re(z) et Im(z).

Exercice 1.3. 1) Trouver les parties réelles et imaginaires des fonctions
suivantes :

a) f(z) = e−z, b) g(z) = cos z, c) h(z) = sin z, d) k(z) = cosh z.

2) Déterminer le module des fonctions complexes précédentes.

3) Trouver toutes les valeurs ”z” telles que :
a) e−z soit imaginaire pure, b) cos z soit réelle,
c) sin z soit imaginaire pure, d) cosh z soit réelle.

Exercice 1.4. Résoudre dans C les équations suivantes :

1) e−z = 1 + i
√
3 2) 2i sin z − e−iz = 1

3) 2 cos z + e−iz = 2 4) 2 cosh z + e−z = 2
5) 2 sinh z + 3e−z = −i 6) sin z = i sinh z.

Exercice 1.5. Calculer les limites suivantes si elle existent.

1) lim
z→−1

z4 − 2z2 + 1

z + 1
.

2) lim
z→i

z6 + 1

z2 + 1
.

Exercice 1.6. Montrer que les limites suivantes n’existent pas.

1) lim
z→0

z

|z|
. 2) lim

z→0

z

z
.
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Exercice 1.7. Étudier la continuité des fonctions suivantes.

1) f(z) = z.

2) g(z) = Re(z).

3) h(z) = Im(z).

4) k(z) = |z − 1|.

Exercice 1.8. Parmi les fonctions suivantes, le quelles sont holomorphes ?
Si c’est le cas, écrire leur expression en fonction de z.

1) f(z) = ex cos y + 4x2 − 4y2 − 5y + 9 + i(ex sin y + 8xy + 5x− 1),
2) g(z) = (z)2 + i

[
Re(z)Im(z) + 1

]
,

3) h(z) = ln |z|+ i arctan
z − z

i(z + z)
,

4) k(z) =
z

|z|2 + z
.

Exercice 1.9. I) Vérifier que les conditions de Cauchy-Riemann sont
satisfaites par les fonctions suivantes :

1) f(z) = cos z, 2) g(z) = sinh z,

3) h(z) = exp(z2), 4) k(z) =
1

z
.

II) Calculer f ′(z), g′(z), h′(z) et k′(z) par deux méthodes différentes.
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Chapitre 2

Séries entières. Rayon de
convergence. Domaine de
convergence. Développement en
séries entières. Fonctions
Analytiques

2.1 Les séries entières

Définition 2.1.1. On appelle série entière de la variable complexe z, toute
série de la forme :

+∞∑
n=0

anz
n.

a0, . . . ,an : appelés coefficients de la série ; (an)n ⊂ C.

Généralités

Soit z ∈ C et R > 0. On pose :

1) D
(
0, R

)
=
{
z ∈ C/ |z| < R

}
.

2) D
(
0, R

)
=
{
z ∈ C/ |z| ≤ R

}
.

3) C
(
0, R

)
=
{
z ∈ C/ |z| = R

}
.

4) D
(
z0, R

)
=
{
z ∈ C/ |z − z0| < R

}
avec z0 ∈ C.
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2.1.1 Le rayon de convergence R

Théorème 2.1.1. Soit
+∞∑
n=0

anz
n la série entière. Il existe un seul nombre

réel positif fini ou infini R qui vérifie les propriétés suivantes :
Si |z| < R, la série converge
Si |z| > R, la série diverge
Si |z| = R, sur le cercle, on ne peut rien conclure.

Définition 2.1.2. (Détermination de rayon de convergence) :

Soit
+∞∑
n=0

anz
n une série entière.

Si


lim

n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = l

ou bien

lim
n−→+∞

n
√

|an| = l

=⇒ R =
1

l
.

Exemple 2.1.1. Pour les séries entières suivantes, déterminer le rayon
de convergence R :

1)
+∞∑
n=0

zn

5n
, 2)

+∞∑
n=0

zn

(n+ 2)!
, 3)

+∞∑
n=0

(n+ 1)! · zn,

4)
+∞∑
n=1

(−1)n

n+ 3
· zn, 5)

+∞∑
n=2

lnn

n4
· zn, 6)

+∞∑
n=2

lnn√
n
· zn.

Solution. Le but est de calculer le rayon de covergence R :

1)
+∞∑
n=0

zn

5n
:

1

R
= lim

n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

5n

5n+1
=

1

5
=⇒ R = 5.

2)
+∞∑
n=0

zn

(n+ 2)!
:

lim
n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

(n+ 2)!

(n+ 3)(n+ 2)!
= lim

n−→+∞

1

n+ 3
= 0 =⇒ R = +∞.

3)
+∞∑
n=0

(n+ 1)! · zn :

lim
n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

(n+ 1)!(n+ 2)

(n+ 1)!
= lim

n−→+∞
(n+ 2) = +∞ =⇒ R = 0.
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4)
+∞∑
n=1

(−1)n

n+ 3
· zn :

1

R
= lim

n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

n+ 3

n+ 4
= 1 =⇒ R = 1.

5)
+∞∑
n=2

lnn

n4
· zn :

lim
n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

ln(n+ 1)

lnn
×
(

n

n+ 1

)4

= 1 =⇒ R = 1.

6)
+∞∑
n=2

lnn√
n
· zn :

lim
n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

ln(n+ 1)

lnn
×
√

n

n+ 1
= 1 =⇒ R = 1.

2.1.2 Le domaine de convergence D

Théorème 2.1.2. Soit R le rayon de convergence de
+∞∑
n=0

anz
n, alors :

1) Si R = 0 ⇒ D = {0},

2) Si R = +∞ ⇒ D = C.

Remarque 2.1.1. Si le rayon de convergence R de la série
+∞∑
n=0

anz
n est

compris strictement entre 0 et +∞, alors :
Si |z| < R, la série converge
Si |z| > R, la série diverge
Si |z| = R, sur le cercle, on ne peut rien conclure.

Donc le domaine de convergence est le D
(
0, R

)
à vérifier la nature du série

si z ∈ C
(
0, R

)
.

Exemple 2.1.2. Pour les séries entières suivantes, déterminer le rayon
de convergence R et le domaine de convergence D :

1)
+∞∑
n=0

zn, 2)
+∞∑
n=0

in+1

n!
zn,
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Solution. Le but est de calculer le rayon de convergence R et après on
conclut le le domaine de convergence D.

1)
+∞∑
n=0

zn :

1

R
= lim

n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

1

1
= 1 =⇒ R = 1.

1-b) Le domaine de convergence D :
Remarque : Pour une série entière

∑+∞
n=0 anz

n; de rayon convergence
0 < R < +∞, on a :

Si |z| < 1, la série converge
Si |z| > 1, la série diverge
Si |z| = 1, On ne peut rien dire.

Si |z| = 1 =⇒ lim
n−→+∞

|zn| = 1 ̸= 0 ⇒
∑

zn diverge si |z| = 1.

Donc le domaine de convergence est :

D
(
0, 1
)
=
{
z ∈ C/ |z| < 1

}
.

2)
+∞∑
n=0

in+1

n!
zn :

lim
n−→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n−→+∞

n!

(n+ 1)n!
= lim

n−→+∞

1

n+ 1
= 0 =⇒ R = +∞.

Donc le domaine de convergence est C.

2.1.3 Propriétés des séries entières

Théorème 2.1.3. La somme d’une série entière
+∞∑
n=0

anz
n de rayon de

convergence R > 0 est une fonction continue et holomorphe à l’intérieur
de disque de convergence D

(
0, R

)
.

Exemple 2.1.3. Calculer la somme de cette série entière :

+∞∑
n=0

zn.

Solution. On va calculer la somme sur le domaine de convergence :
C’est une série géométrique de raison q = z qui converge ∀z ∈ D

(
0, 1
)
.

+∞∑
n=0

zn =
1

1− z
; ∀|z| < 1.
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2.2 Développement en séries entières

Définition 2.2.1. (Développement en séries entières)
Soit f : D → C. On dit que f est développable en série entière s’il existe
R > 0 tel que :

f(z) =
+∞∑
n=0

anz
n; ∀x ∈ D

(
0, R

)
.

Proposition 2.2.1. Soit
+∞∑
n=0

anz
n une série entière de rayon de

convergence R > 0 et soit : f : D → C la fonction à variable complexe z

définie par : f(z) =
+∞∑
n=0

anz
n. Alors :

f(z) =
+∞∑
n=0

f (n)(0)

n!
zn; ∀z ∈ D

(
0, R

)
.

Exemple 2.2.1. Développer les fonctions suivantes en séries entières :

1) f(z) =
1

1 + z
, 2) f(z) =

1

2− 3z
, 3) f(z) = ez,

4) f(z) = e−z, 5) f(z) = sin z, 6) f(z) = cos z.

Solution. On va développer les fonctions suivantes en séries entières :

1) f(z) =
1

1 + z
:

Soit ω ∈ D
(
0, 1
)
. On sait que :

1

1− ω
=

+∞∑
n=0

ωn, si |ω| < 1.

1

1 + z
=

1

1− (−z)
ω=−z
=

+∞∑
n=0

(−z)n si | − z| < 1

=⇒ f(z) =
+∞∑
n=0

(−1)n · zn si |z| < 1.

2) f(z) =
1

2− 3z
:

1

2− 3z
=

1

2

 1

1− 3z

2

 ω= 3z
2=
1

2

+∞∑
n=0

(
3z

2

)n

si

∣∣∣∣3z2
∣∣∣∣ < 1

=⇒ f(z) =
+∞∑
n=0

3n · zn

2n+1
si |z| < 2

3
.
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3) f(z) = ez :
On peut appliquer ici la Proposition 2.2.1. On obtient le suivant :
Puisque : f (n)(z) = ez ⇒ f (n)(0) = 1 ∀n ∈ N. Donc :

ez =
+∞∑
n=0

zn

n!
; ∀z ∈ C.

4) f(z) = e−z :
Avec la même proposition, on sait que :
f (n)(z) = (−1)ne−z ⇒ f (n)(0) = (−1)n ∀n ∈ N. Donc :

e−z =
+∞∑
n=0

(−1)n

n!
· zn; ∀z ∈ C.

5 et 6) sin z et cos z :
On va utiliser ici la formule d’Euler :

eix = cosx+ i sinx; ∀x ∈ R.

Alors :

eix =
+∞∑
n=0

(ix)n

n!
=

+∞∑
n=0

in

n!
xn

=
+∞∑
p=0

i2p

(2p)!
x2p +

+∞∑
p=0

i2p+1

(2p+ 1)!
x2p+1

=
+∞∑
p=0

(−1)p

(2p)!
x2p + i

+∞∑
p=0

(−1)p

(2p+ 1)!
x2p+1

=
+∞∑
n=0

(−1)n

(2n)!
x2n + i

+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

= Re(eix) + iIm(eix).

Donc : 
cosx =

+∞∑
n=0

(−1)n

(2n)!
x2n

sinx =
+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Ceci implique que : 
cos z =

+∞∑
n=0

(−1)n

(2n)!
z2n

sin z =
+∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.
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2.3 Fonctions analytiques

Définition 2.3.1. Soit f : D → C
z 7→ f(z).

f est dite analytique sur D ⇐⇒ f est développable en série entière.

Exemple 2.3.1. Montrer que les fonctions suivantes sont analytiques sur
leurs domaines :

1) f(z) =
1

1 + 2z
, 2) g(z) =

1

5− 7z
, 3) h(z) = eiz,

4) j(z) = e−2z, 5) k(z) = cosh z, 6) L(z) = sinh z.

Solution. On va développer les fonctions suivantes en séries entières :

1) f(z) =
1

1 + 2z
:

Dans ce cas, on peut développer f en série entière à l’aide de la série
géométrique. Rappelons d’abord que, pour tout ω ∈ D(0, 1), on a

1

1− ω
=

+∞∑
n=0

ωn, valable si |ω| < 1.

1

1 + 2z
=

1

1− (−2z)
ω=−2z
=

+∞∑
n=0

(−2z)n si | − 2z| < 1

=⇒ f(z) =
+∞∑
n=0

(−2)n · zn si |z| < 1/2.

Donc : f : D
(
0, 1/2

)
→ C

z 7→ f(z) =
1

1 + 2z
est une fonction analytique.

2) g(z) =
1

5− 7z
:

1

5− 7z
=

1

5

 1

1− 7z

5

 ω= 7z
5=
1

5

+∞∑
n=0

(
7z

5

)n

si

∣∣∣∣7z5
∣∣∣∣ < 1

=⇒ g(z) =
+∞∑
n=0

7n · zn

5n+1
si |z| < 5

7
.

Donc : g : D
(
0, 5/7

)
→ C

z 7→ g(z) =
1

5− 7z
est une fonction analytique.

27



2.3. FONCTIONS ANALYTIQUES

3) h(z) = eiz :
On peut appliquer ici la Proposition 2.2.1. On obtient le suivant :

eiz =
+∞∑
n=0

in

n!
· zn; ∀z ∈ C.

Donc : h : C → C∗

z 7→ h(z) = eiz est une fonction analytique.

4) j(z) = e−2z :
On peut appliquer ici la Proposition 2.2.1. On obtient le suivant :

e−2z =
+∞∑
n=0

2n(−1)n

n!
· zn; ∀z ∈ C.

Donc : j : C → C∗

z 7→ j(z) = e−2z est une fonction analytique.

5) k(z) = cosh z :
On va utiliser ici l’identité suivante :

cosh z = cos(iz); ∀z ∈ C.

Alors :

cosh z = cos(iz) =
+∞∑
n=0

(−1)n · i2n

(2n)!
z2n =

+∞∑
n=0

z2n

(2n)!
.

Donc : k : C → C
z 7→ k(z) = cosh z est une fonction analytique.

6) L(z) = sinh z :
On va utiliser ici l’identité suivante :

sinh z =
1

i
sin(iz); ∀z ∈ C.

Alors :

sinh z = i sin(iz) =
1

i

+∞∑
n=0

(−1)n · i2n+1

(2n+ 1)!
z2n+1 =

+∞∑
n=0

z2n+1

(2n+ 1)!
.

Donc : L : C → C
z 7→ L(z) = sinh z est une fonction analytique.
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2.4 Exercices supplémentaires

Exercice 2.1. Pour les séries entières suivantes, déterminer le rayon de
convergence R :

1)
+∞∑
n=0

zn

4n+1
, 2)

+∞∑
n=0

zn

(3n)!
, 3)

+∞∑
n=0

cos(n) · zn,

4)
+∞∑
n=1

arctann

n6
· zn, 5)

+∞∑
n=2

√
lnn

n3
· zn, 6)

+∞∑
n=1

πn

√
n
· zn,

7)
+∞∑
n=1

arcsin(1/n)

2n
· zn, 8)

+∞∑
n=3

(−1)n√
n lnn

· zn, 9)
+∞∑
n=0

n!

πn
· zn.

Exercice 2.2. Montrer que les fonctions suivantes sont analytiques :

1) f(z) =
1

4 + 3z
, 2) g(z) =

1

7− 9z
, 3) h(z) = e−z,

4) I(z) = cosh(2z), 5) J(z) = sinh(5z).

Exercice 2.3. Montrer que la série entière
+∞∑
n=0

anz
n et sa série dérivée

+∞∑
n=1

nanz
n−1 ont le même rayon de convergence.

Exercice 2.4. Montrer que la série

∞∑
n=1

zn

n2

a une valeur finie en tout point intérieur à son cercle de convergence ou
sur celui-ci, mais que ce n’est pas vrai pour la série dérivée.
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Chapitre 3

Théorie de Cauchy

Dans ce chapitre, nous nous intéressons aux méthodes d’intégration des
fonctions d’une variable complexe. Nous commencerons par définir les
notions de chemins et d’arcs dans le plan complexe, qui servent de base
pour l’étude des intégrales curvilignes.
Une partie essentielle de ce chapitre sera consacrée à la théorie de
Cauchy, qui joue un rôle fondamental dans l’analyse complexe. Nous y
aborderons notamment le théorème de Cauchy et la formule intégrale de
Cauchy, deux résultats majeurs qui permettent de relier la valeur d’une
fonction analytique à ses intégrales sur des contours fermés.

3.1 Théorème de Cauchy

3.1.1 Les intégrales curvilignes

Définition 3.1.1. Soient a, b ∈ R avec a < b. On appelle arc toute
application continue

γ : [a, b] −→ C.
Le point γ(a) est appelé origine de l’arc, et γ(b) en est l’extrémité.

Figure 3.1 – Arc

Définition 3.1.2. Soient a, b ∈ R avec a < b, et soit

γ ∈ C([a, b],C)

une fonction différentiable définie par

t 7−→ γ(t) = x(t) + i y(t).
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L’ensemble

γ([a, b]) = {γ(t) | t ∈ [a, b]},
noté C, est appelé chemin, et γ est appelé paramétrage de ce chemin.
Les points z0 = γ(a) et zn = γ(b) sont respectivement l’origine et
l’extrémité du chemin.

Définition 3.1.3. Si les points initial et final d’un chemin cöıncident, on
dit que ce chemin est fermé ou qu’il forme un lacet.

Exemple 3.1.1. On considère les chemins suivants :

(a) Chemin simple non fermé ;

(b) Chemin non simple non fermé ;

(c) Chemin simple fermé ;

(d) Chemin non simple fermé.

Le cercle, le triangle et le carré sont des exemples de chemins fermés et
simples, que l’on appelle également des lacets.
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Définition 3.1.4. Soit D ⊆ C et ”C” le chemin représenté par
l’application suivante : z : [a, b] → C

t 7→ z(t).
Ici z(a) = A et z(b) = B l’origine et l’extrémité de chemin ”C”
respectivement et f : D → C une fonction continue, donc :∫

C

f(z) dz =

∫ b

a

f [z(t)] z′(t) dt.

D un domaine simplement connexe.

Notation 4.1

Si la courbe C est fermée et orientée positivement, on adopte la notation
suivante : ∮

C

f(z) dz

au lieu de ∫
C

f(z) dz.

Propriétés sur les intégrales

Soit f et g deux fonctions continues le long de chemin C. Alors :

1)

∫
C

[f(z)± g(z)] dz =

∫
C

f(z) dz ±
∫
C

g(z) dz.

2)

∫
C

λ · f(z) dz = λ

∫
C

f(z) dz ; λ ∈ C.

3)

∫
C1+C2

f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz.

Longueur d’un chemin

Définition 3.1.5. Soit C un chemin paramétré par une fonction continue

z : [a, b] −→ C, t 7→ z(t) = x(t) + i y(t),

où z′(t) = x′(t)+ i y′(t) existe et est continue sur [a, b]. Alors, la longueur
L du chemin C est donnée par :

L =

∫ b

a

|z′(t)| dt =
∫ b

a

√(
x′(t)

)2
+
(
y′(t)

)2
dt.

Exemple 3.1.2. Soit

C = {z(θ) ∈ C : z(θ) = 3eiθ, θ ∈ [0, 2π]}.

Déterminons la longueur L de C.
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Solution. On a

z′(t) = 3ieiθ et |z′(θ)| = |3ieiθ| = 3.

Ainsi,

LC =

∫ 2π

0

|z′(θ)| dθ =

∫ 2π

0

3 dθ = 6π.

Théorème de Green (forme générale)

Théorème. Soit C une courbe fermée simple orientée positivement (sens
antihoraire) dans le plan, et soit D la région délimitée par C. Si P (x, y)
et Q(x, y) sont des fonctions continues, admettant des dérivées partielles
continues dans un ouvert contenant D, alors :∮

C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Exemple 3.1.3. Calculons l’intégrale curviligne :∮
C

(x2 − y2) dx+ 2xy dy,

où C est le cercle de rayon 1 centré à l’origine, orienté positivement.

Solution. En utilisant le théorème de Green, on identifie :

P (x, y) = x2 − y2, Q(x, y) = 2xy.

On a :
∂Q

∂x
= 2y,

∂P

∂y
= −2y,

et donc :
∂Q

∂x
− ∂P

∂y
= 2y − (−2y) = 4y.

Ainsi, l’intégrale devient : ∫∫
D

4y dA,

où D est le disque unité.
En coordonnées polaires (x = r cos θ, y = r sin θ), avec 0 ≤ r ≤ 1 et
0 ≤ θ ≤ 2π, on a dA = r dr dθ. L’intégrale s’écrit donc :∫ 2π

0

∫ 1

0

4(r sin θ)r dr dθ = 4

(∫ 2π

0

sin θ dθ

)(∫ 1

0

r2dr

)
.

On obtient : ∫ 2π

0

sin θ dθ = [− cos θ]2π0 = 0,

et donc : ∮
C

(x2 − y2)dx+ 2xydy = 0.
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Intégrales de fonctions analytiques

En analyse complexe, le théorème de Green peut être appliqué à l’étude
des fonctions analytiques. Si f(z) = P (x, y) + iQ(x, y) est analytique, elle
satisfait les équations de Cauchy-Riemann :

∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
.

L’intégrale de f(z) le long d’un chemin fermé C s’écrit :∮
C

f(z) dz =

∮
C

(P + iQ)(dx+ idy) =

∮
C

(P dx−Qdy)+ i

∮
C

(Qdx+P dy).

En appliquant le théorème de Green, on obtient :∮
C

f(z) dz =

∫∫
D

(
∂(−Q)

∂x
− ∂P

∂y

)
dA+ i

∫∫
D

(
∂P

∂x
− ∂Q

∂y

)
dA.

Comme f(z) est analytique, ces intégrales sont nulles, ce qui conduit au
résultat fondamental : ∮

C

f(z) dz = 0.

Théorème 3.1.1. (Théorème de Cauchy) : Soit f : int(C) → C une
fonction holomorphe (analytique) et C un chemin fermé, donc :∫

C

f(z) dz = 0.

Exemple 3.1.4. Soit

C = {z(θ) ∈ C : z(θ) = eiθ, θ ∈ [0, 2π]}.

Calculer ∮
C

f(z) dz, avec f(z) = z3.

Solution. On a

dz = z′(θ) dθ = ieiθ dθ.

Donc, ∮
C

z3 dz =

∫ 2π

0

e3iθ ieiθ dθ = i

∫ 2π

0

e4iθ dθ =

[
1

4
e4iθ
]2π
0

= 0.

Remarque 3.1.1. Le chemin [z0, z1] ; z0,z1 ∈ C.
Le chemin ”C” est un segment de droite donc :
z : [0, 1] → C

t 7→ z(t) = (1− t)z0 + tz1.
Ici z(0) = z0 et z(1) = z1.
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Remarque 3.1.2. Le chemin C est un cercle de centre a0 et de rayon R.
On note C(a0, R) ; a0 ∈ C et R > 0 donc :
z : [0, 2π] → C

θ 7→ z(θ) = a0 +Reiθ.
z(0) = z(2π) =⇒ le cercle C est un chemin fermé.

Exemple 3.1.5. Calculer les intégrales curvilignes suivantes :

1)

∫
C

Im(z) dz ; où C : est le segment de droite [0, 1 + i].

2)

∫
C

z dz ; où C : est le cercle |z| = 2.

Solution. On a

1)

∫
C

Im(z) dz ; où C : est le segment de droite [0, 1 + i].

z : [0, 1] → C
t 7−→ z(t) = (1− t)(0) + t(1 + i) = t+ it et ceci implique que :

dz = (1 + i) dt et Im(z) = t. Donc on obtient :

∫
C

Im(z) dz =

∫ 1

0

t(1 + i) dt

= (1 + i)

∫ 1

0

t dt

=
1

2
+

1

2
i.

2)

∫
C

z dz ; où C : est le cercle |z| = 2.

z : [0, 2π] → C
θ 7−→ z(θ) = 2eiθ et ceci implique que :

dz = 2ieiθ dθ et z = 2e−iθ. Donc on obtient :

∫
C

z dz =

∫ 2π

0

2e−iθ2ieiθ dθ

=

∫ 2π

0

4i dθ

= 8πi.
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3.2 La Formule Intégrale de Cauchy

La formule intégrale de Cauchy constitue l’un des résultats les plus
remarquables de l’analyse complexe. Elle démontre qu’une fonction
analytique est entièrement déterminée à l’intérieur d’un contour fermé
simple dès lors que ses valeurs sont connues sur ce contour. Ce résultat,
issu directement du théorème de Cauchy, confère à ce dernier une puissance
exceptionnelle dans l’étude des fonctions holomorphes.

Théorème 3.2.1. : Soit f : int(C) → C une fonction holomorphe
(analytique), C un chemin fermé simple et a ∈ int(C), donc :∫

C

f(z)

z − a
dz = 2πif(a).

Exemple 3.2.1. Calculer ces intégrales en utilisant la formule intégrale
de Cauchy :

1)

∫
|z|=2

z

z − i
dz, 2)

∫
|z+2|=1

eiz

2z + π
dz,

3)

∫
|z−1/2|=1

ez

z2 − 1
dz, 4)

∫
|z|=3

cos(πz)

z2 − 3z + 2
dz.

Solution. On a

1) On a la fonction f(z) = z qui est holomorphe à int(C) car f ′(z) = 1
et C est un chemin fermé car C = C(0, 2).

i
?
∈ int(C)

On a :
∣∣i∣∣ = 1 < 2 =⇒ i ∈ int(C). Donc :∫

C

z

z − i
dz = 2πif

(
i
)
= −2π.

2) Premièrement, on va transformer notre intégrale à cette forme :∫
C

eiz

2z + π
dz =

1

2

∫
C

eiz

z + π/2
dz. Ici la fonction f(z) = eiz qui est

holomorphe à int(C) car f ′(z) = ieiz et C est un chemin fermé car
C = C(−2, 1).

−π/2
?
∈ int(C)

On a :
∣∣− π/2 + 2

∣∣ = 1 < 1 =⇒ −π/2
inint(C). Donc :

1

2

∫
C

eiz

z + π/2
dz =

1

2
· 2πif

(
− π/2

)
= π.
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3)

∫
|z−1/2|=1

ez

z2 − 1
dz

z2 − 1 = (z − 1)(z + 1). Donc on a deux problèmes a0 = 1 et a1 = −1. Il
reste de vérifier que :

a0, a1
?
∈ int(C){

|1− 1/2| = |1/2| = 1/2 < 1 =⇒ 1 ∈ int(C)
| − 1− 1/2| = | − 3/2| = 3/2 > 1 =⇒ −1 /∈ int(C).

Donc la fonction : f(z) =
ez

z + 1
qui est holomorphe à int(C) car

−1 /∈ int(C) et C est un chemin fermé ; C = C(1/2, 1). Donc :

∫
C

ez

z2 − 1
dz =

∫
C

ez/(z + 1)

z − 1
dz

= 2πif(1) = eπi.

4)

∫
|z|=3

cos(πz)

z2 − 3z + 2
dz

On a : g(z) =
cos(πz)

z2 − 3z + 2
est holomorphe si z ̸= 1 et z ̸= 2.

1 , 2 ∈ int(C) ; C : |z| = 3 ?

{
|1| = 1 < 3 =⇒ 1 ∈ int(C)
|2| = 2 < 3 =⇒ 2 ∈ int(C)

Donc il faut décomposer
1

z2 − 3z + 2
en deux éléments simples.

1

(z − 1)(z − 2)
=

a

z − 2
+

b

z − 1
=

1

z − 2
− 1

z − 1
.

=⇒
∫
C

cos(πz)

(z − 1)(z − 2)
dz =

∫
C

cos(πz)

z − 2
dz −

∫
C

cos(πz)

z − 1
dz

f(z) = cos(πz) est holomorphe car f ′(z) = −π sin(πz) à l’intérieur de C
qui est un chemin fermé (cercle). Donc :

∫
C

cos(πz)

z2 − 3z + 2
dz =

∫
C

cos(πz)

z − 2
dz −

∫
C

cos(πz)

z − 1
dz

= 2πi
[
cos(2π)− cos(π)

]
= 4πi.
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Remarque 3.2.1. Dans le cas général, on a :

∫
C

f(z)

(z − a)n+1
dz = 2πi

f (n)(a)

n!
.

Ici f : int(C) → C une fonction holomorphe (analytique), C un chemin
fermé, a ∈ int(C) et n ∈ N.

Exemple 3.2.2. Calculer l’intégrale suivante :

∫
C

ez

(z − 1)3
dz; C : |z + i| = 2.

Solution. On a
On a la fonction f(z) = ez qui est holomorphe à int(C) car f ′(z) = ez et
C est un chemin fermé car C = C(−i, 2).

1
?
∈ int(C)

On a : |1+ i| =
√
2 < 2 =⇒ 1 ∈ int(C). Donc on peut appliquer la formule

précédente en remplaçant n par 2 :

∫
C

ez

(z − 1)3
dz =

∫
C

ez

(z − 1)2+1
dz

= 2πi
f

′′
(1)

2!
= eπi.

Exemple 3.2.3. Calculer ∫
|z|=2

ez

z2025
dz.

Solution. La fonction f(z) = ez est une fonction entière. En appliquant
la formule intégrale de Cauchy généralisée, on obtient :∫

|z|=2

ez

z2025
dz =

2πi

2024!
f (2024)(0).

Or, la 2024ème dérivée de ez est f (2024)(z) = ez, donc f (2024)(0) = 1. Ainsi,∫
|z|=2

ez

z2025
dz =

2πi

2024!
.
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3.3 Exercices supplémentaires

Exercice 3.1. Évaluer l’intégrale curviligne∫
C

z dz

le long du chemin C reliant z = 0 à z = 4 + 2i, dans les cas suivants :

i) Le chemin C est défini par le paramétrage

z(t) = t+ 2it, 0 ≤ t ≤ 4.

ii) Le chemin C est formé de deux segments : le premier reliant 0 à 2i, et
le second reliant 2i à 4 + 2i.

Exercice 3.2. Évaluer les intégrales :

1.

∫
C

z4 dz, où :

a) C est le segment de droite allant de 0 à 2 + i.

b) C est formé du segment de l’axe des x allant de 0 à 2, puis du
segment de droite parallèle à l’axe des y et allant de 2 à 2 + i.

2.

∫
C

z dz de 1 + 2i à 2 + 3i selon la courbe donnée par les équations :

x = t4 + 1, y = t4 − 3t3 + t2 + 2t+ 2, 0 ≤ t ≤ 1.

3.

∫
C

z dz, où C est le cercle |z − 2| = 1 parcouru dans le sens positif.

4.

∫
C

Im(z) dz sur :

a) le cercle |z − i| = 1,

b) le triangle de sommets 0, 1, i, parcouru dans le sens positif.

5.

∫
C

dz

z
autour du carré de sommets 1+i, −1+i, −1−i, 1−i, parcouru

dans le sens positif.

6.

∫
C

cos z

z2(z + 1)
dz, où C est le cercle :

a) |z| = 3,

b) |z| = 1
2 , parcouru dans le sens positif.

Exercice 3.3. Soit la courbe C = {z(θ) ∈ C : |z| = 1}, le cercle unité
parcouru dans le sens direct. Évaluer l’intégrale∫

C

eiz

z − z0
dz,

où z0 ∈ C, dans les cas suivants :
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i) lorsque z0 est à l’extérieur de C ,

ii) lorsque z0 est à l’intérieur de C.

Exercice 3.4. Calculer ces intégrales par la formule intégrale de Cauchy :

1)

∫
C

cos z

z7
dz, où C est le cercle |z − 1| = 2, dans le sens positif.

2)

∫
C

z

(z − 1)2(2z − 1)(z + 1)
dz, où C est le cercle :

a) |z − i| = 2,

b) |z − 1 + i| = 3
2 ,

dans le sens positif.

3)

∫
C

z

(z + 1)3
dz, où C est le cercle :

a) |z| = 1
2 ,

b) |z − i| = 1,

dans le sens positif.

4)

∫
C

sin 2z + cos z

(z − π)7
dz, où C est le cercle |z| = 4 décrit dans le sens positif.

5)

∫
C

z2 + 1

(1− z2)3
dz, où C est le cercle :

a) |z| = 1
2 ,

b) |z| = 2,

dans le sens positif.

6)

∫
C

e2z

(z2 + 1)2
dz, où C est le cercle |z| = 2, dans le sens positif.

Exercice 3.5. Soit C le cercle |z| = 4, parcouru dans le sens direct.
Calculer les intégrales suivantes :

i)

I1 =

∫
C

cos(πz)

z4(z − 5)
dz,

ii)

I2 =

∫
C

e2z

(z + 2)3
dz.
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Chapitre 4

Applications

Dans ce chapitre, nous présentons plusieurs applications fondamentales de
l’analyse complexe qui illustrent la puissance des fonctions holomorphes
et des outils associés. Nous débutons par l’étude de l’équivalence entre
l’holomorphie et l’analyticité, avant d’aborder des résultats essentiels tels
que le théorème du maximum, le théorème de Liouville, ainsi que le
théorème de Rouché. Une attention particulière sera portée au théorème
des résidus, qui constitue une méthode efficace pour le calcul d’intégrales
complexes. Enfin, nous montrerons comment exploiter la méthode des
résidus pour évaluer des intégrales réelles simples ou généralisées de
manière élégante et rapide.

4.1 Propriétés analytiques des fonctions holomorphes

Bien que la dérivation par rapport à une variable complexe soit
formellement semblable à celle effectuée par rapport à une variable
réelle, elle entrâıne des conséquences fondamentalement différentes sur le
comportement des fonctions considérées.

Théorème 4.1.1. Soit D ⊂ C un domaine contenant le disque fermé
D(z0, r) = {z ∈ C : |z − z0| ≤ r}, et soit f : D → C une
fonction holomorphe. Alors, pour tout z vérifiant |z − z0| < r, f admet
le développement en série de Taylor suivant :

f(z) =
+∞∑
k=0

ak(z − z0)
k,

où les coefficients ak sont donnés par :

ak =
f (k)(z0)

k!
=

1

2πi

∫
Cr

f(ζ)

(ζ − z0)k+1
dζ,

Cr désignant le cercle de centre z0 et de rayon r, parcouru dans le sens
positif (trigonométrique).
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Démonstration. Soit z ∈ D(z0, r). D’après la formule intégrale de Cauchy,
on a :

f(z) =
1

2πi

∫
Cr

f(ζ)

ζ − z
dζ,

où Cr désigne le cercle de centre z0 et de rayon r parcouru positivement.

On écrit
1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0
· 1

1− z−z0
ζ−z0

.

Pour |z − z0| < |ζ − z0| = r, on peut développer la fraction géométrique :

1

1− z−z0
ζ−z0

=
+∞∑
k=0

(
z − z0
ζ − z0

)k

.

Ainsi,

1

ζ − z
=

+∞∑
k=0

(z − z0)
k

(ζ − z0)k+1
.

En substituant dans la formule de Cauchy, on obtient :

f(z) =
1

2πi

∫
Cr

f(ζ)

ζ − z
dζ =

+∞∑
k=0

(z − z0)
k

[
1

2πi

∫
Cr

f(ζ)

(ζ − z0)k+1
dζ

]
.

En posant

ak =
1

2πi

∫
Cr

f(ζ)

(ζ − z0)k+1
dζ,

on obtient donc

f(z) =
+∞∑
k=0

ak(z − z0)
k.

Enfin, la relation

ak =
f (k)(z0)

k!
découle soit de la formule intégrale de Cauchy pour la k-ième dérivée d’une
fonction holomorphe, soit de la théorie des séries entières.

Exemple 4.1.1. Il est possible de choisir une détermination holomorphe
des fonctions

z 7→ log(1 + z) et z 7→ (1 + z)p

dans C\] − 1, 1]. Pour les déterminations qui prennent des valeurs réelles
sur l’axe réel, on obtient les développements suivants :

log(1 + z) =
+∞∑
k=1

(−1)k−1

k
zk, |z| < 1,
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et

(1 + z)p = 1 +
+∞∑
k=1

p(p− 1)(p− 2) · · · (p− k + 1)

k!
zk, |z| < 1.

De plus, en intégrant terme à terme la série de (1 + z2)−1, on obtient :

arctan z =
+∞∑
k=0

(−1)k

2k + 1
z2k+1, |z| < 1.

4.2 Théorème du Maximum

Théorème 4.2.1. (Le principe du module maximum) : Soit D ⊂ C
un domaine (ouvert et connexe) borné, et soit f : D → C une fonction
continue, analytique sur D. Alors

max
z∈D

|f(z)| = max
z∈∂D

|f(z)|.

En d’autres termes, |f | atteint son maximum uniquement sur la frontière
∂D et jamais à l’intérieur du domaine D.

Démonstration. Puisque D est fermé et borné dans C, il est compact. La
fonction continue |f(z)| atteint donc son maximum en au moins un point
z0 ∈ D. D’après le principe du maximum pour les fonctions analytiques, si
f n’est pas constante, ce maximum ne peut pas être atteint à l’intérieur de
D. Il s’ensuit que la valeur maximale de |f(z)| est nécessairement atteinte
sur la frontière ∂D.

Exemple 4.2.1. Déterminer le maximum de f(z) = 2z + 7i sur le disque
|z| ≤ 3.

Solution. On a :

|2z + 7i|2 = (2z + 7i)(2z − 7i) = 4|z|2 + 28 Im(z) + 49.

D’après le principe du maximum, la valeur maximale de |2z+7i| est atteinte
sur la frontière |z| = 3. Ainsi :

max
|z|≤3

|2z + 7i| = max
|z|=3

√
4|z|2 + 28 Im(z) + 49.

La valeur de Im(z) est maximale lorsque z = 3i, ce qui donne :

|2(3i) + 7i| = |13i| = 13.

Donc :
max
|z|≤3

|2z + 7i| = 13.
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Exemple 4.2.2. Trouver le maximum et le minimum de f(z) = z3−1 sur
le disque |z| ≤ 1.

Solution. D’après le principe du maximum, il suffit d’étudier |z3 − 1| sur
le bord |z| = 1. En posant z = eiθ, on obtient :

|z3 − 1| = |e3iθ − 1|.

Ainsi :
max
|z|≤1

|z3 − 1| = max
θ∈[0,2π]

|e3iθ − 1| = | − 1− 1| = 2,

et
min
|z|≤1

|z3 − 1| = min
θ∈[0,2π]

|e3iθ − 1| = |1− 1| = 0.

4.3 Théorème de Liouville

Théorème 4.3.1. (Inégalité de Cauchy) : Soit f une fonction
holomorphe sur le disque D(z0, R), avec R > 0. Alors f admet un
développement en série entière sur ce disque :

f(z) =
+∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, |z − z0| < R.

De plus, pour tout 0 < r < R, on a l’inégalité de Cauchy :∣∣f (n)(z0)
∣∣ ≤ n!Mr

rn
,

où
Mr = sup

|z−z0|=r

|f(z)|.

Démonstration. Considérons le lacet γ : [0, 2π] → C défini par

γ(θ) = z0 + reiθ,

où 0 < r < R.
Le coefficient an du développement en série de Taylor de f autour de z0
est donné par :

an =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)n+1
dζ.

En paramétrant ζ = z0 + reiθ, dζ = ireiθdθ, on obtient :

an =
1

2πi

∫ 2π

0

f(z0 + reiθ)

(reiθ)n+1
ireiθdθ =

1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθdθ.

Ainsi, en prenant les modules :

|an| ≤
1

2πrn

∫ 2π

0

|f(z0 + reiθ)|dθ ≤ M

rn
,
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où

M = sup
|ζ−z0|=r

|f(ζ)|.

Or, la formule de Cauchy pour les dérivées donne :

f (n)(z0) = n! an.

On en déduit :

|f (n)(z0)| ≤
n!M

rn
, ∀ 0 < r < R.

Théorème 4.3.2. Si f est holomorphe (analytique) sur C et bornée alors
f est constante.

Démonstration. Soit f(z) une fonction entière et bornée, c’est-à-dire qu’il
existe M > 0 tel que |f(z)| ≤ M pour tout z ∈ C.
D’après l’inégalité de Cauchy, pour tout z0 ∈ C et pour tout r > 0, on a

|f ′(z0)| ≤
M

r
.

En faisant tendre r → +∞, on obtient

|f ′(z0)| → 0.

Ainsi, f ′(z0) = 0 pour tout z0 ∈ C, ce qui implique que f est constante.

Remarque 4.3.1. Il est important de noter que les fonctions entières non
constantes ne peuvent pas être bornées sur tout le plan complexe. Ceci
découle directement du théorème de Liouville, qui stipule qu’une fonction
entière et bornée doit être constante. Par conséquent, les polynômes
non constants, la fonction exponentielle ez, ainsi que les fonctions
trigonométriques et hyperboliques, ne peuvent pas rester bornées sur C.

Exemple 4.3.1. Soit f une fonction holomorphe sur le plan complexe C
et supposons que

|f(z)| ≤ M |z|, ∀z ∈ C,

où M > 0. Montrer que f(z) est un polynôme de degré ≤ 1 sur C.

Solution. Définissons la fonction

g(z) =


f(z)

z
, si z ̸= 0,

0, si z = 0.
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4.3. THÉORÈME DE LIOUVILLE

Cette fonction g est holomorphe sur C et bornée (puisque |g(z)| ≤ M).
D’après le théorème de Liouville, g est constante sur C, donc

f(z)

z
= β, β ∈ C.

Ainsi, f(z) = βz, ce qui prouve que f(z) est un polynôme de degré ≤ 1 sur
le corps complexe C.

Théorème 4.3.3 (Théorème fondamental de l’algèbre). Soit f un
polynôme de degré n ≥ 1 à coefficients réels ou complexes. Alors, l’équation

f(z) = 0

admet au moins une racine dans le corps des nombres complexes C.

Démonstration. Considérons le polynôme

f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n,

avec an ̸= 0.
Supposons, par l’absurde, qu’il n’existe aucun z ∈ C tel que f(z) = 0.
Nous allons montrer que cette hypothèse conduit à une contradiction.
On peut factoriser f(z) sous la forme :

f(z) = zn
(a0
zn

+
a1
zn−1

+ · · ·+ an−1

z
+ an

)
.

Lorsque |z| → +∞, les termes ak
zn−k pour k = 0, 1, . . . , n− 1 tendent vers 0,

donc

lim
|z|→+∞

f(z)

zn
= an ̸= 0.

Ainsi, |f(z)| → +∞ lorsque |z| → +∞.
Comme f est une fonction continue et que |f(z)| → +∞ quand |z| → ∞,
il existe un rayon R > 0 tel que |f(z)| ≥ |f(0)| pour tout |z| ≥ R. Le
minimum de |f(z)| sur le disque fermé D(0, R) = {z ∈ C : |z| ≤ R} est
donc atteint en un point z0 de ce disque, d’après le théorème des valeurs
extrêmes.
Si z0 se trouvait sur la frontière |z| = R, ce minimum serait au moins
|f(0)| > 0. Mais si z0 se trouvait à l’intérieur du disque, comme f
est analytique et ne s’annule pas, le principe du minimum pour les
fonctions holomorphes impliquerait que |f(z)| est constant, et donc f serait
constante, ce qui contredirait deg f = n ≥ 1.
Ainsi, notre supposition est fausse et il existe un z ∈ C tel que f(z) = 0.
De plus, sur le même cercle |z| = R et à l’intérieur de celui-ci, la fonction

g(z) =
1

f(z)
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serait continue sur le compact D(0, R) et donc nécessairement bornée. En
conséquence, g(z) serait bornée sur tout le plan C, et d’après le théorème
de Liouville, g(z) serait constante.

Cela impliquerait que f(z) est également constante, ce qui contredit
l’hypothèse que f est un polynôme de degré n ≥ 1. Cette contradiction
montre donc que notre supposition initiale — f(z) ̸= 0 pour tout z ∈ C —
est fausse.

Il existe donc au moins une racine z0 ∈ C telle que f(z0) = 0. Le théorème
est ainsi démontré.

Corollaire 4.3.1. Si f(z) est un polynôme de degré n ≥ 1, alors l’équation

f(z) = 0

admet exactement n racines dans C, en comptant les multiplicités.

Démonstration. D’après le Théorème fondamental de l’algèbre, l’équation
f(z) = 0 possède au moins une racine z1 ∈ C. On peut alors factoriser

f(z) = (z − z1)Q1(z),

où Q1(z) est un polynôme de degré n− 1.

En appliquant de nouveau le Théorème fondamental de l’algèbre à Q1(z),
on obtient une deuxième racine z2 telle que

Q1(z) = (z − z2)Q2(z),

avec Q2(z) de degré n− 2.

En répétant ce procédé n fois, on arrive à la décomposition

f(z) = an(z − z1)(z − z2) · · · (z − zn),

ce qui prouve que f(z) = 0 possède exactement n racines dans C, comptées
avec leur multiplicité.

4.4 Théorème de Rouché

Théorème 4.4.1. Soient f et g deux fonctions analytiques à l’intérieur et
sur un lacet C. Si, pour tout z ∈ C, on a

|g(z)| < |f(z)|,

alors f + g et f possèdent le même nombre de zéros (en comptant les
multiplicités) à l’intérieur de C.
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Exemple 4.4.1. Soit f(z) = z4+8z+10. Combien de zéros (comptés avec
multiplicité) f possède-t-elle dans le disque |z| < 1 ?

Solution. 1. Étude sur le disque |z| < 1. Sur le cercle |z| = 1, nous avons

|z4| = 1, |8z + 10| ≥ | |10| − |8z| | = |10− 8| = 2.

Ainsi,
|z4| < |8z + 10|.

En appliquant le théorème de Rouché avec

g(z) = 8z + 10,

nous concluons que f(z) et g(z) ont le même nombre de zéros à l’intérieur
du disque |z| < 1. Comme g(z) = 8z + 10 est un polynôme de degré 1,
il possède exactement un zéro. Donc, f a exactement un zéro dans
|z| < 1.

Exemple 4.4.2. Soit f(z) = z5 + 4z + 1. Déterminer le nombre de zéros
de f (comptés avec multiplicité) dans le disque unité |z| < 1.

Solution. Nous choisissons la fonction de comparaison g(z) = 4z. Sur le
cercle unité |z| = 1, nous avons

|g(z)| = 4|z| = 4.

De plus,
|f(z)− g(z)| = |z5 + 1| ≤ |z5|+ |1| = 2.

Ainsi, sur |z| = 1,

|f(z)− g(z)| ≤ 2 < 4 = |g(z)|.

Par le théorème de Rouché les fonctions f et g possèdent le même
nombre de zéros à l’intérieur du disque unité |z| < 1.
Or, g(z) = 4z possède un seul zéro en z = 0. Donc, f possède un zéro dans
le disque unité.

4.5 Théorème des Résidus

L’une des applications les plus remarquables de l’intégration complexe, et
plus particulièrement du théorème de Cauchy, réside dans la possibilité
d’exploiter les outils de l’analyse complexe pour évaluer des intégrales ou
des séries réelles qui seraient extrêmement difficiles, voire impossibles, à
calculer à l’aide des seules méthodes de l’analyse réelle.
La théorie des résidus fournit une méthode élégante et efficace pour ces
calculs, en permettant de transformer l’évaluation de certaines intégrales
en la somme des résidus des pôles d’une fonction holomorphe dans un
domaine donné.
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4.5.1 Points singuliers

Jusqu’à présent, nous avons étudié les fonctions uniquement en des points
et des domaines où elles sont analytiques. Dans ce chapitre, nous allons
nous intéresser aux points singuliers d’une fonction.

Définition 4.5.1. Un point z0 est dit point singulier d’une fonction f(z)
si f n’est pas analytique en z0, alors qu’il existe dans tout voisinage de z0
au moins un point où f est analytique.

Dans cette section, nous nous restreignons aux points singuliers isolés.

Définition 4.5.2. Un point singulier z0 est isolé si f(z) n’est pas
analytique en z0 mais l’est en tout autre point d’un certain voisinage de z0,
c’est-à-dire dans un voisinage annulaire de z0.

Exemple : La fonction

f(z) =
1

z − 1
admet un point singulier isolé en z = 1.
En revanche, la fonction

f(z) =

(
sin

1

z

)−1

possède un nombre infini de points singuliers autour de z = 0, en particulier
aux points

z =
1

nπ
, n ∈ Z \ {0}.

Ainsi, z = 0 n’est pas un point singulier isolé.
Il arrive parfois qu’il soit possible de corriger une fonction en un point
singulier isolé en redéfinissant simplement la fonction en ce point. Dans ce
cas, on dit que le point singulier est amovible.

Exemple 4.5.1. Considérons la fonction

f(z) =
z2 − 1

z − 1
.

Cette fonction n’est pas définie en z = 1. Cependant, on peut la prolonger
analytiquement en remarquant que

z2 − 1

z − 1
= z + 1, pour z ̸= 1.

On peut donc définir

f(z) =

{
z2−1
z−1 , si z ̸= 1,

z + 1, si z = 1,

et la fonction devient ainsi analytique en z = 1.
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4.5.2 Point singulier essentiel et pôles

Une manière efficace de décrire les points singuliers d’une fonction
analytique consiste à utiliser son développement en série de Laurent.
Une série de Laurent autour d’un point z0 s’écrit sous la forme :

f(z) =
∞∑
n=1

bn(z − z0)
−n +

∞∑
n=0

an(z − z0)
n,

où les coefficients bn et an sont des nombres complexes.

La première somme
∞∑
n=1

bn(z − z0)
−n est appelée la partie principale de

la série, tandis que la seconde somme
∞∑
n=0

an(z− z0)
n est appelée la partie

analytique.

— Si le nombre de coefficients bn non nuls est infini, alors z0 est appelé
un point singulier essentiel de f(z).

— Par extension, le terme point singulier essentiel peut également
être employé pour désigner un point singulier non isolé.

— Si le nombre de coefficients bn non nuls est fini et égal à N , on dit que
la fonction f(z) possède un pôle d’ordre N en z0.

Regardons à présent la série correspondant à une fonction possédant un
pôle d’ordre n en z0 :

f(z) =
c−n

(z − z0)n
+

c−(n−1)

(z − z0)n−1
+ · · ·+ c−1

z − z0
+ c0 + c1(z − z0) + · · · .

4.5.3 Les Résidus

Supposons que z0 est un point singulier isolé (essentiel ou pôle) d’une
fonction f(z) qui est par ailleurs analytique dans un anneau autour de
z0. On peut alors développer f(z) en série de Laurent autour de z0 :

f(z) =
∞∑
n=1

bn(z − z0)
−n +

∞∑
n=0

an(z − z0)
n.

Le coefficient b1 de (z − z0)
−1 dans cette série est appelé le résidu de f

en z0 et se note :

Res(f, z0) = b1.

Le calcul des résidus joue un rôle central dans le théorème des résidus,
qui permet d’évaluer des intégrales complexes en reliant la valeur d’une
intégrale sur un contour à la somme des résidus des singularités situées à
l’intérieur de ce contour.
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Res(g, a) = f(a) =
1

2πi

∫
C

f(z)

z − a
dz.

Ici a ∈ int(C).

Remarque : Si f est holomorphe dans un domaine D, sauf en des
singularités isolées zk, on peut exprimer le résidu Res(f, zk) de plusieurs
façons, suivant la nature de la singularité :

— Pour un pôle simple en z0,

Res(f, z0) = lim
z→z0

(z − z0)f(z).

— Pour un pôle d’ordre m ≥ 2,

Res(f, z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1

[
(z − z0)

mf(z)
]
.

Exemple 4.5.2. Calculer les résidus des fonctions suivants :

1) f(z) =
z3

z + i
.

2) f(z) =
ez

(z − 1)2
.

3) f(z) =
z2

(z + 2)3
.

Solution. On a

1) f(z) =
z3

z + i
.

Ici a = −i et m = 1. Alors :

Res(f,−i) = lim
z−→−i

(z + i)f(z) = i.

2) f(z) =
ez

(z − 1)2
.

Ici a = 1 et m = 2. Alors :

Res(f, 1) = lim
z−→1

d

dz

[
(z − 1)2f(z)

]
= e.

3) f(z) =
z2

(z + 2)3
.

Ici a = −2 et m = 3. Alors :

Res(f,−2) =
1

2!
lim

z−→−2

d2

dz2

[
(z + 2)3f(z)

]
= 1.
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Théorème 4.5.1. (Théorème des Résidus) : Soit f : int(C) → C une
fonction holomorphe sauf en un nombre fini de points a1, a2, . . ., an et C
un chemin fermé. Alors :∫

C

f(z) dz = 2πi
n∑

k=1

Res(f, ak).

Ici a1, a2, . . ., an ∈ int(C).

Figure 4.1 – Domaine et contour pour le théorème des résidus

Exemple 4.5.3. Calculer l’intégrale suivante avec le théorème des
résidus : ∫

C

1

z2(z − 1)3
dz; C : |z| = 2.

Solution. On a

f(z) =
1

z2(z − 1)3
est holomorphe si z ̸= 0 et z ̸= 1, alors 0 est un pôle

double et 1 est un pôle triple. Donc :∫
C

1

z2(z − 1)3
dz = 2πi

[
Res(f, 0) +Res(f, 1)

]
.

Res(f, 0) = lim
z−→0

d

dz

[
z2f(z)

]
= −3.

Res(f, 1) =
1

2!
lim
z−→1

d2

dz2

[
(z − 1)3f(z)

]
= 3.

Donc : ∫
C

1

z2(z − 1)3
dz = 2πi

[
− 3 + 3

]
= 0.

Exemple 4.5.4. Calculer l’intégrale

I =

∫
C

cos(πz)

z2 − 2z
dz,

où le contour C est le cercle |z| = 1.

Solution. On factorise le dénominateur :

z2 − 2z = z(z − 2).
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Ainsi, la fonction considérée est

f(z) =
cos(πz)

z(z − 2)
.

Les pôles de f(z) sont z = 0 et z = 2. Le contour C : |z| = 1 contient
seulement le pôle z = 0.

D’après le théorème des résidus, on a

I = 2πiRes(f, 0).

Calcul du résidu en z = 0 : Puisque z = 0 est un pôle simple, on utilise
la formule

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

cos(πz)

z − 2
.

En évaluant la limite, on obtient

Res(f, 0) =
cos(0)

−2
= −1

2
.

Conclusion :

I = 2πi ·
(
−1

2

)
= −πi.

Exemple 4.5.5. Calculer l’intégrale

I =

∫
C

2z + 1

z2 + 9
dz,

où le contour C est le cercle |z − i| = 3.

Solution. Le dénominateur z2 + 9 = 0 admet deux pôles simples en

z = 3i et z = −3i.

Le contour C : |z − i| = 3 est centré en i et de rayon 3. On observe que :

|3i− i| = |2i| = 2 < 3 ⇒ 3i ∈ C,

et
| − 3i− i| = | − 4i| = 4 > 3 ⇒ −3i /∈ C.

Ainsi, seul le pôle z = 3i est à l’intérieur de C.

En appliquant le théorème des résidus, on obtient :

I = 2πiRes

(
2z + 1

z2 + 9
, z = 3i

)
.

Calcul du résidu en z = 3i : Puisque le pôle est simple,

Res

(
2z + 1

z2 + 9
, z = 3i

)
= lim

z→3i
(z − 3i)

2z + 1

(z − 3i)(z + 3i)
= lim

z→3i

2z + 1

z + 3i
.
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En évaluant en z = 3i,

Res =
2(3i) + 1

3i+ 3i
=

6i+ 1

6i
=

1

6i
+ 1 = 1− i

6
.

Conclusion :

I = 2πi

(
1− i

6

)
= 2πi− 2πi2

6
= 2πi+

π

3
=

π

3
+ 2πi.

Exemple 4.5.6. Calculer l’intégrale

I =

∫
C

1

z3 + 4z2
dz,

où le contour C est le cercle |z| = 2.

Solution. On commence par factoriser le dénominateur :

z3 + 4z2 = z2(z + 4).

Ainsi,

f(z) =
1

z3 + 4z2
=

1

z2(z + 4)
.

Les pôles de f(z) sont :

z = 0 (pôle d’ordre 2), z = −4 (pôle simple).

Le cercle C : |z| = 2 contient z = 0 mais pas z = −4.

D’après le théorème des résidus, l’intégrale est donnée par

I = 2πiRes(f, 0).

Calcul du résidu en z = 0 : Puisque z = 0 est un pôle d’ordre 2, on
utilise la formule :

Res(f, 0) = lim
z→0

d

dz

[
z2f(z)

]
= lim

z→0

d

dz

(
1

z + 4

)
.

On a
d

dz

(
1

z + 4

)
= − 1

(z + 4)2
.

Donc

Res(f, 0) = − 1

42
= − 1

16
.

Conclusion :

I = 2πi ·
(
− 1

16

)
= −πi

8
.
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4.6 Calcul d’intégrales par la méthode des Résidus

Le calcul d’intégrales définies peut souvent être réalisé en exploitant le
théorème des résidus, appliqué à une fonction appropriée et à un contour
judicieusement choisi dans le plan complexe. Le choix de ce contour est
souvent l’étape la plus délicate et requiert une certaine ingéniosité.

4.6.1 Intégrales de la forme

∫ 2π

0

R(cos θ, sin θ) dθ

L’idée principale est de convertir l’intégrale trigonométrique de la forme∫ 2π

0

R(cos θ, sin θ) dθ en une intégrale complexe sur un chemin qui est le

cercle unité |z| = 1. La paramétrisation d’un cercle est z = eiθ ; θ ∈ [0, 2π].

Donc : cos θ =
z + z−1

2
, sin θ =

z − z−1

2i
et dθ =

dz

iz
.

L’intégrale devienne :∫
|z|=1

R

(
z + z−1

2
,
z − z−1

2i

)
dz

iz
= 2πi

n∑
k=1

Res(f, ak)

avec a1, a2, . . ., an ∈ int(C) ⇐⇒ |ak| < 1 ∀n ∈ {1, . . . , n}.

Remarque 4.6.1. R est une fonction rationnelle.

Exemple 4.6.1. Calculer les intégrales suivantes avec le théorème des
résidus :

1)

∫ 2π

0

dθ

5 + 3 sin θ
, 2)

∫ 2π

0

dθ

2 + cos θ
.

Solution. On a

1)

∫ 2π

0

dθ

5 + 3 sin θ
:

∫ 2π

0

dθ

5 + 3 sin θ
=

∫
C

dz/iz

5 + 3(z − z−1)/2i
= 2

∫
C

1

3z2 + 10iz − 3
dz.

Où C est le cercle unité. La fonction à intégrer présente deux pôles
simples :
3z2 + 10iz − 3 = 0 =⇒ ∆ = −100 + 36 = −64 = (8i)2.

z1 =
−10i+ 8i

6
= − i

3

z2 =
−10i− 8i

6
= −3i /∈ int(C)
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Seul le pôle − i

3
est à l’intérieur de C car

(∣∣∣− i

3

∣∣∣ = 1

3
< 1

)
.

f(z) =
1

3z2 + 10iz − 3
. Alors nous devons calculer le résidu en − i

3
:

Res
(
f,−i/3

)
= lim

z−→−i/3

(z + i/3)

3(z + 3i)(z + i/3)
=

1

8i
.

D’où :

∫ 2π

0

dθ

5 + 3 sin θ
= 2

∫
C

f(z) dz

= 2 · 2πi ·Res
(
f,−i/3

)
=

π

2
.

2)

∫ 2π

0

dθ

2 + cos θ
:∫ 2π

0

dθ

2 + cos θ
=

∫
C

dz/iz

2 + (z + z−1)/2
=

2

i

∫
C

1

z2 + 4z + 1
dz.

Où C est le cercle unité. La fonction à intégrer présente deux pôles
simples :
z2 + 4z + 1 = 0 =⇒ ∆ = 16− 4 = 12 = (2

√
3)2.

z1 =
−4 + 2

√
3

2
= −2 +

√
3

z2 =
−4− 2

√
3

2
= −2−

√
3 /∈ int(C)

Seul le pôle −2+
√
3 est à l’intérieur de C car

(
|−2+

√
3| = 2−

√
3 < 1

)
.

f(z) =
1

z2 + 4z + 1
. Alors nous devons calculer le résidu en −2 +

√
3 :

Res
(
f,−2 +

√
3
)
= lim

z−→−2+
√
3

(z + 2−
√
3)

(z + 2−
√
3)(z + 2 +

√
3)

=
1

2
√
3
.

D’où :

∫ 2π

0

dθ

2 + cos θ
=

2

i

∫
C

f(z) dz

=
2

i
· 2πi ·Res

(
f,−2 +

√
3
)

=
2π√
3
.
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Exemple 4.6.2. Calculer

I =

∫ 2π

0

cos θ

5 + 3 cos θ
dθ.

Solution. Nous utilisons la transformation complexe z = eiθ avec |z| = 1.
Alors,

cos θ =
1

2

(
z +

1

z

)
, dθ =

dz

iz
.

L’intégrale devient

I =

∫
C

1
2(z +

1
z)

5 + 3
2(z +

1
z)

· dz
iz

,

où C est le cercle unité |z| = 1. En simplifiant, on obtient

I =

∫
C

z2 + 1

iz(3z2 + 10z + 3)
dz.

1. Pôles de la fonction. La fonction

f(z) =
z2 + 1

iz(3z2 + 10z + 3)

a pour pôles :

z = 0, z = −3, z = −1

3
.

Les pôles situés à l’intérieur du cercle unité |z| < 1 sont z = 0 et z = −1
3.

2. Résidus.
Résidu en z = 0 :

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

z2 + 1

i(3z2 + 10z + 3)
=

1

3i
.

Résidu en z = −1
3 : On écrit

f(z) =
z2 + 1

iz(z + 3)(3z + 1)
.

Ainsi

Res(f,−1
3) = lim

z→− 1
3

(z + 1
3)f(z) =

(−1
3)

2 + 1

i(−1
3)(−

1
3 + 3) · 3

.

On a (−1
3)

2 + 1 = 1
9 + 1 = 10

9 et −1
3 + 3 = 8

3. Donc

Res(f,−1
3) =

10
9

i(−1
3)(

8
3) · 3

=
10/9

−8
3i

= −10

9
· 3
8
· 1
i
=

5

12
i.

3. Théorème des résidus. On a∫
C

f(z) dz = 2πi
[
Res(f, 0) + Res(f,−1

3)
]
.
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Donc ∫
C

f(z) dz = 2πi

(
1

3i
+

5

12
i

)
.

Comme 1
3i = − i

3, il vient

1

3i
+

5

12
i = − i

3
+

5i

12
=

−4i+ 5i

12
=

i

12
.

Ainsi

I =

∫ 2π

0

cos θ

5 + 3 cos θ
dθ = 2πi · i

12
= −π

6
.

4. Conclusion. Par conséquent,

I = −π

6
.

4.6.2 Intégrales de la forme

∫ +∞

−∞
f(x) dx

Soit f(z) =
P (z)

Q(z)
où P et Q sont des polynômes premiers entre eux. Aucun

des zéros de Q n’étant réel. Supposons en outre que l’on ait :

deg Q ≥ 2 + deg P.

La formule suivante est valable, les ak étant les zéros de Q ; Im(ak) > 0.∫ +∞

−∞
f(x) dx = 2πi

n∑
k=1

Res
(
f, ak

)
. (4.1)

Exemple 4.6.3. Calculer les intégrales suivantes avec le théorème des
résidus :

1)

∫ +∞

−∞

dx

x2 + 1
, 2)

∫ +∞

−∞

dx

(x2 + 4)2
.

Solution. On a

1)

∫ +∞

−∞

dx

x2 + 1
:

f(z) =
1

z2 + 1
. Donc : P (z) = 1 et Q(z) = z2 + 1 et

deg Q = 2 ≥ 2 + deg P = 2 + 0 = 2. Les racines de Q sont i et −i donc
aucune n’est réelle, la formule 4.1 est donc applicable.
Seul le pôle i a de partie imaginaire strictement positive car Im(i) = 1 > 0.
Alors nous devons calculer le résidu en i :
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Res
(
f, i
)
= lim

z−→i

1

z + i
=

1

2i
.

D’où : ∫ +∞

−∞

dx

x2 + 1
= 2πi ·Res

(
f, i
)
= π.

2)

∫ +∞

−∞

dx

(x2 + 4)2
:

f(z) =
1

(z2 + 4)2
. Donc : P (z) = 1 et Q(z) = (z2 + 4)2 et

deg Q = 4 > 2 + deg P = 2+ 0 = 2. Les racines de Q sont 2i et −2i donc
aucune n’est réelle, la formule 4.1 est donc applicable. Seul le pôle 2i a
de partie imaginaire strictement positive car Im(2i) = 2 > 0. Alors nous
devons calculer le résidu en 2i qui est un pôle double :

Res
(
f, 2i

)
=

1

1!
lim

z−→2i

d

dz

[
1

(z + 2i)2

]
= lim

z−→i

−2

(z + 2i)3
=

2

27i
.

D’où :

∫ +∞

−∞

dx

(x2 + 4)2
= 2πi ·Res

(
f, 2i

)
=

4π

27
.

Exemple 4.6.4. Calculer l’intégrale

I =

∫ +∞

0

dx

1 + x4
.

Solution. La fonction f(x) =
1

1 + x4
est paire. Ainsi,

I =

∫ +∞

0

dx

1 + x4
=

1

2

∫ +∞

−∞

dx

1 + x4
.

Considérons la fonction complexe

f(z) =
1

1 + z4
.

La fonction f(z) satisfait les conditions d’application du théorème des
résidus. Nous avons∫ +∞

−∞

dx

1 + x4
= 2πi

∑
Res(f ; ak),

où la somme est prise sur les pôles ak de f(z) situés dans le demi-plan
supérieur (Im ak > 0).
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Étape 1 : Détermination des pôles. Les pôles de f(z) sont les racines
de 1 + z4 = 0, c’est-à-dire

zk = ei
(2k+1)π

4 , k = 0, 1, 2, 3.

Ainsi,

a0 = ei
π
4 , a1 = ei

3π
4 , a2 = ei

5π
4 , a3 = ei

7π
4 .

Les pôles dans le demi-plan supérieur sont a0 et a1.

Étape 2 : Calcul des résidus. Pour un pôle simple ak,

Res(f ; ak) = lim
z→ak

(z − ak)f(z) = lim
z→ak

z − ak
1 + z4

=
1

4a3k
.

Donc,

Res(f ; a0) =
1

4ei
3π
4

, Res(f ; a1) =
1

4ei
9π
4

.

Étape 3 : Calcul de l’intégrale. On obtient∫ +∞

−∞

dx

1 + x4
= 2πi (Res(f ; a0) + Res(f ; a1)) = 2πi

(
1

4ei
3π
4

+
1

4ei
9π
4

)
.

Après simplification, ∫ +∞

−∞

dx

1 + x4
=

π√
2
.

Finalement,

I =
1

2

∫ +∞

−∞

dx

1 + x4
=

π

2
√
2
.

Intégrales du type

∫ +∞

0

eiβxf(x) dx, β ∈ R

Théorème 4.6.1. Soient P et Q deux polynômes à coefficients réels, de
degrés respectifs m et n, tels que n ≥ m+ 1 et

Q(x) ̸= 0, ∀x ∈ R.

Soit β > 0 et la fonction

f(z) =
eiβzP (z)

Q(z)
.

Alors, on a :∫ +∞

−∞

P (x)

Q(x)
cos(βx) dx+ i

∫ +∞

−∞

P (x)

Q(x)
sin(βx) dx = 2πi

∑
Im ak>0

Res(f ; ak),

où les ak sont les pôles de f situés dans le demi-plan supérieur.
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Exemple 4.6.5. Évaluer l’intégrale

I =

∫ ∞

0

x sinx

x2 + b2
dx, b > 0.

Solution. Nous utilisons le Théorème 4.6.1. Considérons la fonction
complexe :

f(z) =
z

z2 + b2
,

et posons a = 1. Ainsi, nous définissons :

g(z) =
zeiz

z2 + b2
.

Le seul pôle de g(z) dans le demi-plan supérieur est en z = ib. Le résidu
en ce point est :

Res
(
g, ib

)
= lim

z→ib
(z − ib)

zeiz

z2 + b2
=

ib e−b

2ib
=

e−b

2
.

Par le théorème des résidus, nous obtenons :∫ +∞

−∞

xeix

x2 + b2
dx = iπe−b.

En prenant la partie imaginaire, nous avons :∫ +∞

−∞

x sinx

x2 + b2
dx = πe−b.

Or, l’intégrale x sinx
x2+b2 est une fonction paire, donc :∫ ∞

0

x sinx

x2 + b2
dx =

π

2
e−b.

De même, en prenant la partie réelle, on obtient :∫ +∞

−∞

x cosx

x2 + b2
dx = 0,

ce qui est évident car l’intégrale est impaire.

Exemple 4.6.6. Calculer l’intégrale

I =

∫ +∞

0

cosx

(1 + x2)2
dx.

Solution. La fonction sous l’intégrale est paire, donc :

I =
1

2

∫ +∞

−∞

cosx

(1 + x2)2
dx.
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Considérons la fonction complexe :

f(z) =
eiz

(1 + z2)2
=

eiz

(z − i)2(z + i)2
.

Nous pouvons appliquer le théorème des résidus à cette fonction, car elle
satisfait les conditions nécessaires.
Ainsi : ∫ +∞

−∞

eix

(1 + x2)2
dx = 2πiRes(f ; i),

où z = i est un pôle d’ordre 2.

Calcul du résidu au pôle z = i. Pour un pôle d’ordre 2, nous avons :

Res(f ; i) = lim
z→i

d

dz

[
(z − i)2f(z)

]
.

Comme

(z − i)2f(z) =
eiz

(z + i)2
,

nous obtenons :

d

dz

[
eiz

(z + i)2

]
=

ieiz

(z + i)2
− 2eiz

(z + i)3
.

En évaluant en z = i, on a z + i = 2i, donc :

Res(f ; i) =
ieii

(2i)2
− 2eii

(2i)3
=

ie−1

−4
− 2e−1

−8i

= −ie−1

4
+

e−1

4i
= −ie−1

4
− ie−1

4

= −ie−1

2
.

Conclusion. Ainsi :

∫ +∞

−∞

eix

(1 + x2)2
dx = 2πi ·Res(f ; i)

= 2πi

(
−ie−1

2

)
=

π

e
.

En prenant la partie réelle, nous obtenons :∫ +∞

0

cosx

(1 + x2)2
dx =

π

2e
.
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4.6.3 Intégrales de la forme

∫ +∞

0

xα−1Q(x) dx

Théorème 4.6.2. Considérons l’intégrale

I =

∫ ∞

0

xα−1Q(x) dx,

où α > 0 est un réel strictement positif et Q est une fraction rationnelle
n’ayant aucun pôle réel positif ou nul, telle que Q(0) ̸= 0 et

lim
x→∞

xα|Q(x)| = 0.

Si Q =
P

S
, où P et S sont deux polynômes, on suppose que

degP < degS − α.

On introduit alors la fonction complexe

f(z) = (−z)α−1Q(z).

En appliquant le théorème des résidus, on obtient

I =
π

sin(πα)

∑
ak

Res
(
(−z)α−1Q(z), ak

)
,

où la somme est prise sur tous les pôles ak de la fraction rationnelle Q.

Exemple 4.6.7. Calculer l’intégrale

I =

∫ ∞

0

dx
3
√
x(1 + x)

.

Solution. On reconnâıt une intégrale du type

I =

∫ ∞

0

xα−1Q(x) dx,

avec

α− 1 = −1

3
⇒ α =

2

3
,

et

Q(z) =
1

1 + z
.

La fonction Q possède un seul pôle simple en z = −1.
En appliquant la formule générale, on obtient

I =
π

sin(πα)
Res
[
(−z)α−1Q(z), z = −1

]
.

Calculons le résidu en z = −1 :

Res

[
(−z)−1/3

1 + z
, z = −1

]
= lim

z→−1
(z + 1)

(−z)−1/3

1 + z
= 1.
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Donc :

I =

∫ ∞

0

dx
3
√
x(1 + x)

=
π

sin(πα)
Res
[
(−z)α−1Q(z), z = −1

]
=

π

sin
(
2π
3

)
=

2π√
3
.

Exemple 4.6.8. Calculer l’intégrale

B =

∫ ∞

0

dx√
x(1 + x2)

.

Solution. On reconnâıt une intégrale du type

B =

∫ ∞

0

xα−1Q(x) dx,

avec

α− 1 = −1

2
⇒ α =

1

2
,

et

Q(z) =
1

1 + z2
.

La fonction Q possède deux pôles simples en z = i et en z = −i..
En appliquant la formule générale, on obtient

B =
π

sin(πα)

(
Res
[
(−z)α−1Q(z), z = i

]
+Res

[
(−z)α−1Q(z), z = −i

])
.

Calculons le premier résidu en z = i :

Res

(
(−z)−1/2

(z + i)(z − i)
, z = i

)
= lim

z→i

(−z)−1/2

z + i
=

eiπ/4

2i
.

Calculons le deuxième résidu en z = −i :

Res

(
(−z)−1/2

(z + i)(z − i)
, z = −i

)
= lim

z→−i

(−z)−1/2

z − i
= −e−iπ/4

2i
.

Donc :

B =
π

sin(πα)

(
Res
[
(−z)α−1Q(z), z = i

]
+Res

[
(−z)α−1Q(z), z = −i

])
=

π

sin
(
π
2

) (eiπ/4
2i

− e−iπ/4

2i

)
=

π
√
2

2
.
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4.7 Exercices supplémentaires

Exercice 4.1. Montrer que si f est analytique dans le disque |z| ≤ 1 et
satisfait

|f(z)| ≤ 1

1− |z|
,

alors, pour tout entier n ≥ 1, on a l’estimation

|f (n)(0)| ≤ (n+ 1)!

(
1 +

1

n

)n

.

Exercice 4.2. Soit f une fonction holomorphe et non constante sur C,
telle que

|f(z)| ≥ 1, ∀|z| > 1.

Montrer que f admet au moins un zéro dans C.

Exercice 4.3. Trouver toutes les fonctions f(z) analytiques dans tout le
plan complexe et vérifiant les conditions |f(z)| < 1 pour tout z et f(z) =
1 + i pour tout z réel.

Exercice 4.4. Soit f(z) analytique sur le disque |z| ≤ a, avec a > 0, et
supposons que |f(z)| ≤ M pour tout z tel que |z| ≤ a. Montrer que

|f (n)(z)| ≤ M · a · n!
(a− |z|)n+1

,

pour tout z tel que |z| < a et pour tout entier n ∈ N.

Exercice 4.5. Pour chaque fonction f(z) ci-dessous et le domaine D,
déterminer

max
z∈D

|f(z)|,

ainsi que les points z ∈ D où cette valeur est atteinte.

1. f(z) = 3iz − 2, D : |z| ≤ 4.

2. f(z) = z2 − z, D : |z| ≤ 2.

3. f(z) = z2 − 3z + 2, D : |z| ≤ 1.

4. f(z) = (2iz + 3)3, D : |z| ≤ 3.

5. f(z) = ez, D : |z − i| ≤ 2.

Exercice 4.6. 1. Soit f(z) analytique dans tout le plan complexe et
supposons que

lim
z→∞

f(z)

z
= 0.

Montrer que f est constante.
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Suggestion : Poser

g(z) =
f(z)− f(0)

z

et utiliser le théorème de Liouville.

2. Soit f(z) analytique dans tout le plan complexe et supposons que

Im
(
f(z)

)
≤ 0

pour tout z ∈ C. Montrer que f est constante.

Suggestion : Poser

g(z) =
1

f(z)− i

et utiliser le théorème de Liouville.

Exercice 4.7. Combien le polynôme f(z) = z4−5z+1 a-t-il de zéros dans
le disque |z| < 1

4 ?

Exercice 4.8. Montrer que le polynôme p(z) = 2z5+8z−1 a ses 5 zéros à
l’intérieur du cercle |z| = 2 et qu’un seul d’entre eux est situé à l’intérieur
du cercle |z| = 1.

Exercice 4.9. Soit la fonction polynomiale

f(z) = z4 − z2 − 2z + 2.

(1) En vous inspirant de la preuve du théorème fondamental de l’algèbre,
montrer que f admet exactement quatre zéros dans C.

(2) Déterminer explicitement les zéros de f .

Exercice 4.10. Utiliser le théorème des résidus pour calculer les intégrales
suivantes sur les contours indiqués :

1)

∫
|z|=3

2z − 1

z4 − 1
dz, 2)

∫
|z|=2

eiz

(z + 1)2
dz, 3)

∫
|z|=1/2

tan z

z
dz,

4)

∫
|z|=1

ez

z2 − 3z
dz, 5)

∫
|z|=5

eiz

z3 + 1
dz, 6)

∫
|z−3i|=3

1

z2 + 4z + 13
dz.

Exercice 4.11. Calculer les intégrales trigonométriques suivantes :

I1 =

∫ 2π

0

cos θ

2 + cos θ
dθ, I2 =

∫ 2π

0

cos θ

3 + sin θ
dθ, I3 =

∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ,

I4 =

∫ 2π

0

1

10− 6 cos θ
dθ, I5 =

∫ 2π

0

cos 2θ

5− 4 cos θ
dθ, I6 =

∫ 2π

0

1

2 + sin θ
dθ,

I7 =

∫ 2π

0

1

1 + 3 cos θ
dθ, I8 =

∫ 2π

0

3 sin θ

5 + 4 cos θ
dθ, I9 =

∫ 2π

0

cos 2θ

5− 3 cos θ
dθ.
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Exercice 4.12. Calculer les intégrales généralisées suivantes :

1) I1 =

∫ +∞

0

x2

(x2 + 1)2
dx, 2) I2 =

∫ +∞

−∞

2x− 1

x4 + 5x2 + 4
dx,

3) I3 =

∫ +∞

0

1

(x2 + 4)2
dx, 4) I4 =

∫ +∞

−∞

x2 + 1

x4 + 1
dx,

5) I5 =

∫ +∞

−∞

1

x6 + 1
dx, 6) I6 =

∫ +∞

−∞

1

x2 − 2x+ 2
dx,

7) I7 =

∫ +∞

−∞

1

x2 − 6x+ 25
dx, 8) I8 =

∫ +∞

−∞

x

(x2 + 9)(x2 + 1)
dx,

9) I9 =

∫ +∞

0

x2

(x2 + 4)2(x4 + 1)
dx, 10) I10 =

∫ +∞

−∞

1

(x2 + 2x+ 2)2
dx.

Exercice 4.13. Calculer les intégrales suivantes :

1) I1 =

∫ +∞

0

cos 2x

x2 + 1
dx, 2) I2 =

∫ +∞

−∞

sinx

x2 + 4x+ 5
dx,

3) I3 =

∫ +∞

−∞

sinx

x2 + 4
dx, 4) I4 =

∫ +∞

−∞

x cosx

(x4 + 1)2
dx,

5) I5 =

∫ +∞

0

x sinx

x6 + 1
dx, 6) I6 =

∫ +∞

0

cos 3x

x2 − 2x+ 2
dx,

7) I7 =

∫ +∞

−∞

sinx

x2 − 6x+ 25
dx, 8) I8 =

∫ +∞

−∞

x cosx

(x2 + 9)(x2 + 1)
dx,

9) I9 =

∫ +∞

0

x2 sinx

(x2 + 1)2(x4 + 1)
dx, 10) I10 =

∫ +∞

−∞

cos 2x

(x2 + 2x+ 2)2
dx

Exercice 4.14. Utiliser le théorème des résidus pour calculer les intégrales
réelles suivantes :

1) A =

∫ ∞

0

dx

(x+ 1)
√
x
, 2) B =

∫ ∞

0

√
x

(x+ 2)(x+ 4)
dx,

3) C =

∫ ∞

0

dx√
x(x2 + 4)

, 4) D =

∫ ∞

0

log x

x+ 1
dx,

5) E =

∫ ∞

0

log x

x2 + 2x+ 2
dx, 6) F =

∫ ∞

0

log x

(x2 + 1)2
dx.

69



4.7. EXERCICES SUPPLÉMENTAIRES
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Chapitre 5

Les fonctions harmonique

5.1 Définitions et Notations

Définition 5.1.1. Soient D ⊂ R2 un ouvert, et P : D → R une fonction.
On dit que P est de classe C2 sur D (et on note P ∈ C2(D)) si :

— les dérivées partielles premières

∂P

∂x
et

∂P

∂y

existent et sont continues sur D,
— les dérivées partielles secondes

∂2P

∂x2
,

∂2P

∂y2
,

∂2P

∂x∂y
,

∂2P

∂y∂x

existent et sont continues sur D.

Dans ce cas, on dit que P est de classe C2 sur D, c’est-à-dire que toutes
ses dérivées partielles jusqu’à l’ordre 2 existent et sont continues sur D.

Définition 5.1.2. Soit D ⊂ R2, et soit P ∈ C2(D,R). On dit que P est
harmonique sur D si elle satisfait l’équation de Laplace suivante :

∇2P =
∂2P

∂x2
+

∂2P

∂y2
= 0.

Notation 5.1.1. L’expression

∆P =
∂2P

∂x2
+

∂2P

∂y2

est appelée le Laplacien de la fonction P . Ainsi, une fonction P est
harmonique si et seulement si ∆P = 0.

Exemple 5.1.1. Démontrer que les fonctions suivantes sont harmoniques :
1) P (x, y) = x3 − 3xy2 + x2 − y2 ; x, y ∈ R.
2) P (x, y) = ex cos(y) x, y ∈ R.
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Solution. On a
1) P (x, y) = x3 − 3xy2 + x2 − y2 :

∂P

∂x
= 3x2 − 3y2 + 2x

∂2P

∂x2
= 6x+ 2.

et


∂P

∂y
= −6xy − 2y

∂2P

∂y2
= −6x− 2.

=⇒ ∂2P

∂x2
+

∂2P

∂y2
= 0.

2) P (x, y) = ex cos(y) :
∂P

∂x
= ex cos(y)

∂2P

∂x2
= ex cos(y).

et


∂P

∂y
= −ex sin(y)

∂2P

∂y2
= −ex cos(y).

=⇒ ∂2P

∂x2
+

∂2P

∂y2
= 0.

Donc les deux fonctions sont harmoniques.

Remarque 5.1.1. Soit f : D → C
z 7→ f(z) = P (x, y) + iQ(x, y); x, y ∈ R

avec P = Re(f) et Q = Im(f).
f est holomorphe sur D =⇒ P et Q sont des fonctions harmoniques.

Démonstration. Soit f = P + iQ une fonction holomorphe sur un domaine
D ⊂ C. Alors les équations de Cauchy-Riemann sont satisfaites dans D, à
savoir :

∂P

∂x
=

∂Q

∂y
et

∂P

∂y
= −∂Q

∂x
.

Nous allons montrer que la partie réelle P est harmonique.

En dérivant la première équation par rapport à x et la deuxième par rapport
à y, on obtient :

∂2P

∂x2
=

∂2Q

∂x∂y
,

∂2P

∂y2
= − ∂2Q

∂y∂x
.

Puisque les dérivées croisées sont égales (les fonctions sont de classe C2),
on a :

∂2P

∂x2
+

∂2P

∂y2
= 0,

ce qui montre que P est harmonique sur D.

De même, en dérivant les équations de Cauchy-Riemann de manière
appropriée, on peut montrer que :

∂2Q

∂x2
+

∂2Q

∂y2
= 0,

ce qui prouve que la partie imaginaire Q est également harmonique.
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Exemple 5.1.2. Démontrer que La partie réelle et imaginaire P et Q
de la fonction holomorphe f : C → C ; f(z) = z2 sont des fonctions
harmoniques.

Solution. On a
1) P (x, y) = x2 − y2 :

∂P

∂x
= 2x

∂2P

∂x2
= 2.

et


∂P

∂y
= −2y

∂2P

∂y2
= −2.

=⇒ ∂2P

∂x2
+

∂2P

∂y2
= 0.

2) Q(x, y) = 2xy :
∂P

∂x
= 2y

∂2P

∂x2
= 0.

et


∂P

∂y
= 2x

∂2P

∂y2
= 0.

=⇒ ∂2P

∂x2
+

∂2P

∂y2
= 0.

Donc les deux fonctions sont harmoniques.

5.2 Conjuguée harmonique

Remarque 5.2.1. D’un autre coté si on a une fonction P harmonique
sur partie de R2 donc on peut trouver une autre fonction harmonique
s’appelle la conjuguée harmonique Q (à partir des conditions de
Cauchy-Riemann) telle que :

f(z) = P (x, y) + iQ(x, y)

est holomorphe sur D ⊂ C.
Exemple 5.2.1. I) Démontrer que les fonctions suivantes sont
harmoniques :
1) P (x, y) = 5x2 − 5y2 − 3y + 1 ; x, y ∈ R.
2) P (x, y) = −y3 + 3x2y + 7x+ 1 x, y ∈ R.

II) Trouver la fonction Q pour que f soit holomorphe ; f = P + iQ.

III) Si f(0, 0) = 1 + 2i, exprimer f(z) en fonction de z.
IV) Calculer f ′(z) par deux méthodes.

Solution. On a
I-1) P (x, y) = 5x2 − 5y2 − 3y + 1 :

∂P

∂x
= 10x

∂2P

∂x2
= 10.

et


∂P

∂y
= −10y − 3

∂2P

∂y2
= −10.

=⇒ ∂2P

∂x2
+

∂2P

∂y2
= 0.
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II-1) Puisque f est holomorphe sur C alors le couple (P,Q) vérifie les
conditions de Cauchy-Riemann, c’est à dire :

∂P

∂x
=

∂Q

∂y
· · · · · (1)

∂P

∂y
= −∂Q

∂x
· · · · · (2)

De l’équation (1) on tire
∂Q

∂y
= 10x, d’où :

Q(x, y) =

∫
10x dy

= 10xy + C(x).

D’une part d’autre part on a :
(2) =⇒ −10y − 3 = −

[
10y + C ′(x)

]
⇐⇒ −C ′(x) = −3

=⇒ C(x) =

∫
3 dx = 3x+ c ; c ∈ R. Finalement :

Q(x, y) = 10xy + 3x+ c ; c ∈ R.

III-1) On a f(z) = f(x, y) = P (x, y) + iQ(x, y) · · · ·(3) telle que :
f(0, 0) = 1+2i =⇒ f(0, 0) = P (0, 0)+iQ(0, 0) =⇒ 1+ic = 1+2i =⇒ c = 2.
En substituant ceci dans (3), on obtient :

f(z) = 5x2 − 5y2 − 3y + 1 + i(10xy + 3x+ 2)

= 5z2 + 3iz + 1 + 2i.

IV-1) La dérivée de f :

Méthode 01(directe) : f ′(z) = 10z + 3i, ∀z ∈ C.

Méthode 02 : Puisque f est holomorphe sur C donc :

f ′(z) =
∂P

∂x
+ i

∂Q

∂x
= 10x+ i(10y + 3)

= 10z + 3i.

I-2) P (x, y) = −y3 + 3x2y + 7x+ 1 :
∂P

∂x
= 6xy + 7

∂2P

∂x2
= 6y.

et


∂P

∂y
= −3y2 + 3x2

∂2P

∂y2
= 6y.

=⇒ ∂2P

∂x2
+

∂2P

∂y2
= 0.
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II-2) Conjuguée harmonique Q :

De l’équation (1) on tire
∂Q

∂y
= 6xy + 7, d’où :

Q(x, y) =

∫
(6xy + 7) dy

= 3xy2 + 7y + C(x).

D’une part d’autre part on a :
(2) =⇒ −3y2 + 3x2 = −

[
3y2 + C ′(x)

]
⇐⇒ −C ′(x) = 3x2

=⇒ C(x) = −
∫

3x2 dx = −x3 + c ; c ∈ R. Finalement :

Q(x, y) = −x3 + 3xy2 + 7y + c ; c ∈ R.

III-2) On a f(z) = f(x, y) = P (x, y) + iQ(x, y) · · · ·(3) telle que :
f(0, 0) = 1+2i =⇒ f(0, 0) = P (0, 0)+iQ(0, 0) =⇒ 1+ic = 1+2i =⇒ c = 2.
En substituant ceci dans (3), on obtient :

f(z) = −y3 + 3x2y + 7x+ 1 + i(−x3 + 3xy2 + 7y + 2)

= −iz3 + 7z + 1 + 2i.

IV-2) La dérivée de f :

Méthode 01(directe) : f ′(z) = −3iz2 + 7, ∀z ∈ C.

Méthode 02 : Puisque f est holomorphe sur C donc :

f ′(z) =
∂P

∂x
+ i

∂Q

∂x
= 6xy + 7 + i(−3x2 + 3y2)

= −3iz2 + 7.

5.3 Exercices supplémentaires

Exercice 5.1. Démontrer que les fonctions suivantes sont harmoniques :
1) P (x, y) = 3x2 − 3y2 − 2xy − 2y + 5 ; x, y ∈ R.
2) P (x, y) = e−2xy sin

(
x2 + y2

)
x, y ∈ R.

3) P (x, y) = 2x3 − 3y2x+ 3x2y − y3 x, y ∈ R.

Exercice 5.2. Montrer que les fonctions données sont harmoniques et
trouver la fonction analytique f(z) = P (x, y) + iQ(x, y) la plus générale
pour laquelle :

1) Q(x, y) = xy
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2) Q(x, y) = x4 − 6x2y2 + y4

3) P (x, y) = 3x2y − y3

4) P (x, y) =
2x

x2 + y2
, avec x2 + y2 ̸= 0.

Exercice 5.3. Obtenir l’équation de Laplace en coordonnées polaires (r, θ).

Exercice 5.4. Déterminer les relations que doivent vérifier les constantes
a, b, c, d, e pour que la fonction suivante soit harmonique :

P (x, y) = ax4 + bx4y + cx2y2 + dxy3 + ey3.

Trouver ensuite une fonction analytique f(z) = P (x, y) + iQ(x, y)
correspondante.

Exercice 5.5. Sous quelles conditions le polynôme suivant est-il
harmonique ?

P (x, y) = ax3 + bx2y + cxy + dy3.

Exercice 5.6. I) Démontrer que les fonctions suivantes sont
harmoniques :
1) P (x, y) = 3x3 − 9xy2 − 4xy + 3 ; x, y ∈ R.
2) P (x, y) = 2x4 + 2y4 − 12x2y2 − 2y + 3 x, y ∈ R.

II) Trouver la fonction Q pour que f soit holomorphe ; f = P + iQ.

III) Si f(0, 0) = 3− i, exprimer f(z) en fonction de z.
IV) Calculer f ′(z) par deux méthodes.

Exercice 5.7. Soit U =
{
z ∈ C/ − π < x < π, y ∈ R

}
. Si z ∈ U

posons

P (x, y) =
sinx

cosx+ cosh y
.

• Montrer qu’il existe une unique fonction holomorphe f vérifiant f(0) = 0
et P = Re(f).
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[3] A. Angot, Compléments de mathématiques. Maisons Masson, 1982.
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de deuxième année avec exercices corrigés et illustrations avec Maple.
PPUR presses polytechniques, 2008.

[6] A. F. Beardon, Complex Analysis, Wiley, 1979.
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[19] W. Rudin, Analyse Réelle et Complexe, Masson, Manuel de deuxième
cycle, Paris, 1975.

[20] M. R. Spiegel, Variables Complexes : Cours et Problèmes, Série
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