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Introduction

Ce polycopié est destiné aux étudiants de deuxieme année Licence L2
(semestre 4), parcours Sciences et Technologie. Il constitue une suite
naturelle au polycopié de Mathématiques 3, et aborde des notions plus
avancées de l'analyse complexe, ainsi que certaines fonctions spéciales
essentielles en physique et en ingénierie.

L’objectif de ce cours est de doter I’étudiant d’outils analytiques puissants
pour le calcul différentiel et intégral dans le cadre des fonctions d’une
variable complexe. A Dissue de ce module, 'étudiant devra étre capable
de manipuler des fonctions holomorphes, de comprendre les séries entieres,
d’appliquer les grands théoremes de la théorie de Cauchy, et de résoudre des
intégrales complexes a 1’aide de la méthode des résidus. Une introduction
aux fonctions harmoniques et a leur relation avec les fonctions analytiques
est également proposée.

Ce document met 'accent sur les résultats essentiels, les méthodes de
résolution pratiques, et propose un ensemble d’exemples corrigés suivis
d’exercices a résoudre, permettant a 1’étudiant de tester sa compréhension.
Les démonstrations théoriques sont limitées a 1’essentiel afin de favoriser
I’apprentissage appliqué.

Structure du polycopié

Ce polycopié s’ouvre sur un bref rappel des propriétés fondamentales des
nombres complexes, leur représentation algébrique et géométrique, ainsi
que les principales opérations. Cette révision est essentielle pour aborder
sereinement les notions avancées qui suivent.

1. Le premier chapitre introduit les fonctions dérivables au sens complexe,
appelées fonctions holomorphes, en mettant 1’accent sur les conditions
de Cauchy-Riemann, nécessaires et suffisantes a la dérivabilité
complexe. Ces équations constituent le socle théorique sur lequel
s’appuient les chapitres suivants.

2. Ce chapitre approfondit les notions de développement en séries entieres,
avec une étude rigoureuse du rayon et du domaine de convergence.
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L’objectif est de montrer comment certaines fonctions peuvent étre
représentées localement par une série de puissances, ce qui ouvre la
voie a de nombreuses applications analytiques.

3. Ce chapitre expose les théoremes fondamentaux de l'intégration
complexe, notamment le théoreme de Cauchy et ses formules intégrales.
Ces résultats jouent un role clé dans la caractérisation des fonctions
holomorphes et dans le calcul d’intégrales complexes.

4. Ce chapitre s’appuie sur les résultats précédents pour présenter plusieurs
conséquences majeures de I’holomorphie. On y retrouve le théoreme du
maximum, le théoreme de Liouville, le théoreme de Rouché, ainsi que
le théoreme des résidus, un outil essentiel dans le calcul d’intégrales
complexes par la méthode des résidus.

5. Le dernier chapitre se penche sur les fonctions harmoniques, solutions
de I’équation de Laplace, tres présentes en physique et en ingénierie.
On y étudie leur lien profond avec les fonctions holomorphes, via le
Laplacien et les équations de Cauchy-Riemann.

Nous espérons que ce document sera un support efficace pour la maitrise
des concepts fondamentaux et des techniques analytiques abordés dans le
module Mathématiques 4.



Chapitre 1

Fonctions holomorphes et les
conditions de Cauchy-Riemann

1.1 Les nombres complexes

Dans le cadre des nombres réels, certaines équations n’admettent pas de
solutions, par exemple

?4+1=0, 22°43=0, 2°4+2x+5=0.

Cependant, en élargissant ce corps en y introduisant le nombre /—1, il
devient possible de résoudre de telles équations.
On obtient ainsi un nouvel ensemble, appelé corps des nombres
complexes, dont les éléments peuvent étre représentés sous la forme
T4y, ou i=+—1
et x,y € R. Au fil du temps, la nature des nombres complexes a été
progressivement clarifiée grace aux travaux de grands mathématiciens tels
que Cardan, Wessel, Argand, Gauss ou encore Hamilton. Par la suite,
la théorie des fonctions de variable complexe a été développée par des
figures majeures comme Cauchy, Gauss, Riemann, Weierstrass, Dirichlet,
Poincaré, entre autres.
Dans ce cours, nous utiliserons principalement la représentation des
nombres complexes sous la forme x + iy, qui s’avere la plus adaptée a
I’étude des fonctions. D’autres formes de représentation seront également
introduites ultérieurement.

Définition 1.1.1. On appelle nombre complexe toute expression de la
forme :
z=x+1y; xz,yelR
dite la forme algébrique de z et i définit par la relation : i> = —1.
x : La partie réelle de z notée Re(z).
y : La partie imaginaire de z notée Im(z).
On écrit donc :
2z = Re(z) +ilm(z).
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1.1. LES NOMBRES COMPLEXES

Propriétés

Soit z=x+iyetw=a+1b;z,y,a,beR.

1) L’addition de deux nombres complexes sera définie
s+w=x+iy+a+ib=(r+a)+i(y+Db).

L’addition est donc une opération fermée sur les complexes. Cette
addition est commutative, c¢’est-a-dire si z et w sont deux nombres
complexes. alors

z4+w=w+ z.

2) La soustraction est définie par
z—w=x+iy—a+ib=(xr—a)+i(y—0b).

3) La multiplication s’obtient en multipliant les deux nombres complexes
comme s’ils étaient des binomes algébriques en i et en se rappelant que

P =vV-1-v/-1=-1
On définit
z-w = (x+1iy) - (a+ib) = (ra — yb) + i(xzb + ay).
multiplication est aussi commutative
Z-w=w- 2.
4) On pourra donc définir la division de deux nombres complexes ainsi

z _z+iy (z+iay)la—ib) (x+iy)(a—1id) w40
w  a+ib  (a+ib)(a—ib) a? + b? ’ '

Définition 1.1.2. (Conjugué) On appelle conjugué de z le nombre :
zZ=x—1wy, x,y€ER.
Définition 1.1.3. (Module) Soit z = x +1iy; =,y € R, donc :

|z| = V2?2 + 32

La forme trigonométrique

Définition 1.1.4. Soit z =x +1y; x,y € R.
On appelle argument de z ’angle entre [’axe réel et le segment [0, z] et on

note : 0 = arg(z); —m < 6 < m. Nous voyons d’apres figure 1.1 que :
xr =rcosb,
{ y = rsinf.

Donc z = r(cosf + isinf). Cette écriture est appelée la forme

trigonométrique de z.



CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

xr
FIGURE 1.1 — Le plan complexe C
Remarque 1.1.1. L’argument d’un nombre complexe z n’est pas unique

puisque arg(z) = 0+ 2km; —m <0 <7 et k € Z est aussi argument de z.
0 est appelé 'argument principal de z.

FIGURE 1.2 — Le cerle trigonométrique sur | — 7, 7].

Définition 1.1.5. (La formule d’Euler) Soit § € R, on note € le

nombre complexe définit par :
e = cosf +isinf; 0 ecR.

La forme exponentielle

Définition 1.1.6. Tout nombre complexe z s’écrit de la forme :

z=re?; r=|z2| et 6 =arg(z).
Exemple 1.1.1. Eecrire  sous forme algébrique, trigonométrique et
exponentielle les nombres complexres suivants :

1)z =3, 2) 2y = 1+i, 8) z3 = —i, 4) 7 = —1+iV/3.



1.1. LES NOMBRES COMPLEXES

Solution. On a :

1) 21 = 3
e 21 est écrit sous forme algébrique { ?;((31)) _:?())
Le module |z1| = 3 et l'argument 0 vérifie : { C.OSQ =1
sinf = 0.
— 0 =0+2kr; keZ.
Donc la forme trigonométrique et la forme exponentielle
respectivement :

71 =3(cos0+isin0) = 3.

Re(z) =1
Im(z) = 1.
cosf = v/2/2

® 29 est écrit sous forme algébrique {

Le module |z = /2 et Uargument 0 vérifie : {

— 0 =mn/4+42kr; k€.
Donc la forme trigonométrique et la forme exponentielle
respectivement :

2 = /2| cos(m/4) +z’sin(7r/4)} = \/2e7/4,

3) 23 =—i:
fcri $bri Re(z3) = 0
e 23 est écrit sous forme algébrique { Im(zy) = —1.
Le module |z3| = 1 et l'argument 6 vérifie : cosf =0
v g "] sinf = —1.

— 0 =—n/2+4+2kn; k€EZ.
Donc la forme trigonométrique et la forme exponentielle
respectivement :

23 = 1[008(—#/2) + z'sin(—w/Z)} = le7i"/2,

4) z=—1+iV3 :
. . Re(zy) = —1
® 2, est écrit sous forme algébrique { Im(z;) = v/3.
, . [ cosf=—-1/2
Le module |z4| = 2 et Uargument 6 vérifie { sinf = v/3/2.
— 0 =2n/3+2kn; k € Z.
Donc :

2y =2 [cos(27r/3) + isin(27r/3)} = 2e%m/3,

sinf = v/2/2.

de z1 sont

de zo sont

de z3 sont
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1.2 Les fonctions élémentaires
1.2.1 La fonction exponentielle ¢*

On définit 'exponentielle d’'un nombre complexe z; z = x +1y; x,y € R
f:C—=C
z > f(2) avec f(z) =e* = e"cosy +ie"siny; x,y € R

Propriétés

1) Re(e*) = e”cosy et Im(e*) = e”siny.
2) |e*| = e” et arg(e®) =y + 2km; k € Z.
3) e #0;VzeC.

1.2.2 Les fonctions trigonométriques

A partir de 'exponentielle e*, on définit les fonctions cosinus, sinus et

tangente :
eiz + e—iz
CoSz = ———

sin 2z = ,
21
2 #7m/2+ kmy k € Z.

Sin z

tan z =
CcOoS 2

La plupart des propriétés des fonctions trigonométriques réelles sont encore
valable dans le cas complexe.

1) cos’z +sinz=1; Vz € C.

2) cos(z1 + 22) = €OS 21 COS 23 — sin 21 sin 2s.

3) sin(zy + 22) = sin 21 cos 25 + €os 21 sin 2s.

4) cos(—z) = cos z et sin(—z) = —sin z.

5) cosz=0siz=n/2+kmetsinzg=0siz=knm; keZ

Remarque 1.2.1. Pour x € R les fonctions cosx et sinx sont bornées :

—1<cosx <1et—1<sinx <1. Par contre pour z € C on peut avoir
’cosz’ > 1 et |sinz‘ > 1.

1.2.3 Les fonctions hyperboliques
Les fonctions hyperboliques sont définies aussi a partir de e*

e“+e*
coshz = ————



1.2. LES FONCTIONS ELEMENTAIRES

inh
Ona aussi tanh z = "~ ;2 # (72 + kn)is k € Z.
cosh z

Les propriétés suivantes sont encore vérifiées :

1) cosh? z —sinh®*z = 1; Vz € C.

2) cosh(z; + 29) = cosh 21 cosh 29 + sinh zq sinh z,.

3) sinh(z; + 29) = sinh 21 cosh 25 + cosh 2 sinh z,.

4) cosh(—z) = cosh z et sinh(—z) = —sinh z.

5) coshz=0siz= (n/2+ kn)i et sinhz=05si 2z =kmni; k € Z.

Remarque 1.2.2. On a les relations suivantes :

1) cos(iz) = cosh z 2) sin(iz) = isinh 2
3) cosh(iz) = cos z 4) sinh(iz) = isin z.
Propriétés

1) cosz = cosx coshy + i(— sinx sinh y).
2) sinz = sinx cosh y + i(cos x sinh ).
3) cosh z = coshz cosy + i(sinh z sin y).

4) sinh z = sinh z cosy + i(cosh z sin y).

1.2.4 Le logarithme complexe

Soit z € C*. Le logarithme complexe d’un nombre complexe 2z est donné
par :
logz =In|z| +i(0 + 2kn); k€ Z.

Ici —m<6<m.

Exemple 1.2.1. Calculer les nombres complexes suivants :
1) log?2, 2) log(1+ 1),
3) log(1 +iv/3), 4) log(—1).

Solution. On a

1) log?2 :
log(2) = In |2| +i[0 + 2kn] = In2 + i(2kn) ; k € Z.

2) log(1+1i) :
log(1+1i) = In|l 4| +i[Z + 2kn] = In V2 +i(n/4 + 2k7) ; k € Z.
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3) log(1 +iV/3) :

log(1+14v3) =In|l+iv3| +i[f + 2kn] =In2+i(x/3 4 2kn) ; k € Z.
4) log(—1) :

log(—1) =In|— 1| +i[r 4+ 2kn] =in(2k+ 1); k € Z.

Exemple 1.2.2. Résoudre les équations sutvantes :
1) 2isinz +3e % =1,
2) 2cosh z + 3¢ % = 2.

Solution. Résolutions d’équations :

1) 2isinz +3e " =i :
eiz_e—iz ) ) )
2—) +3 P =i=¢€e"4+2" =1
i
X 2 geis 4 9 = (),
Posons € = M ; donc : M?> —iM +2=0= A =—1—-8= -9 = (37)2.

2isinz + 3e " = —= 2@'(

M = 2i = ¢ = 2i = iz = log(2i) = In2 +i(n/2 + 2km),
My = —i = e = —i = iz = log(—i) = In1 +i(—7/2 + 2k7).

Donc : - -
2= —+2kmr—1iIn2 et zk:—§+2k7r; ke Z.

2
2)2coshz+3e%=2:
_ e’ +e” _ _
2cosh z + 3e Z:2:>2(T> +3e " =2=¢€"+4e =2
X 6% 2% 4 4 = 0.
Posons e* = M ; donc : M>—2M+4=0= A =416 = —12 = (21/3:)2.

M1:1—|—\/§i:ezz1—1—\/§i:z:log(1+\/§z'):1n2+i(g+2k7r),
Mgzl—\/§i:>ezzl—\/§7j:>z:log(1—\/§i):ln2+z’(—g+2k¢7r).

1.3 Les fonctions holomorphes
1.3.1 Limite d’une fonction
On dit que f(z) a pour limite w quand z tend vers zy si pour tout € > 0 il

existe un 7 > 0 tel que |f(z) — w| < € pour o < |z — zg| < n. On écrit

lim f(2) = w.

11



1.3. LES FONCTIONS HOLOMORPHES

Exemple 1.3.1. Calculer les limites suivantes si elle existent.

Solution. 1) On a

22— 1 .
z——1 2z +1 N zlirgl(z N 1) =2

2) Cette limite n’eziste pas. Pour la preuve, on va supposer que la limite
existe selon 'axe des x, on obtient alors

20z z—0 x + 10

Re(z) .. 0
= lim — =
z—0 z y—0 0 + 2y

Puisque la limite n’est pas unique donc elle n’existe pas.
Corollaire 1.3.1. On évidement
te

lim z = zy existe lim ¢ = .
2—20 Z—r20

Propriétés

Soit lim f(2) = wy et lim g(2) = wy. Alors

2—20 Z—r20
1) li_>m [f(2) + g(2)] = wy + wsy
Z—720

2) lim [f(2) = 9(2)] = w1 — w2,
3) lim[f(2) - g(2)] = w1 - wa.
)

Z—r20
te

4) lim - f(z) = - wy.
Z—20

1.3.2 Continuité

On dit que f est continue au point zg dans un domaine D si est seulement si
pour tout € > 0 donné, il existe un nombre 1 > 0 tel que |f(z) — f(20)] <
pour tout z € D satisfont o < |z — zg| < 7. On écrit

lim f(z) = existe = f(z2o).

Z—r20

12



CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

Remarque 1.3.1. On dit que f : D — C est continue sur D st elle est
continue en tout point de ce domaine.

Théoreme 1.3.1. Soit f et g deux fonctions continues. Alors
1) f + g fonction continue.
2) f + g fonction continue.
3) f — g fonction continue.

4) f - g fonction continue.

f

5) = fonction continue avec g # 0.

Dans le cas général toute fonction polynome est continue et toute fonction
rationelle est continue si le dénominateur# 0.
1.3.3 Dérivabilité

Définition 1.3.1. Soit f : D — C est dite holomorphe (dérivable au sens
complexe) au point zy si :

i 12 = f(z0)

22 zZ— 20

= f'(z) = existe.
Ict D un domaine simplement connexe.
On va donner quelques exemples des fonctions usuelles.
Exemple 1.3.2. f:C — C; f(z) = z.

Solution. On a

Z_

lim =% = lim 1 = f'(2) = 1.
Z—20 & — ,ZO Z—20

Exemple 1.3.3. f: C — C; f(z) = 2°.

Solution. On a

2 2

lim = lim (z + 20) = f'(20) = 220.

Z—=20 & — ZO Z—r20

Définition 1.3.2. Soit f : D — C est dite holomorphe sur D si elle est
holomorphe en tout point de D.

Théoreme 1.3.2. Si f est holomorphe en zy alors f est continue en z.

13



1.4. LES CONDITIONS DE CAUCHY-RIEMANN

Démonstration. Notons que

) 120] = e =L
- Z}LIEIO(Z —29) - zh—>nzl0 f(zi : 50(2’0)
= 0 f'(20) = 0.

Donc

lim f(z) = f(z0)-

Z—20

[]

Remarque 1.3.2. La réciproque n'est pas vraie. Par exemple f(2) = |z|*

est continue par tout mais n’a pas de dérivée sauf au point 0.

1.4 Les conditions de Cauchy-Riemann

Théoréme 1.4.1. (Les conditions de Cauchy-Riemann) :
Soit f: D —C

2= f(z) = P(z,y) +1Q(z,y); z,yeR
avec P = Re(f) et Q = Im(f)

( OP ~oQ
or oy
f est holomorphe sur D <= <
or  0Q
| oy Ox
, oP  0Q
Alors : f'(2) = o —|—z%.

0P 0P 0Q  0Q
" or oy’ Ox el Oy
Remarque 1.4.1. Aucune fonction a valeurs réelles est holomorphe sauf
st elle est constante.

Ic sont continues sur D.

Exemple 1.4.1. Vérifier que les conditions de Cauchy-Riemann sont
satisfaites par les fonctions suivantes :

1) f(z) = 22 2) f(z) = ¢~
3) f(z) == 4) F(z) = |

Solution. On a

1) f(2)=2":
f(z) = 22 = 22 —y?+2izxy, on peut conclure que : Re(f) = P(z,y) =2°—y
et Im(f) =Q(z,y) =2vy; r,yeR

14



CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

( OP ( OP
— =2z — =2y
Ox oP  9Q dy oP 00
o0 ) or 0Oy o) oy ox
— = 2 I

L Oy \ Oz 2y

(P, Q) wvérifie les conditions de Cauchy-Riemann —> f est holomorphe
Vz e C.

2) f(z) =¢*:
f(z) = e® cosy+ie”siny, on peut conclure que : Re(f) = P(x,y) = e* cosy
et Im(f) =Q(z,y) =e"siny; z,y €R

(
g—];:excosy ( a—P:—emsiny
oP  0Q | 9% oP  9Q
< :3x_8y<a :83/_ ox
a—Q:emcosy a—:exsiny
L Oy Lo

(P, Q) wvérifie les conditions de Cauchy-Riemann —> f est holomorphe

3) flz)=7%:
f(z) = x(—aiy —> Re(g) = P(z,y) =z et Im(g) = Q(z,y) = —y
8_]; 1
Alors : 4 — 8—P 8_@
o0 or " 0Oy
e A |
\ 33/

4) f(z) = |2
f(2) = 2 +y* = Re(g) = P(z,y) = 2* +¢* et Im(g) = Q(z,y) = 0.
Alors : < — @_P 8_@

00 or "~ 0Oy

oy

\
= [ n’est pas holomorphe sur C*.

15



1.4. LES CONDITIONS DE CAUCHY-RIEMANN

1.4.1 Les conditions de Cauchy-Riemann exprimées en coordonnés polaires

Théoreme 1.4.2. Soit f: D — {0} — C
2= f(2) =P(r,0)+iQ(r,0); r0ecR
avec P = Re(f) et Q = Im(f).

(or_100
or 100
f est holomorphe sur D — {0} <= <
0Q _ _10p
. Or N r 39

1 0P 0P 0Q 0Q
“or 00 or < oo

Théoreme 1.4.3. En coordonnés polaires, si f est holomorphe alors

f'(2) = (cos @ — isin 0)%

sont continues sur D — {0}.

”
1.4.2 Les dérivées — et 8_{
z 0z
A partir de
z=x+ 1y, zZ=x—1y,
on déduit que
z2+z 22—z
x = , Y= —
2 21

Admettons que f(x,y) possede des dérivées partielles continues f; et f,. En
appliquant formellement les regles de différentiation partielle, on obtient :

of _of ox _of oy
0z Ox 0z Oy 0z

On a:
or 1 dy 1

0z 2 9z 2
Par conséquent :

of _ 0fox ofoy 1 (of .Of
0z  0x0z Oydz 2\0x Zay '

De la méme maniere :

of _0fox _0fdy
0z 0xdz Oyoz’

mais
dr 1 oy 1
0z 2 9z %

16



CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

Donc :
of f S
2 (%—l— 8y) (1.2)
Nous définissons ainsi les deux opérateurs différentiels :
0 1/0 .0
0 1L/0 .0
% = 5 (@ + Za—y) . (1.4)

Ces deux opérateurs se révelent tres utiles en analyse complexe et
permettent de reformuler les conditions de Cauchy-Riemann ainsi que les
criteres d’holomorphie.

A partir des relations (1.1) et (1.2), on a :

of of of of of of
o 9: 0z Oy (@‘@)

Nous définissons donc deux autres opérateurs utiles :

0 0 0
0 0 0
— = — — — 1
Jy <8z 82) (16)
Application : Montrons que I’équation
of
5= 0

est équivalente aux conditions de Cauchy—Riemann.

En effet, en utilisant (1.2) :

091 _ <_f f)
0z ox (9y

Or si f(z,y) = P(z,y) +iQ(x,y), on obtient :
=1 (20422, 2P g0

oz ' Ox “a 2y

_Lfop 0@\ i foQ  OP
_2(836 8y>+2((‘9x+8y>'

17



1.4. LES CONDITIONS DE CAUCHY-RIEMANN

Donc, les parties réelle et imaginaire doivent s’annuler séparément, ce qui
donne :

or_oq  or_ 0
oxr Oy’ oy Ox’

Ce sont précisément les conditions de Cauchy—Riemann.

Exemple 1.4.2. La fonction suwivante f est-elle holomorphe sur C* ¢
1
f:C"—C, f(2) = =+ zRe(2).
z

Solution. Ecrivons f en fonction de z et z :

z+Z 2(z+7) 242z

R(z) = 5 — 2R(2) = 5 =g

Ainsi
1 2242z

Sur C*, le terme 1/z est holomorphe et vérifie d(1/z)/0z = 0. En revanche,

O (22 + 2z 10 10 2

a_( ) ) 35:) F a5 =045 =5
Donc, pour tout z # 0,

of z

ce qui montre que f n’est pas holomorphe sur C*.

Formules de dérivation

Soit f et g deux fonctions holomorphes. Donc

1) dd

2) C(fre) =9+ Y

3)—(f 9) = 3—fg+%

4)—f/g (d—f —@ )/g g #0.
d

18



CHAPITRE 1. FONCTIONS HOLOMORPHES ET LES CONDITIONS DE CAUCHY-RIEMANN

1.5 Exercices supplémentaires

Exercice 1.1. (i) Trouver les parties réelles et imaginaires, modules et
arguments des nombres complexes suivants :

1412\?
—1
1 +itana %
3)23—m,047é7r/2+k7r,k62 4)254——26 .

(i1) Déduire les formes algébriques, trigonométriques et exponentielles
pour les nombres complexes précédents.

Exercice 1.2. Soit z € C. Exprimer Re(iz), Jm(iz),
Re(iZ), Re(2?), IJm(2®) en fonction de Re(z) et Im(z).

Exercice 1.3. 1) Trouver les parties réelles et imaginaires des fonctions
sutvantes :

a) f(z)=e™*, b)g(z)=cosz, ¢)h(z)=sinz, d)k(z)=coshz.
2) Déterminer le module des fonctions complezes précédentes.
3) Trouver toutes les valeurs "z” telles que :

a) e * soit imaginaire pure, b) cos z soit réelle,
c) sin z soit imaginaire pure, d) cosh z soit réelle.

Exercice 1.4. Résoudre dans C les équations suivantes :

1) e?=1+14V/3 2) 2isinz —e " =1
3)2cosz+e =2 4) 2coshz +e % =2
5) 2sinh z + 3™ = —i 6) sin z = isinh z.

Exercice 1.5. Calculer les limites suivantes si elle existent.

2541
i

Exercice 1.6. Montrer que les limites suivantes n’existent pas.

1) lim 2) lim .

2—0 |z‘ 20 2

Z
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1.5. EXERCICES SUPPLEMENTAIRES

Exercice 1.7. Etudier la continuité des fonctions suivantes.

Z.

1) f(z)

2) 9(z) = Re(2).

3) h(z) = Jm(z).

4) k(z) = |z = 1].

Exercice 1.8. Parmi les fonctions suivantes, le quelles sont holomorphes ¢
Si c’est le cas, écrire leur expression en fonction de z.

1) f(z) = e®cosy + 4a? — 4y* — 5y + 9 + i(e*siny + 8xy + 5z — 1),
2) 9(2) = (212 + i[Re(=)Im(=) + 1.

3) h(z) = In|z| + i arctan -

i(z+72)

4) k(z)

pE

Exercice 1.9. I) Vérifier que les conditions de Cauchy-Riemann sont
satisfaites par les fonctions suivantes :

1) f(2) = cosz, 2) g(z) = sinh z,

3) h(z) = exp(=?), i) k)=

I1) Calculer f'(2), ¢'(2), h(2) et k'(2) par deuz méthodes différentes.
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Chapitre 2

Séries entieres. Rayon de
convergence. Domaine de
convergence. Développement en
séries entieres. Fonctions
Analytiques

2.1 Les séries entieres

Définition 2.1.1. On appelle série entiere de la variable compleze z, toute
série de la forme :

+00
g an2".
n=0

ag, ... ,a, : appelés coefficients de la série; (ay,), C C.

Généralités
Soit z € C et R > 0. On pose :

1) D(0,R) = {z cC/ 2| < R}.

2) D(0,R) = {z eC/ 2| < R}.
3) C(0,R) = {z eC/ |2 = R}.

4) D(z, R) = {z cC/ |z—=2|< R} avec zg € C.

21



2.1. LES SERIES ENTIERES

2.1.1 Le rayon de convergence R

+0oo
Théoreme 2.1.1. Soit g a,z" la série entiere. Il existe un seul nombre

n=
réel positif fini ou infini R qui vérifie les propriétés suivantes :

Si |z| < R, la série converge
Si |z| > R, la série diverge
Si |z| = R, sur le cercle, on ne peut rien conclure.

Définition 2.1.2. (Détermination de rayon de convergence) :
+0o0

Soit g a,z" une série entiere.
n=0

)

Ap+1
Qp
ou bien

lim  {/]an| = !

n—-+0o00

=1

lim
n—-> 400

St <

Exemple 2.1.1. Pour les séries entieres suivantes, déterminer le rayon
de convergence R :

+o0o  n —+00 n ~+00
Z z
1 E — 2 g — 3 E - 2"
)n05n7 )n() (n+2)!7 )nO(n+ ) .

4)+ZOO(—1)” " 5)+Zoolnn " 6_)+Zoolnn "
n+3 7 n=2 n' 7 n=2 \/ﬁ
Solution. Le but est de calculer le rayon de covergence R :

+00 o
1) 25—” :
n=0

1 o . anp+1 o . 5n o 1 o
E_nl-i-oo Qp, - ngrpkw5n+1_g:>R_5.
0
2
/ nz:% (n +2)!
n 2)!
li Gt lim (n+2) = lim =0=—= R = +o0.
n—+oo | @y, n—+ (n+3)(n+2)!  n—+oon+3
400
3)) (n+1)-2"
n=0
n 1)! 2
im |2 = lim (n+in+2) _ lim (n+2)=400= R=0
n—+oo | ap n—s-+00 (TL + 1)' n—s—+00
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CONVERGENCE. DEVELOPPEMENT EN SERIES ENTIERES. FONCTIONS ANALYTIQUES

:1n+3
1 n 3
e T e k. U D S
R n—+o0 | QA n—>+oon—|—4
Jroolnn
n=2
. 1 1 4
li ol _ lim n(n +1) n =1=—=R=1
n—+oo | a, n—>—+00 Inn n+1
+Oolnn
6')2— 2"
n:2\/ﬁ
n | 1
lim ““‘ —  lim M><,/ " 1 —R=-1
n—+oo | @, n—+o0 Inn n+1

2.1.2 Le domaine de convergence D

+00
Théoreme 2.1.2. Soit R le rayon de convergence de Zanz”, alors :

n=0

1) Si R=0= D = {0},
2) SiR=+400= D =C.

+o0o
Remarque 2.1.1. Si le rayon de convergence R de la série Zanz" est
n=0
compris strictement entre 0 et 400, alors :
Si |z| < R, la série converge
Si |z| > R, la série diverge
Si |z| = R, sur le cercle, on ne peut rien conclure.

Donc le domaine de convergence est le D(O, R) a vérifier la nature du série

Stz € C(O,R).

Exemple 2.1.2. Pour les séries entieres suivantes, déterminer le rayon
de convergence R et le domaine de convergence D :

+o0 +00 .1
1) Zz”, 2) 272’“,
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2.1. LES SERIES ENTIERES

Solution. Le but est de calculer le rayon de convergence R et apres on
conclut le le domaine de convergence D.

+0o0
1) Zz” :
n=0

L
R oot

1
= lm -=1=R=1
n—%+a31

An+1
an

1-b) Le domaine de convergence D :

. 7 . Y +OO
Remarque : Pour une série entiére ) =~ an2
0 < R< 400, ona:

", de rayon convergence

Si |z] <1, la série converge

Si |z| > 1, la série diverge

Si |z| =1, On ne peut rien dire.
Si|zl=1= lim [|2"|=1#0= Zz" diverge si |z| = 1.

n—-+00
Donc le domaine de convergence est :

D(0,1) = {z eC/ |z| < 1}.

+“3in+1
n .
n=0
. (p41 . n! . 1
lim = lim — = lim =0=— R = +00.
n—+oo | a, n—+o (n+ 1)n!  n—+oon 41

Donc le domaine de convergence est C.

2.1.3 Propriétés des séries entieres

+00
Théoreme 2.1.3. La somme d’une série entiere g a,z" de rayon de

n=
convergence R > 0 est une fonction continue et holomorphe a ['intérieur
de disque de convergence D(O, R).

Exemple 2.1.3. Calculer la somme de cette série entiere :

—+00

Zz”.

n=0
Solution. On va calculer la somme sur le domaine de convergence :
C’est une série géométrique de raison q = z qui converge Yz € D(O, 1).

400 1
Zz": . V2] < 1.
n=0

1—2
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CONVERGENCE. DEVELOPPEMENT EN SERIES ENTIERES. FONCTIONS ANALYTIQUES

2.2 Développement en séries entieres

Définition 2.2.1. (Développement en séries entiéres)
Soit f . D — C. On dit que f est développable en série entiere s’il existe
R > 0 tel que :

400
f(z) = Zanz"; vz € D(0, R).

+0o0
Proposition 2.2.1. Soit Zanz” une Ssérie entiere de rayon de

n=0
convergence R > 0 et soit : f: D — C la fonction a variable complexe z

+00
définie par : f(z) = Zanz". Alors :
n=0
+00 (n)
f(z) = / (0),2”, Vz € D(O,R).

Exemple 2.2.1. Développer les fonctions suivantes en séries entiéres :

1) 1) = 29[ =5—s ) fE)=¢
4) f(z) =€, 5) f(z) =sinz, 6) f(z) = cosz.

Solution. On va développer les fonctions suivantes en séries entieres :

1 = :
) §(2) = 1
1 +00
Soit w € D(0,1). On sait que : mzzow , s |w] < 1
1 1 s +00
= = —z)" =2 <1
T3 1-(=2) nz:;( 2) st | — 2|
+00
— f(2) =) ()" 2" si|z] < 1.
n=0
2) f(2) = 5
Z) =
2—3z
1 1 1 w=2 1R /32" 32| _ 4
= — =" — — St |—
2-3: 2|, 32 222\ 2 2
2
400
32" , 2
:>f(z)zz ST st \z|<§
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2.2. DEVELOPPEMENT EN SERIES ENTIERES

3) f(z) =¢
On peut appliquer ici la Proposition 2.2.1. On obtient le suivant :
Puisque : f™(2) =e* = f™M(0)=1 Vn e N. Donc :
+o0o  p

e” = Z% ol Vz € C.
4) f(z)=e7:
Awvec la méme proposition, on sait que :
f0(2) = (=1)"e* = f™(0) = (-=1)" Vn € N. Donc :

+00 n
e’ = Z (=1 2 VzeC
— > : : ,

n:

5 et 6)sinz et cosz :
On va utiliser ict la formule d’Fuler :

e’ =cosx +isinx; VreR.

Alors :
o - (Zx)n . -~ Zn n
D P Ph
—+00 2p +00 2p+
_ ! 2p 2p+1
= x _|_
5 e s
400 +o0
_ (—1)px2p+iz (=17 o
= (2p)! ~ (2p+1)!
—+00 +o0
—1)" —1)"
L I |
—~ (2n)! “—~ (2n+1)!
= Re(e™) + ilm(e™)
Donc : ) .
- ~ (_1)n 2n
CoS T = Z; ) T
) &
. . - 2n+1
\ L= ; (2n +1)!

Ceci implique que :

( +0o0
(_1)n 2n
COS 2 = Z (Qn)' z
S
simz=3 (=1)"  onn
(2n + 1)! '
\ n=0
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2.3 Fonctions analytiques

Définition 2.3.1. Soit f: D — C
z = f(2).

f est dite analytique sur D <= f est développable en série entiere.

Exemple 2.3.1. Montrer que les fonctions suivantes sont analytiques sur
leurs domaines :

1) f(z) = H;Zz 2) g(z) = 5_% 3) h(z) = e,
4) j(z) = e, 5) k(z) = cosh z, 6) L(z) = sinh 2.

Solution. On va développer les fonctions suivantes en séries entieres :

1

DI =g

Dans ce cas, on peut développer f en série entiere a l'aide de la série
géométrique. Rappelons d’abord que, pour tout w € D(0,1), on a

1 400
5= nz_%w”, valable si |w| < 1.
1 1 w=—2z X .
= = —22)" -2z <1
1+2: 1—(—22) nz_%( st =22
400
= f(2) =) (-2)"- 2" si|z| < 1/2.
n=0
Donc : f:D(0,1/2) = C
2 f(z2) = 2 est une fonction analytique.
1
2 = :
) 9(2) = ———
1 1 1 w= 1T X (72" 72l -y
5—Tz 5 1 7z 5) 5) 5)
- — n=0
5
+00
TR , 5
:>g(z)=z e st |z| <z
n=0

Donc : g : D(0,5/7) — C
2= g(z) =

est une fonction analytique.
D— Tz
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2.3. FONCTIONS ANALYTIQUES

3) h(z) = e :
On peut appliquer ici la Proposition 2.2.1. On obtient le suivant :

, 1
e”:Z—-z”; Vz e C.

Donc : h: C— C*
z +— h(z) = €* est une fonction analytique.

4) )=

On peut appliquer ici la Proposition 2.2.1. On obtient le suivant :

+00
) 2(=1)"
2z __ LM
e = 50 - 2" VzeC.
Donc : j:C — C*

2 j(2) = e

est une fonction analytique.
5) k(z) =coshz :
On va utiliser ici ["identité suivante :

cosh z = cos(iz); Vz e C.

Alors :

cosh z = cos(iz) =

L%
LL7Js
o

2

N

3
I

o w
=

Donc : k:C—C
2+ k(z) = cosh z est une fonction analytique.

6) L(z) =sinhz :
On va utiliser ici l'identité suivante :

1
sinh z = —sin(iz); Vz € C.
i

Alors :
. . ‘ 1 +o00 (_1)n . ’L'2n+1 - +00 ZQTL-‘rl
sinh z = isin(iz) = A nE:O @n 1 1) z = ; 2n+ 1)

Donc : L:C— C
2+ L(z) = sinh z est une fonction analytique.

28



CHAPITRE 2. /SERIES ENTIERES. RAYON DE CONVERGENCE. DOMAINE DE
CONVERGENCE. DEVELOPPEMENT EN SERIES ENTIERES. FONCTIONS ANALYTIQUES

2.4 Exercices supplémentaires

Exercice 2.1. Pour les séries entieres suivantes, déterminer le rayon de
convergence R :

+o0  p +00 n +00
1) ;%, 2) Z%, 3) Z:Ocos(n
+o0 0 _n
23 ML 5) Z m ERROD DR~
— n=1

arcsin 1/n) —1)" <= nl
7 8 S 9
) gy S gy

=1

Exercice 2.2. Montrer que les fonctions suivantes sont analytiques :

1 1
1 2 = — 3) h(z) =e"
4) I(z) = cosh(2z), 5) J(z) = sinh(5z).
+00
Exercice 2.3. Montrer que la série entiere Zanz” et sa série dérivée
n=0

g napz""' ont le méme rayon de convergence.

Exercice 2.4. Montrer que la série
o0

>

2

n
n=1

a une valeur finie en tout point intérieur a son cercle de convergence ou
sur celui-ci, mais que ce n’est pas vrai pour la série dérivée.
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Chapitre 3

Théorie de Cauchy

Dans ce chapitre, nous nous intéressons aux méthodes d’intégration des
fonctions d’une variable complexe. Nous commencerons par définir les
notions de chemins et d’arcs dans le plan complexe, qui servent de base
pour I’étude des intégrales curvilignes.

Une partie essentielle de ce chapitre sera consacrée a la théorie de
Cauchy, qui joue un role fondamental dans I’analyse complexe. Nous y
aborderons notamment le théoréeme de Cauchy et la formule intégrale de
Cauchy, deux résultats majeurs qui permettent de relier la valeur d’une
fonction analytique a ses intégrales sur des contours fermés.

3.1 Théoreme de Cauchy
3.1.1 Les intégrales curvilignes

Définition 3.1.1. Soient a,b € R avec a < b. On appelle arc toute
application continue
v |a,b] — C.

Le point vy(a) est appelé origine de l'arc, et v(b) en est l’extrémité.

()

~ ()

FIGURE 3.1 — Arc

Définition 3.1.2. Soient a,b € R avec a < b, et soit
v € C([a,b],C)
une fonction différentiable définie par
t— y(t) = x(t) +iy(t).
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3.1. THEOREME DE CAUCHY

L’ensemble
V(la,b]) = {¥(t) | T € [a, b]},
noté C, est appelé chemin, et v est appelé paramétrage de ce chemin.

Les points zy = ~(a) et z, = ~(b) sont respectivement [origine et
lextrémité du chemin.

Définition 3.1.3. Si les points initial et final d’un chemin coincident, on
dit que ce chemin est fermé ou qu’il forme un lacet.
Exemple 3.1.1. On considere les chemins suivants :

Imz
Imz

Rez /
{ ' . Rez

(a)
(b)
imz! T Imz
: ‘ /\. o *Re‘z>
Rez L)
T 9
© (d)

(a) Chemin simple non fermé;

(b) Chemin non simple non fermé;
(c) Chemin simple fermé ;

(d) Chemin non simple fermé.

Le cercle, le triangle et le carré sont des exemples de chemins fermés et
simples, que ['on appelle également des lacets.
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CHAPITRE 3. THEORIE DE CAUCHY

Définition 3.1.4. Soit D C C et "C'7 le chemin représenté par
Uapplication suivante : z : [a,b] — C

t— z(t).
Ici z(a) = A et z(b) = B lorigine et lextrémité de chemin “C”
respectivement et f : D — C une fonction continue, donc :

b
[ = [ iz
C a
D un domaine simplement connexe.

Notation 4.1

Si la courbe C' est fermée et orientée positivement, on adopte la notation

suivante :
% f(z)dz
C

/C £(2) d=.

Soit f et g deux fonctions continues le long de chemin C'. Alors :

D [ ke = [ 1@ [ o)
2)/C)\-f(z)dz:)\/cf(z)dz;)\e(f.

au lieu de

Propriétés sur les intégrales

3) f(z)dz= | f(z)dz+ [ f(z)d=.
C1+Csy Cy C

Longueur d’un chemin
Définition 3.1.5. Soit C' un chemin paramétré par une fonction continue
z:la,b) — C,  tw 2(t) = x(t) + 1 y(t),

ou 2'(t) = 2'(t)+iy'(t) existe et est continue sur [a,b]. Alors, la longueur
L du chemin C est donnée par :

L= /ab|z’(t)\ dt = /ab\/(;z;’(vt))2 + (1)) dt.

Exemple 3.1.2. Soit
C ={2(0) € C: 2(0) =3¢, 0 €[0,2n]}.

Déterminons la longueur L de C'.
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3.1. THEOREME DE CAUCHY

Solution. On a

Z(t) =3ie? et |2(0)] = |3ie”| = 3.

2 21
ch/ wwmw:/ 340 = 6.
0 0

Théoreme de Green (forme générale)

Ainsi,

Théoréme. Soit C' une courbe fermée simple orientée positivement (sens
antihoraire) dans le plan, et soit D la région délimitée par C. Si P(x,y)
et Q(x,y) sont des fonctions continues, admettant des dérivées partielles
continues dans un ouvert contenant D, alors :

7{Cde+Qdy://l) (g—g—g—];) dA.

Exemple 3.1.3. Calculons ["intégrale curviligne :

7{(:52 — o) dx + 2y dy,
C

ou C' est le cercle de rayon 1 centré a l'origine, orienté positivement.

Solution. En utilisant le théoreme de Green, on identifie :
P(z,y) =2* =%, Q(z,y) = 2xy.

On a :

0Q . OP

—E o9y, — =-2
ax y? 8y y7

et donc :

Ainsi, lintégrale devient :
// 4y dA,
D
ou D est le disque unité.

En coordonnées polaires (x = rcos@,y = rsinf), avec 0 < r < 1 et
0<60<2m, onadA=rdrdd. Lintégrale s’écrit donc :

2 1 2m 1
/ / A(rsin@)rdrdf = 4 (/ sin 0 d@) (/ r2dr> :
o Jo 0 0

On obtient : .
/ sinfdf = [~ cos 0]3" = 0,
0

et donc :
%(3:2 — y?)dx + 2xydy = 0.
c
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Intégrales de fonctions analytiques

En analyse complexe, le théoreme de Green peut étre appliqué a 1’étude
des fonctions analytiques. Si f(2) = P(x,y) + iQ(z,y) est analytique, elle
satisfait les équations de Cauchy-Riemann :

oP  0Q 0P 0Q

ox Oy Oy ox

L’intégrale de f(z) le long d’'un chemin fermé C' s’écrit :

%Cf(z)dz:ji(PJriQ)(danidy) :%C(Pda:—Qdy)Jri%(Qdaerde).

C

En appliquant le théoreme de Green, on obtient :

foeras= [ (2529 as [ (2 -92) 44

Comme f(z) est analytique, ces intégrales sont nulles, ce qui conduit au

résultat fondamental :
j{ f(z)dz = 0.
C

Théoréeme 3.1.1. (Théoréme de Cauchy) : Soit f : int(C) — C une
fonction holomorphe (analytique) et C' un chemin fermé, donc :

/Cf(z) dz = 0.

C={2(0) €eC:2(0)=¢€" 6cl0,2n]}.

Exemple 3.1.4. Soit

Calculer

ff(z)dz, avec  f(z) = 2°.
c

Solution. On «a
dz = 2'(0) d = ie® db.

L e 1 ,.]"
7{ 2dz = / &30 ie? dp = 2/ et dp = [—6429:| = 0.
C 0 0 4 0

Remarque 3.1.1. Le chemin [z, z1] ; 20,21 € C.
Le chemin 7C” est un segment de droite donc :
z:00,1] —-C

t— z2(t) = (1 —1t)zp + tz1.
Ici 2(0) = zg et 2(1) = 2.

Donc,
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Remarque 3.1.2. Le chemin C est un cercle de centre ag et de rayon R.
On note C'(ag, R) ; ag € C et R > 0 donc :
z:10,27] —» C
0 2(0) = ag + Re?.
2(0) = z(2m) = le cercle C est un chemin fermé.

Exemple 3.1.5. Calculer les intégrales curvilignes suivantes :

1) / Im(z)dz; ou C : estle segment de droite [0,1 + .
C

2) /Edz ;ou C :estle cercle |z| = 2.
c

Solution. On a

1) / Im(z)dz; ouC : estle segment de droite [0,1 + i].
c

z:[0,1] - C
t —2(t) =1 —1)(0) +t(1+17) =t+it et ceci implique que :
dz = (141) dt et Im(z) =t. Donc on obtient :

/Clm(z) dz — /Olt(1+z') dt

1
= (1+z’)/tdt
0
1 1

2) /Edz ; ou C :estle cercle |z| = 2.
c

z:]0,27] = C
0 —z(0) = 2e! et ceci implique que :
dz = 2ie" df et 7 = 2¢. Donc on obtient :

2
/Edz = / 2¢" 1991 dp
C 0
2T
= / 41 df
0

= 8mi.
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3.2 La Formule Intégrale de Cauchy

La formule intégrale de Cauchy constitue 1'un des résultats les plus
remarquables de l'analyse complexe. Elle démontre qu’une fonction
analytique est entierement déterminée a l'intérieur d’un contour fermé
simple des lors que ses valeurs sont connues sur ce contour. Ce résultat,
issu directement du théoreme de Cauchy, confere a ce dernier une puissance
exceptionnelle dans ’étude des fonctions holomorphes.

Théoreme 3.2.1. : Soit f : int(C) — C wune fonction holomorphe
(analytique), C' un chemin fermé simple et a € int(C), donc :

(2) dz =27mif(a).

cr—a
Exemple 3.2.1. Calculer ces intégrales en utilisant la formule intégrale
de Cauchy :

> eiz
1) / - dz, 2) / dz,
2|=2 2 — 1 z42=1 22+

3)/| ¢ dz, 4) Mdz.

z—1/2|=1 22 —1 |2|=3 22 — 32 + 2

Solution. On a

1) On a la fonction f(z) = z qui est holomorphe a int(C) car f'(z) =1
et C' est un chemin fermé car C = C(0, 2).
?
i € int(C)
Ona:|i|=1<2=i¢cint(C). Donc :

/ - - dz = 2mif (i) = —2m.
C [

Z_

2) Premiérement, on wva transformer notre intégrale o cette forme :
/ ‘ dz = —/ ¢ dz. Ici la fonction f(z) = €% qui est
c2z+m 2 Joz+7/2

holomorphe a int(C) car f'(z) = ie
C=C(-21).

et C' est un chemin fermé car

—m/2 é int(C)
On a : | —7r/2—|—2‘ =1<1= —7/2
inint(C). Donc :

1 e 1
- dz = = - omif(—m/2) = 7.
2/02+7T/2 2= mif(—7/2) =m
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ez

dz

3)

|z—1/2|=1 22 —1
2> —1=(2—1)(z+1). Donc on a deuzx probléemes ag = 1 et a; = —1. Il
reste de vérifier que :

ag, ai é int(C)
{ 1—1/2|=11/2|=1/2< 1= 1€ int(C)

—1-1/2|=|-3/2| =3/2> 1= —1 ¢ int(C).
Donc la fonction : f(z) = il qui est holomorphe a int(C) car
z

—1 ¢ int(C) et C est un chemin fermé; C' = C(1/2,1). Donc :

z z 1
/26 dz:/—e/(z+)dz
C < —1 C z—1
= 2mif(1) = emi.

cos(mz)
———d
4) |z|=3 22 — 3z + 2 &
Ona:g(z)= % est holomorphe si z # 1 et z # 2.

1,2€int(C); C:|z|=37

1|=1<3=1¢€int(C)
2| =2<3=2¢€nt(C)

Donc il faut décomposer en deux éléments simples.

22— 3242
1 a b 1 1

+ = — :

2—1 2—2 z—2 z—1 z2—2 z-—1

:>/ cos(mz) dz:/ cos(mz) dz—/ cos(mz) "
z—l )(z —2) c z2—2 c z—1

f(z) = cos(mwz) est holomorphe car f'(z) = —wsin(wz) a Uintérieur de C
qui est un chemin fermé (cercle). Donc :

/ 2Cos(7rz) g — / cos(mz) gn / cos(mz) 1
c < —32+2 02—2 CZ—l
= 2mi [COS(Q?T) — COS(W)}

= 4.
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Remarque 3.2.1. Dans le cas général, on a :

[ 1O gt
[ |

(z —a)nt! n!

Ici f : int(C') — C une fonction holomorphe (analytique), C' un chemin
fermé, a € int(C') et n € N.

Exemple 3.2.2. Calculer ["intégrale suivante :

Solution. On a
On a la fonction f(z) = €* qui est holomorphe a int(C) car f'(z) = e* et
C' est un chemin fermé car C = C(—i,2).
?
1 €int(C)

Ona:|l+i|=+v2<2=1¢int(C). Donc on peut appliquer la formule
précédente en remplacant n par 2 :

e* e’
——dz = [ ————d
/c<z—1>3 : /cz—1>2+1 :

~~

Exemple 3.2.3. Calculer

z
€
/|| 9 ~2025 dz.
Z|l=

Solution. La fonction f(z) = e* est une fonction entiére. En appliquant
la formule intégrale de Cauchy généralisée, on obtient :

e” 27
_ (2024)
/Z|:2 2 2 = gl O

Or, la 2024°™¢ dérivée de e* est fP0?Y(2) = e, donc fP92D(0) = 1. Ainsi,

/ e’ J 271
—as A2 = .
|z|=2 22025 2024‘
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3.3 Exercices supplémentaires

Exercice 3.1. Evaluer ['intégrale curviligne

/zdz
C

le long du chemin C' reliant z =0 a z = 4 + 2i, dans les cas suivants :

i) Le chemin C' est défini par le paramétrage
2(t) =t+2it, 0<t<A4.
it) Le chemin C est formé de deux segments : le premier reliant O a 2i, et
le second reliant 2i a 4 + 2i.

Exercice 3.2. Evaluer les intégrales :

1./z4dz, ol :
C

a) C est le segment de droite allant de 0 a 2 + 1.

b) C est formé du segment de l'axe des x allant de 0 a 2, puis du
segment de droite parallele a 'axe des y et allant de 2 a 2 + 1.

2. / zdz de 1+ 2i a2+ 3i selon la courbe donnée par les équations :
c
c=t"+1, y=t"'-33+2+2t+2, 0<t<1.

3. /Edz, ot C est le cercle |z — 2| = 1 parcouru dans le sens positif.
C

4. /Im(z) dz sur :
c
a) le cercle |z —i| =1,

b) le triangle de sommets 0, 1, i, parcouru dans le sens positif.

dz
d. / — autour du carré de sommets 1+1i, —1+1i, —1—1i, 1—1, parcouru
c <

dans le sens positif.

0. / QCOLCZZ, ou, C est le cercle :
c 2 (z+1)

a) |z| =3,
b) |z| = 3, parcouru dans le sens positif.

Exercice 3.3. Soit la courbe C = {z(0) € C : |z| = 1}, le cercle unité
parcouru dans le sens direct. Evaluer [intégrale

eiz
dz,
C <2

ou 2y € C, dans les cas suivants :
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i) lorsque zy est a extérieur de C'
i) lorsque 2y est a Uintérieur de C.

Exercice 3.4. Calculer ces intégrales par la formule intégrale de Cauchy :

COS 2
1) / dz, ou C est le cercle |z — 1| = 2, dans le sens positif.

Z y .
2) /C o1t D) dz, ou C est le cercle

a) |z —i| =2,
b) |z —1+i =3,

dans le sens positif.

3) / s dz, ou C est le cercle :
a) |z| = %
b) |z —i| =1,

dans le sens positif.

sin 2z + cos 2
4) / i dz, ot C est le cercle |z| = 4 décrit dans le sens positif.

(z —m)
1
5) %dz, ot C est le cercle :
o (1—2%)
a) |z =3,
b) |z| =2,
dans le sens positif.
6) / o 5 dz, ot C est le cercle |z| = 2, dans le sens positif.
(z
Exercice 3.5. Soit C le cercle |z| = 4, parcouru dans le sens direct.

Calculer les intégrales suivantes :

)
B cos(mz) z
he [

i)

41



3.3. EXERCICES SUPPLEMENTAIRES

42



Chapitre 4

Applications

Dans ce chapitre, nous présentons plusieurs applications fondamentales de
I’analyse complexe qui illustrent la puissance des fonctions holomorphes
et des outils associés. Nous débutons par I'étude de 1’équivalence entre
I’holomorphie et ’analyticité, avant d’aborder des résultats essentiels tels
que le théoreme du maximum, le théoreme de Liouville, ainsi que le
théoreme de Rouché. Une attention particuliere sera portée au théoreme
des résidus, qui constitue une méthode efficace pour le calcul d’intégrales
complexes. Enfin, nous montrerons comment exploiter la méthode des
résidus pour évaluer des intégrales réelles simples ou généralisées de
maniere ¢légante et rapide.

4.1 Propriétés analytiques des fonctions holomorphes

Bien que la dérivation par rapport a une variable complexe soit
formellement semblable a celle effectuée par rapport a une variable
réelle, elle entraine des conséquences fondamentalement différentes sur le
comportement des fonctions considérées.

Théoreme 4.1.1. Soit D C C un domaine contenant le disque fermé

D(zp,7) = {2z € C : |z — 2| < r}, et soit f : D — C une
fonction holomorphe. Alors, pour tout z vérifiant |z — z| < 7, f admet
le développement en série de Taylor suivant :

+00

f(z) = Zak(z - Zo)k,

k=0
ou les coefficients ay sont donnés par :

fW(z) 1 f(Q)
kKl 2mi /C (¢ — 20)

ap —

1 46

C, désignant le cercle de centre zy et de rayon r, parcouru dans le sens
positif (trigonométrique).
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Démonstration. Soit z € D(zy, 7). D’apres la formule intégrale de Cauchy,

) =5 | Q) e

211 C, C —Z
ou C, désigne le cercle de centre zj et de rayon r parcouru positivement.
On écrit

1 1 1 1

C_Z_(C_ZO)_(Z—Z())_C—Zoil_Z—Zo'

¢—20

Pour |z — 29| < | — 29| = r, on peut développer la fraction géométrique :

1 _i(z—z())k
l-= k=0 C—=/)

Ainsi,
I <X (z — )k
C—z Z (C — 2okl

k=0

En substituant dans la formule de Cauchy, on obtient :

0 [ 2=t [ | 2]

En posant

_ 1 /(<)
= o /C (¢ — z)kt! 6.

on obtient donc

+0o
f(z) =) ai(z = 2)

k=0

Enfin, la relation
%) ()
ap =
k!

découle soit de la formule intégrale de Cauchy pour la k-ieme dérivée d’une
fonction holomorphe, soit de la théorie des séries entieres. ]

Exemple 4.1.1. [ est possible de choisir une détermination holomorphe
des fonctions
zlog(l+2) et zm— (14 2)°

dans C\] — 1,1]. Pour les déterminations qui prennent des valeurs réelles
sur l'axe réel, on obtient les développements suivants :

log(1+2)=) ~——=" |z <L,
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et
+00
—1p—2)---(p—k+1
(1+z)p:1+zp(p )(p 2}, Pkt v cq
k=1 '

De plus, en intégrant terme d terme la série de (1 + 2%)7%, on obtient :

+oo

(=1)" sk
arctan z = E ———2" 0z < 1.
— 2k +1

4.2 Théoreme du Maximum

Théoréme 4.2.1. (Le principe du module maximum) : Soit D C C
un domaine (ouvert et connexe) borné, et soit f : D — C une fonction
continue, analytique sur D. Alors

max [ f(2)] =grelg>D<|f(2)\~

En d’autres termes, |f| atteint son mazximum uniquement sur la frontiere
0D et jamais a l'intérieur du domaine D.

Démonstration. Puisque D est fermé et borné dans C, il est compact. La
fonction continue |f(z)| atteint donc son maximum en au moins un point
20 € D. D’apres le principe du maximum pour les fonctions analytiques, si
f n’est pas constante, ce maximum ne peut pas étre atteint a 'intérieur de
D. 11 s’ensuit que la valeur maximale de |f(z)| est nécessairement atteinte
sur la frontiere 0D.

]

Exemple 4.2.1. Déterminer le mazimum de f(z) = 2z + 7i sur le disque
|z| < 3.

Solution. On a :
122 + Ti|? = (22 4 Ti)(2Z — 7i) = 42> + 28 Im(z) + 49.

D’apres le principe du maximum, la valeur mazimale de |2z+Ti| est atteinte
sur la frontiere |z| = 3. Ainsi :

max |2z + 7i| = 1|m|ax V4|22 + 28 Im(z) + 49.
z|=3

|2]<3
La valeur de Im(z) est mazimale lorsque z = 3i, ce qui donne :
12(3¢) + 7i| = |13¢] = 13.

Donc :
max |2z + 7i| = 13.

|2|<3
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Exemple 4.2.2. Trouver le maximum et le minimum de f(z) = 23 —1 sur
le disque |z| < 1.

Solution. D’apreés le principe du mazimum, il suffit d’étudier |23 — 1| sur
le bord |z| = 1. En posant z = €, on obtient :

125 — 1] = |8 — 1],

Ainsi :
max |25 — 1| = max [ —1|=|-1-1] =2,
2|<1 6€[0,27]
et
min |2* — 1| = min [ — 1| =[1 - 1] = 0.
<1 0<(0.27]

4.3 Théoreme de Liouville

Théoreme 4.3.1. (Inégalité de Cauchy) : Soit f une fonction
holomorphe sur le disque D(zp, R), avec R > 0. Alors f admet un
développement en série entiere sur ce disque :

00 (n)(,
f(z):zf (!O)(z—zo)”, |z — 20| < R.

n

n=0

De plus, pour tout 0 < r < R, on a l'inégalité de Cauchy :

’f(n)(z())’ < n! M,

7,177,

9

ol
M= swp [f(2)]

|z—z0|=r

Démonstration. Considérons le lacet v : [0, 2] — C défini par
v(8) = 2 + 1€,

ou 0 <r<R.
Le coefficient a,, du développement en série de Taylor de f autour de zj

est donné par :
1 O 4

B 2m1 |¢—20|=r (C - ZO)n+1 .

En paramétrant ¢ = 2y + re'?, d¢ = ire’?df, on obtient :
1 [7 flz+re” -

a, = — —f( 0 - ) ire?d) = ——

2mi Jy  (reif)ntl 2mr™ Jo

Ainsi, en prenant les modules :

1 2 .
la,| < / £ (20 + re®)|do <
0

— 2mrn
46
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ou
M= sup |f(¢)]

|C—20|=r

Or, la formule de Cauchy pour les dérivées donne :

" (z) = nla,.

On en déduit :

' M
FM(z) < ==, VO<r<R
r

[]

Théoréme 4.3.2. Si f est holomorphe (analytique) sur C et bornée alors
f est constante.

Démonstration. Soit f(z) une fonction entiere et bornée, c¢’est-a-dire qu’il
existe M > 0 tel que |f(z)| < M pour tout z € C.
D’apres 'inégalité de Cauchy, pour tout zy € C et pour tout r > 0, on a

M
[f'(z0)| < —.
r
En faisant tendre » — 400, on obtient
|f'(20)| — O.
Ainsi, f'(z9) = 0 pour tout zy € C, ce qui implique que f est constante.

]

Remarque 4.3.1. Il est important de noter que les fonctions entieres non
constantes ne peuvent pas étre bornées sur tout le plan complexe. Ceci
découle directement du théoréme de Liouville, qui stipule qu’une fonction
entiere et bornée doit étre constante. Par conséquent, les polynomes
non constants, la fonction exponentielle e, ainsi que les fonctions
trigonométriques et hyperboliques, ne peuvent pas rester bornées sur C.

Exemple 4.3.1. Soit f une fonction holomorphe sur le plan complexe C
et supposons que

[f(2)] < Mlz|, VzeC,
ot M > 0. Montrer que f(z) est un polynome de degré <1 sur C,

Solution. Définissons la fonction

—Z, st z # 0,
0, st z = 0.
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Cette fonction g est holomorphe sur C et bornée (puisque |g(z)| < M ).
D’apres le théoreme de Liouville, g est constante sur C, donc

f(2)

z

=p3, peC
Ainsi, f(z) = Bz, ce qui prouve que f(z) est un polynome de degré < 1 sur
le corps compleze C.

Théoréeme 4.3.3 (Théoreme fondamental de Dalgebre). Soit f un
polynome de degré n > 1 a coefficients réels ou complezes. Alors, I’équation

f(z) =0
admet au moins une racine dans le corps des nombres complexes C.

Démonstration. Considérons le polynome
f(2) =ap+ a1z + apz® + - + a,2",

avec a, # 0.

Supposons, par I'absurde, qu’il n’existe aucun z € C tel que f(z) = 0.
Nous allons montrer que cette hypothese conduit a une contradiction.

On peut factoriser f(z) sous la forme :

a a Uy
f(z):z”(z—g+zni1+---+ nZl+an).

495
on—k

lim /()

|z2|>+o00 2™

Lorsque |z| — +00, les termes pour £k =0,1,...,n— 1 tendent vers 0,

donc

= a, # 0.

Ainsi, |f(2)| = 400 lorsque |z| = 4o0.

Comme f est une fonction continue et que |f(z)| — +oo quand |z| — oo,
il existe un rayon R > 0 tel que |f(z)| > |f(0)| pour tout |z| > R. Le
minimum de |f(z)| sur le disque fermé D(0,R) = {z € C : |z| < R} est
donc atteint en un point 2y de ce disque, d’apres le théoreme des valeurs
extremes.

Si zp se trouvait sur la frontiere |z| = R, ce minimum serait au moins
|f(0)] > 0. Mais si z, se trouvait a lintérieur du disque, comme f
est analytique et ne s’annule pas, le principe du minimum pour les
fonctions holomorphes impliquerait que |f(z)| est constant, et donc f serait
constante, ce qui contredirait deg f =n > 1.

Alinsi, notre supposition est fausse et il existe un z € C tel que f(z) = 0.
De plus, sur le méme cercle |z| = R et a l'intérieur de celui-ci, la fonction
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serait continue sur le compact D(0, R) et donc nécessairement bornée. En
conséquence, g(z) serait bornée sur tout le plan C, et d’apres le théoreme
de Liouville, g(z) serait constante.
Cela impliquerait que f(z) est également constante, ce qui contredit
I’hypothese que f est un polynome de degré n > 1. Cette contradiction
montre donc que notre supposition initiale — f(z) # 0 pour tout z € C —
est fausse.
Il existe donc au moins une racine zy € C telle que f(z9) = 0. Le théoreme
est ainsi démontré.

]

Corollaire 4.3.1. Si f(z) est un polynome de degré n > 1, alors l’équation

f(z) =0
admet exactement n racines dans C, en comptant les multiplicités.

Démonstration. D’apres le Théoreme fondamental de I'algebre, 1’équation
f(2) = 0 posséde au moins une racine z; € C. On peut alors factoriser

f(z) = (2 = 21)Qu(2),

ou (1(z) est un polynome de degré n — 1.
En appliquant de nouveau le Théoreme fondamental de 1'algebre a Q1(z),
on obtient une deuxieme racine z, telle que

Qu(2) = (2 — 22)Qa(2),

avec (Qo(z) de degré n — 2.
En répétant ce procédé n fois, on arrive a la décomposition

f(2) = an(z = 21)(2 = 2) -+ (2 = z0),

ce qui prouve que f(z) = 0 posséde exactement n racines dans C, comptées
avec leur multiplicité.
[]

4.4 Théoreme de Rouché

Théoreme 4.4.1. Soient f et g deux fonctions analytiques a lintérieur et
sur un lacet C. S, pour tout z € C, on a

l9(2) < [f(2)],

alors f 4+ g et f possédent le méme nombre de zéros (en comptant les
multiplicités) a lintérieur de C'.
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Exemple 4.4.1. Soit f(z) = 2*+82+10. Combien de zéros (comptés avec
multiplicité) f posséde-t-elle dans le disque |z| <17

Solution. 1. Etude sur le disque |z| < 1. Sur le cercle |z| = 1, nous avons
124 =1, [82+10] > |[10] — [8z|| = |10 — 8] = 2.
Ainsi,
124 < |82 + 10.
En appliquant le théoreme de Rouché avec
g(z) = 8z + 10,

nous concluons que f(z) et g(z) ont le méme nombre de zéros a l'intérieur
du disque |z| < 1. Comme g(z) = 8z + 10 est un polynéme de degré 1,
il possede exactement un zéro. Donc, f a exactement un zéro dans
|z| < 1.

Exemple 4.4.2. Soit f(z) = 2° + 4z + 1. Déterminer le nombre de zéros
de f (comptés avec multiplicité) dans le disque unité |z| < 1.

Solution. Nous choisissons la fonction de comparaison g(z) = 4z. Sur le
cercle unité |z| = 1, nous avons

9(2)] = 4]2| = 4.

De plus,
[f(2) = g9(2)| = [° + 1| < [2°] + (1] = 2.

Ainsi, sur |z| =1,

[f(2) —g(2)l <2 <4 =]g(z)].

Par le théoréme de Rouché les fonctions f et g possedent le méme
nombre de zéros a l'intérieur du disque unité |z| < 1.

Or, g(z) = 4z posséde un seul zéro en z = 0. Donc, f posséde un zéro dans
le disque unaité.

4.5 Théoreme des Résidus

L’une des applications les plus remarquables de I'intégration complexe, et
plus particulierement du théoreme de Cauchy, réside dans la possibilité
d’exploiter les outils de ’analyse complexe pour évaluer des intégrales ou
des séries réelles qui seraient extrémement difficiles, voire impossibles, a
calculer a 'aide des seules méthodes de 1’analyse réelle.

La théorie des résidus fournit une méthode élégante et efficace pour ces
calculs, en permettant de transformer I’évaluation de certaines intégrales
en la somme des résidus des poles d'une fonction holomorphe dans un
domaine donné.
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4.5.1 Points singuliers

Jusqu’a présent, nous avons étudié les fonctions uniquement en des points
et des domaines ou elles sont analytiques. Dans ce chapitre, nous allons
nous intéresser aux points singuliers d’une fonction.

Définition 4.5.1. Un point 2, est dit point singulier d’une fonction f(z)
si f n’est pas analytique en zy, alors qu’il existe dans tout voisinage de z
au moins un point ou f est analytique.

Dans cette section, nous nous restreignons aux points singuliers isolés.

Définition 4.5.2. Un point singulier z, est isolé si f(z) n'est pas
analytique en zy mais [’est en tout autre point d’un certain voisinage de 2y,
c’est-a-dire dans un voisinage annulaire de z.

Exemple : La fonction

f(z) =

admet un point singulier isolé en z = 1.
En revanche, la fonction
1\ L
z) = | sin—
F) = (s

possede un nombre infini de points singuliers autour de z = 0, en particulier
aux points

=L nez\{o).

nm

Ainsi, z = 0 n’est pas un point singulier isolé.

Il arrive parfois qu’il soit possible de corriger une fonction en un point
singulier isolé en redéfinissant simplement la fonction en ce point. Dans ce
cas, on dit que le point singulier est amovible.

Exemple 4.5.1. Considérons la fonction
2
24 —1
z) = .
fle) ==
Cette fonction n’est pas définie en z = 1. Cependant, on peut la prolonger
analytiquement en remarquant que

22— 1
z—1

22—1 .

— Y 522%17
flz) =11 .

z+1, siz=1,

=241, pourz#1.

On peut donc définir

et la fonction devient ainsi analytique en z = 1.
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4.5.2 Point singulier essentiel et podles

Une maniere efficace de décrire les points singuliers d’une fonction
analytique consiste a utiliser son développement en série de Laurent.
Une série de Laurent autour d’un point zy s’écrit sous la forme :

1) =3 balz—20) "+ Y aulz — 20",

ou les coefficients b, et a, sont des nombres complexes.
o0

La premieére somme Z bn(z — 29) " est appelée la partie principale de

n=1
oo
la série, tandis que la seconde somme E an(z — 29)" est appelée la partie
n=0

analytique.

— Si le nombre de coefficients b, non nuls est infini, alors z, est appelé
un point singulier essentiel de f(z).
— Par extension, le terme point singulier essentiel peut également
étre employé pour désigner un point singulier non isolé.
— Si le nombre de coefficients b,, non nuls est fini et égal a N, on dit que
la fonction f(z) possede un pole d’ordre N en z.
Regardons a présent la série correspondant a une fonction possédant un

pole d’ordre n en z :

f(2) = (z—zo)”+(z—zo)”—l—l_“.—'_z—zo

+Co+61(2—20)+"‘

4.5.3 Les Résidus

Supposons que zy est un point singulier isolé (essentiel ou podle) d’une
fonction f(z) qui est par ailleurs analytique dans un anneau autour de
2p. On peut alors développer f(z) en série de Laurent autour de z; :

f(z) = Z bo(z —20) " + Z an(z — 20)".
n=1 n=0

Le coefficient b; de (z — z)™! dans cette série est appelé le résidu de f
en zp et se note :

RGS(f, Zo) = bl.

Le calcul des résidus joue un role central dans le théoreme des résidus,
qui permet d’évaluer des intégrales complexes en reliant la valeur d’une
intégrale sur un contour a la somme des résidus des singularités situées a
I'intérieur de ce contour.
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Res(g.a) = f(a) = — [ L&)

= — dz.
21 Joz —a

Ici a € int(C).
Remarque : Si f est holomorphe dans un domaine D, sauf en des
singularités isolées zp, on peut exprimer le résidu Res(f,z;) de plusieurs
facons, suivant la nature de la singularité :

— Pour un pole simple en z,

Res(f, z0) = lim (2 — 29) f(2).

Z—20

— Pour un poéle d’ordre m > 2,

Res(f, z0) = _ lim - [(z = 20)" f(2)].

(m — 1)! 2=z dzm~!
Exemple 4.5.2. Calculer les résidus des fonctions suivants :

23

1) f(2) =

3) [(z) =

Solution. On a

3

1) fe)= 5
Icia=—i etm=1. Alors :

Res(f,—i) = hﬁmﬁ(z +1i)f(2) = 1.
2) 1) =

Icia=1etm=2. Alors :

Res(f,1) = lim di [(z — 1)2f(z)} = e.

z—1 adz
2
z
3 S A
Icia=—2¢etm=3. Alors :

Res(f,—2) = 1 lim & {(z + 2)3f(z)} = 1.

2l z—5-2 dz?
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Théoreme 4.5.1. (Théoréme des Résidus) : Soit f : int(C) — C une
fonction holomorphe sauf en un nombre fini de points a1, as, ..., a, et C
un chemin fermé. Alors :

/ f(z) dz = 27ri§n: Res(f, ax).
¢ k=1

Ici ay, as, ..., a, € int(C).

FIGURE 4.1 — Domaine et contour pour le théoreme des résidus

Exemple 4.5.3. Calculer ['intégrale suivante avec le théoréme des
résidus : |
——=dz; C:|z| =2.
[ e

est holomorphe si z # 0 et z # 1, alors 0 est un pole

Solution. On a
double et 1 est un pole triple. Donc :

1
/Cm dz = 271 [Res(f, 0) + Res(f,1)].

1 .

Exemple 4.5.4. Calculer ['intégrale

[:/ cgs(wz) i,
o 24— 2z

ot le contour C' est le cercle |z| = 1.

Solution. On factorise le dénominateur :
2 =22 =2(2—2).
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Ainsi, la fonction considérée est

cos(mz)
Les poles de f(z) sont z = 0 et z = 2. Le contour C : |z| = 1 contient

seulement le pole z = 0.

D’apres le théoreme des résidus, on a

I = 2miRes(f,0).

Calcul du résidu en z = 0 : Puisque z = 0 est un pole simple, on utilise

la formule
cos(mz)

Res(f,0) = lim 2 (z) = lim “>2

En évaluant la limite, on obtient

Res(f,0) = = ——,

1
r=oi (~3) = -mi

Exemple 4.5.5. Calculer ["intégrale

2 1
[:/ §+ dz,
C < +9

ot le contour C' est le cercle |z —i| = 3.

Conclusion :

Solution. Le dénominateur z> +9 = 0 admet deux poles simples en
z2=31 et z=—3.
Le contour C': |z —i| = 3 est centré en i et de rayon 3. On observe que :
13i —i| =|2i|=2<3 = 3ie(,

et
|—3i—i|=|—-4i|=4>3 = =3i¢C.
Ainsi, seul le pole z = 3i est a l'intérieur de C.

En appliquant le théoreme des résidus, on obtient :

2 +1
T=2miRes (220~ 2 =3i).
2249

Calcul du résidu en z = 3i : Puisque le pole est simple,

2z +1 2z +1 2z +1
R ——,z=3| =1l — 30 = i :
* <z2 +9°° Z) zl—%lz(z 0 (z —3i)(z + 3i) 80 2+ 3i
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En évaluant en z = 3u,

23) +1 6i+1 1 ;
R Y 6i 6 6

Conclusion :

. 2 .2
1:2m<1—%>:2m—%:2m+g:g+2m.

Exemple 4.5.6. Calculer l'intégrale

1
= [ ——d
/Cz3—|—422 =

ot le contour C' est le cercle |z| = 2.

Solution. On commence par factoriser le dénominateur :
2442 =22 (24 4).

Ainsi,
1 1

J(2) = 24422 2(2+4)

Les poles de f(z) sont :
z2=0 (pole d’ordre 2), z=—4 (pole simple).

Le cercle C': |z| =2 contient z = 0 mais pas z = —4.

D’apres le théoreme des résidus, lintégrale est donnée par

I = 2miRes(f,0).

Calcul du résidu en z = 0 : Puisque z = 0 est un pole d’ordre 2, on
utilise la formule :

Res(f,O):limdi[ZQf(z)] :hmi< ! )

z—0dz 2—0 dz z + 4
On a
i 1 . 1
dz \z+4)  (2+4)2
Donc | |
];{eS(f7 O) = —E = —E

Conclusion :
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4.6 Calcul d’intégrales par la méthode des Résidus

Le calcul d’intégrales définies peut souvent étre réalisé en exploitant le
théoreme des résidus, appliqué a une fonction appropriée et a un contour
judicieusement choisi dans le plan complexe. Le choix de ce contour est
souvent 'étape la plus délicate et requiert une certaine ingéniosité.

27
4.6.1 Intégrales de la forme / MR(cos b, sin ) do
0

L’izdée principale est de convertir I'intégrale trigonométrique de la forme

' M(cosh,sinf) df en une intégrale complexe sur un chemin qui est le

C(grcle unité |z| = 1. La paramétrisation d'un cercle est z = ¢/ ; 6 € [0, 27].
Z+Zl, sinf = Z_TZI et df = %
7 12

Donc : cosf =

L’intégrale devienne :

24271 -2\ dz n
R — = 2m R

avec ap, ag, ..., a, € int(C) <= |ax| <1Vn e {l,...,n}.

Remarque 4.6.1. R est une fonction rationnelle.

Exemple 4.6.1. Calculer les intégrales suivantes avec le théoréeme des
résidus :

1) /27r do 2) /27T do
o H+3sinf’ 0 2+4cosf

Solution. On a

1) /277 do '
o D+3sinf

T de dz/iz 1
— = — o = 2 5 : dz.
o D+ 3sinf ch+3(z—2"1/2 o 3224+ 10iz — 3

Ou C est le cercle umité. La fonction a intégrer présente deux poles
simples :
322 +10iz —3=0= A = —100 + 36 = —64 = (8i).

—107 + & 1
AT T3

101 — 8§
2y = y — _3i ¢ int(C)
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. . 1
Seul le pole —% est a lintérieur de C' car () — %’ =3 < 1>.

) :
flz) = , . Alors nous devons calculer le résidu en —— :
3224+ 10iz — 3 3
: : (z+1i/3) 1
R —i/3) = 1 = —.
(=il = S e 8
D’ou :

2 de
/O 5+ 3sinf 2/Of(“v)d"’
= 2-2mi- Res(f,—i/3)

/i
5 .

2 do
2)/0 2+ cosf

/2” do / dz/iz 2/ 1
= S —
0o 24cosl  Jo24(z+2H/2 i Jo2+4241

Ou C est le cercle umité. La fonction a intégrer présente deux poles
simples :
PHdz+1=0=A=16—4=12= (2V/3)

—4 4 2+/3
2 = +T\/_ =-2+V3
—4 — 23
Seul le pole —2++/3 est a Uintérieur de C car (\ —2—|—\/§| —2-3< 1).
1
flz) = PP Alors nous devons calculer le résidu en —2 4+ /3 :

_ B . (z42—3) 1
Res(f, =2+ V) _z—>1—2+\/§ (z4+2-V3)(z+2+V3) 2V3

Dou :

T dl 2
- _ Z d
/0 2+ cost Z/Cf(z) N

= %'27Ti-R€S(f,—2+\/§)

21
75
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Exemple 4.6.2. Calculer

2
[:/ ﬂd&.
o O+ 3cost

Solution. Nous utilisons la transformation complexe z = €'

Alors,
c059:1<z—|—1), d@;ﬁ
2 z

1z

9 avec |z| = 1.

L intégrale devient

C5+%(Z+%).E’

ou C' est le cercle unité |z| = 1. En simplifiant, on obtient

_/ s+D)  dz

22 +1
= dz.
/Ciz(3z2+10z+3) -

1. Poéles de la fonction. La fonction

2241
1) = G210 19)

a pour poles :

0 3 =
z = z2=— z=—c.
Y Y 3
Les poles situés a l'intérieur du cercle unité |z| <1 sont z =0 et z = —%.
2. Résidus.
Résiduen 2 =0 :
. _ 22 +1 1
Res(/,0) = llg% =) = »1212% i(3224+ 102 +3) 30’
Résidu en z = —% : On écrit
22 +1
J(z) = iz(z+3)(3z+ 1)
Ainsi (12
—3)°+1
Res(f,—1) = lim (2 + 1) f(2) = 3 :
Ona(—3)?+1=g5+1=e —1+3=2 Donc
10
T 10/9 10 3 1 5
R 7—12 9 — :——-—-—‘:—'_
eslf, ) i(—HE-3 —u 9 '8 12

3. Théoréme des résidus. On a
/ f(2) dz = 2mi [Res(f,0) + Res(f, —3)] .
c
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Donc
1 5
=2
/f dz = 2mi (3 + B )

Comme % = —3, il vient

1 5 1 91 —4di+ 51 7

— == = —

3 12 3 12 12 12
Ainsi

2 .
cos 6 1 T
I = — A =27 — = ——.
/0 5+ 3cosf T T

4. Conclusion. Par conséquent,

7

[ =——.

6

+oo
4.6.2 Intégrales de la forme f(x) dx
. P(z) | . :
Soit f(z) = 0C2) ou P et () sont des polynomes premiers entre eux. Aucun
z

des zéros de () n’étant réel. Supposons en outre que l'on ait :
deg Q) > 2+ deg P.
La formule suivante est valable, les a;, étant les zéros de @ ; Im(ay) > 0.

+00

f(z) dz = 2mi ZRes(f, a). (4.1)

k=1

Exemple 4.6.3. Calculer les intégrales suivantes avec le théoreme des
résidus :

Foo +00 da:
1)/ x2+1 % /oo (2% +4)

Solution. On a

1) /+°° dx

f(2) 2+1 Donc : P(z) =1 et Q(z) =22+ 1 et

2
deg Q =2 2>2+deg P=2+0=2. Les racines de () sont i et —i donc
aucune n’est réelle, la formule 4.1 est donc applicable.

Seul le pdle i a de partie imaginaire strictement positive car Im(i) =1 > 0.
Alors nous devons calculer le résidu en 1 :
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D’ou :
400 d . .
/_OO :17211 = 27TZ-R€S(f,Z> =T.
T da
? /oo (2 +4)7
flz) = L Donc : P(z) =1 et Q(z) = (2% +4)? et

(22 +4)%
deg Q =4>2+deg P=2+0=2. Les racines de () sont 21 et —2i donc
aucune n’est réelle, la formule 4.1 est donc applicable. Seul le pole 2i a
de partie imaginaire strictement positive car Im(2i) = 2 > 0. Alors nous
devons calculer le résidu en 2i qui est un pole double :

, 1 . d
fres(f,2i) = 7y i 72

1
(z + 2i)?2

y —2 2
= l1im — .
ci (24203 27

.. o dy , N 47
D ou ! /Oo m = 27 - R€S(f,2l) = 2—7

Exemple 4.6.4. Calculer l'intégrale

I:/+OO dv_
0 1+.I'4

Solution. La fonction f(x) =

[ est paire. Ainsi,
x

]_/+°° dx _1/+°° dx
Jo 142t 2) o 142t

Considérons la fonction complexe

B 1
142

f(2)

La fonction f(z) satisfait les conditions d’application du théoréme des
résidus. Nous avons

400 dl’ . .
. = 27mZRes(f,ak),

ot la somme est prise sur les poles ay de f(z) situés dans le demi-plan
supérieur (Imay > 0).
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Etape 1 : Détermination des pdles. Les poles de f(z) sont les racines
de 1+ 2* =0, c’est-a-dire

i (2k+1)m

=€ + , k=0,1,2,3.

Ainsi,
T i3 P PR
ap=¢€+4, ar=e€e*, Q=€+, az3=¢€ 4.
Les poles dans le demi-plan supérieur sont ag et aj.

Etape 2 : Calcul des résidus. Pour un pole simple ay,

, . Z—ag 1
Res(fax) = Jim (= = o)1 (2) = Jim % =
Donc,
1 1
Res(f;a0) = —5, Res(fia1) = —5
4e*a 4e'a

Etape 3 : Calcul de l’intégrale. On obtient

/+OO da = 2mi (Res(f;a0) + Res(f;a1)) = 2mi ( 1-377 1 ) :

_I_
0 1+$4 4et s 4@1%
/*oo dv o«
o 12t D

1_1/+°° de  w
2 12t 22

+oo
Intégrales du type / P f(x)dx, B € R
0

Apres simplification,

Finalement,

Théoreme 4.6.1. Soient P et () deux polynomes a coefficients réels, de
degrés respectifs m et n, tels que n > m —+1 et

Q(z) #0, VzeR.

Soit 8> 0 et la fonction

€77 P(2)
Alors, on a :
" P() [P = 271 es(f;a
. 0w cos(fx)dx + i 0w sin(fx) de = 2 Z Res(f;ax),

Imag>0
ot les aj sont les poles de f situés dans le demi-plan supérieur.
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Exemple 4.6.5. Evaluer | intégrale

* rsinx
I = —d b> 0.
/0 x2 + b2 o

Solution. Nous utilisons le Théoréeme /4.6.1. Considérons la fonction

compleze :

z

2) = ———,

f( ) Z2 + b2
et posons a = 1. Ainsi, nous définissons :
Zeiz

Z) = ——.

9() 22 + b2

Le seul pole de g(z) dans le demi-plan supérieur est en z = ib. Le résidu
en ce point est :

zel* ibe? e7?
R b) = 1i — b = = _
s (9,0) = lim (2 =) 5 = 50 =5
Par le théoreme des résidus, nous obtenons :

+00 xeix ‘ L
05 dx = ime .
oo TEHD

En prenant la partie tmaginaire, nous avons :
T rsing i
——5 dr =me™".

e XP+D

rsinx
22 4-b2

est une fonction paire, donc :

o
/ x2smx gy — T b
0 e + b2 2

Or, ['intégrale

De méme, en prenant la partie réelle, on obtient :

+00
/ T COS T dr = 0,
. X2 b?

e.¢]

ce qui est évident car lintégrale est impaire.

Exemple 4.6.6. Calculer [intégrale

1:/*”&@.
0 (1+ 22)?

Solution. La fonction sous l'intégrale est paire, donc :

1 [T cosx
[ == ——dx.
i ae
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Considérons la fonction compleze :

eZZ eZZ

z) = = .
/() (14222 (z—0)*(z+1)?
Nous pouvons appliquer le théoréme des résidus a cette fonction, car elle
satisfait les conditions nécessaires.
Ainsi :

+o0 T
/ ﬁdl’ = 2m Res(f,z),

o z =1 est un pole d’ordre 2.

Calcul du résidu au pdéle z = 1. Pour un pole d’ordre 2, nous avons :

Res(f;i) = lim 4 (= —10)°f(2)].

=i dz
Comme .
, e
= D%E) = s
nous obtenons :
d mE iei? RE
dz [(z+z)2] - (z+14)2 (z+4)%

En évaluant en z =1, on a z +1 = 2i, donc :

, el 2elt ie !l 2¢71
Res(i)) = G ~@ip ~ =1~ si
jie=l el el qe!
- T1 T T 11
B je~!
R

Concluston. Ainsi :

+00 eiw . .

/ m dCU = 27 - RQS(f, Z)
je !

i ( : )

™

€

En prenant la partie réelle, nous obtenons :

/+°° CcoS T T
——dr = —.
0 (1 + x2)? 2e
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+oo
4.6.3 Intégrales de la forme / 1 Q(z) dx
0

Théoreme 4.6.2. Considérons [’intégrale

I= /OO 1 Q(x) du,
0

ou o > 0 est un réel strictement positif et Q est une fraction rationnelle
n’ayant aucun pole réel positif ou nul, telle que Q(0) # 0 et

lim 2%[Q(z)| = 0.

S1 Q= g, ou P et S sont deux polynomes, on suppose que
deg P < deg S — «a.

On introduit alors la fonction complexe
fz) = (=2)""1Q(2).

En appliquant le théoréme des résidus, on obtient

> Res((=2)"7'Q(2). ) ,

j—

sin(ma)

ot la somme est prise sur tous les poles ay de la fraction rationnelle Q.

Exemple 4.6.7. Calculer ["intégrale

f:/om%'

Solution. On reconnait une intégrale du type

o > a—1
I—/O 7 Q(x) d,

avec
] 1 N 2
o — = —— o = -,
3 3
et 1
La fonction () posséde un seul pole simple en z = —1.

En appliquant la formule générale, on obtient

T
I= Res[(—2)** = —1].
Calculons le résidu en z = —1 :
_\—1/3 _.\-1/3
Res| “2 0 L C g Cdim e D g
1 + z z——1 1 + z
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Donc :

dx T

I— /0 T = e el = 1

sin (%”)
2_7r

7

Exemple 4.6.8. Calculer ["intégrale

B:/ow%'

Solution. On reconnait une intégrale du type

B = /000 71 Q(z) dr,

avec 1
a—1l=—-— = a=_
2
et 1
z) = .
La fonction () possede deux poles simples en z =1 et en z = —i..

En appliquant la formule générale, on obtient

B:

sin(ra)
Calculons le premier résidu en z =1 :
_ )12 _ o\ —1/2 ir/4
Res ( Z) —, 2 =1 :lim( Z) :6,.
(z+1)(z—1) iz 41 2i

Calculons le deuxieme résidu en z = —1 :

_\—1/2 _\—1/2 —im/4
Res(<( ?) z:—z):lim&:—e )

e+ i)z — 1) i 2—1 2i

Donc :

B = - <Res[(—z)a_1Q(z), z =1 + Res[(—2)"'Q(2), 2
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CHAPITRE 4. APPLICATIONS

4.7 Exercices supplémentaires

Exercice 4.1. Montrer que si f est analytique dans le disque |z| < 1 et

satisfait
1
<
1) < =

alors, pour tout entier n > 1, on a l’estimation

1£™(0)] < (n+1)! (1 + %)n

Exercice 4.2. Soit f une fonction holomorphe et non constante sur C,
telle que

f(2)] =1, V]z|>1
Montrer que f admet au moins un zéro dans C.

Exercice 4.3. Trouver toutes les fonctions f(z) analytiques dans tout le
plan complexe et vérifiant les conditions |f(z)| < 1 pour tout z et f(z) =
1 + 2 pour tout z réel.

Exercice 4.4. Soit f(z) analytique sur le disque |z| < a, avec a > 0, et
supposons que |f(2)] < M pour tout z tel que |z| < a. Montrer que

M -a-n!
(@ — |z

F(2)] <

pour tout z tel que |z| < a et pour tout entier n € N.

Exercice 4.5. Pour chaque fonction f(z) ci-dessous et le domaine D,
déterminer

max | f(z)],

zeD
ainsi que les points z € D ou cette valeur est atteinte.

1. f(z) =3iz—2, D:|z| <4
2. f(z)=22—2, D:l|z| <2
8. f(z)=22—32+2, D:|z|<1.
4. f(2)=(2i2+3)%, D:|z| <3.
5. f(z)=¢*, D:|z—il <2.
Exercice 4.6. 1. Soit f(z) analytique dans tout le plan compleze et

SuUpposons que
i)
im

Z2—00 zZ

= 0.
Montrer que f est constante.
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Suggestion : Poser

f(z) = f(0)

Z g
9(2) .
et utiliser le théoréme de Liouville.

2. Soit f(z) analytique dans tout le plan compleze et supposons que

Im(f(z)) <0

pour tout z € C. Montrer que f est constante.
Suggestion : Poser

et utiliser le théoréeme de Liouville.

Exercice 4.7. Combien le polynéme f(z) = z*—52+1 a-t-il de zéros dans
le disque |z| < 17

Exercice 4.8. Montrer que le polynéme p(z) = 22°+8z—1 a ses 5 zéros a
Uintérieur du cercle |z| = 2 et qu’un seul d’entre eux est situé a l'intérieur
du cercle |z| = 1.

Exercice 4.9. Soit la fonction polynomiale
flz) =2 =22 - 2242
(1) En vous inspirant de la preuve du théoreme fondamental de 1'algebre,
montrer que f admet exactement quatre zéros dans C.

(2) Déterminer explicitement les zéros de f.

Exercice 4.10. Utiliser le théoréeme des résidus pour calculer les intégrales
swvantes sur les contours indiqués :

2z — 1 et tan z
1 / i 2 4 3 dz,
/ =3 24— 1 / o= (2 +1)? / sl=1/2 2

e’ et? 1
d 5 d 6 d
4) |z|=1 2?2 — 3z - ) /|z:5 23 +1 = ) |z—3i|=3 22 +4z+ 13 -

Exercice 4.11. Calculer les intégrales trigonométriques suivantes :

2w 2 2T 2
cos cos 0 sin“ @
L= | —/——=di, L= ———=di, Iz=[ ———df
! /0 2+cosf ? /0 3+sinf ’ /0 5+4cosf
2w 27 27
1 cos 20 1
—df I; = ——df Iy = ———df
/0 10 — 6cosf ° /0 5—4cosf 6 /0 2+sinf

27 27 : 2
1 2
/ I /] I :/ ﬂd@, I :/ ﬂdg.
g 1+ 3cosf 0 D+4cosb o H—3cosf
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Exercice 4.12. Calculer les intégrales généralisées suivantes :

+0oo 2 +o00
1) 11:/0 ﬁdaz, 2) ]2:/_00 x4ix5;21+4dx,
3)13:/0+oo(g;2—}r4)2d:v, 4)14:/_:Oiziida:,
5) 15:/_:Ox6:_1dx, 6) 16:/_:0#de,
+oo +00
7) I = /_Oo 22 —61x+25 4z, 8) Is = /_oo (a:2+9)x(a72+1) az,

400 :L’Q 400 1
9) 1y = d 10) Iy = dx.
) Iy /0 @2+ 42+ 1) ) To /_Oo (@2 +20+22"

Exercice 4.13. Calculer les intégrales suivantes :

+o0 2 +0o0 :
1) 11:/ COS xd:):, 2) ]2:/ sin x
0 _

)= | : S - :%daz,

T rsina T cos 3
5)I5A+mmdx, 6’)[6/9Loo mdw,
ni=| alnimee 9= e

oo x?sinx oo cos 2x
) Iy A @2+ 12+ 1) )10Q[m(ﬁ+2x+%2

Exercice 4.14. Utiliser le théoreme des résidus pour calculer les intégrales
réelles suiyantes :

B dx N A NZ y
”A_A CE NG wB_A TR

> dx > logx
3) C = _—, D = dz,
/ /0 Vo (x? +4) 4) /0 v+l

> logx > logx
5) FE = ——d 6) F = ———dx.
) /0 2 r2r 2 ) /0 (22 +1)2 v
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Chapitre 5

Les fonctions harmonique

5.1 Définitions et Notations

Définition 5.1.1. Soient D C R? un ouvert, et P : D — R une fonction.
On dit que P est de classe C* sur D (et on note P € C*(D)) si :

— les dérivées partielles premieres
oP oP
o et a_y
existent et sont continues sur D,
— les dérivées partielles secondes

0*pP 0*P 0’ P 0*P
ox?’  Oy?’  Oxdy  Oydx
existent et sont continues sur D.

Dans ce cas, on dit que P est de classe C* sur D, c’est-a-dire que toutes
ses dériwées partielles jusqu’a [’ordre 2 existent et sont continues sur D.

Définition 5.1.2. Soit D C R?, et soit P € C*(D,R). On dit que P est
harmonique sur D si elle satisfait [’équation de Laplace suivante :

0?’P  O*P
VP=—+—=0.
Ox? * Oy?
Notation 5.1.1. L’expression
0?’P  O*P
AP = — 4+ —
Ox? + Oy?

est appelée le Laplacien de la fonction P. Ainsi, une fonction P est
harmonique si et seulement st AP = 0.

Exemple 5.1.1. Démontrer que les fonctions sutvantes sont harmoniques :
1) P(x,y) = 2% — 3xy* + 22 — %, x,y €R.
2) P(x,y) = e cos(y) x,y € R.
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Solution. On a
1) P(x,y) = 2% — 3z + 22 —o* -

6—:3x2—3y2+2x a—=—6$y—2y an 92P

afp et aQyP 8:132 o7 = 0.
2) P(x,y) = " cos(y) :

opr or -

T e’ cos(y) E sin(y) 32P 92p

o'p ety o%p = oz Tz ¥

— = e" cos(y). — = —€" cos(y). Y

Ox? Oy?

Donc les deuz fonctions sont harmoniques.

Remarque 5.1.1. Soit f: D — C

ZHf(Z):P(xvy)_‘_iQ(xay); r,y €R
avec P = Re(f) et Q@ = Im(f).
f est holomorphe sur D = P et () sont des fonctions harmoniques.

Démonstration. Soit f = P 4+ 1) une fonction holomorphe sur un domaine
D c C. Alors les équations de Cauchy-Riemann sont satisfaites dans D, a
Savolr :

or_0Q . or_ 0Q
or Oy oy Ox’

Nous allons montrer que la partie réelle P est harmonique.

En dérivant la premiere équation par rapport a x et la deuxieme par rapport
a 1y, on obtient :

PP 9%Q 0*P 0%Q)

oz Oxdy’  Oy?2  Oydx’

Puisque les dérivées croisées sont égales (les fonctions sont de classe C?),
on a :

82P 0?P
6x2 Oy?

ce qui montre que P est harmonique sur D.

=0,

De méme, en dérivant les équations de Cauchy-Riemann de maniere
appropriée, on peut montrer que :

Q20
ox?  0y?

ce qui prouve que la partie imaginaire () est également harmonique.

=0,
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Exemple 5.1.2. Démontrer que La partie réelle et imaginaire P et Q)
de la fonction holomorphe f : C — C; f(z) = 2? sont des fonctions
harmoniques.

Solution. On a
1) P(x,y) = % — ¢

oP _, 9P 2
— =2 — =- 2 2
B) 0 o°P 0
82zP , et ﬁ L 02 0.
Ox? Oy? '
2) Q(z,y) = 2zy
8P ., opr -
Y oy a2P 82
o2 oy? '

Donc les deux fonctions sont harmoniques.

5.2 Conjuguée harmonique

Remarque 5.2.1. D’un autre coté si on a une fonction P harmonique
sur partie de R? donc on peut trouver une autre fonction harmonique
s’appelle la conjuguée harmonique ) (a partir des conditions de
Cauchy-Riemann) telle que :

f(z) = P(z,y) +iQ(z,y)
est holomorphe sur D C C.

Exemple 5.2.1. I) Démontrer que les fonctions suivantes sont
harmoniques :

1) P(z,y) =52> —5y> -3y +1; x,y€R.
2) P(z,y) = -y +32°y+7x+1 z,y € R,
IT) Trouver la fonction Q pour que f soit holomorphe; f = P +i(Q.

II1) Si f(0,0) =1+ 2i, exprimer f(z) en fonction de z.
IV) Calculer f'(z) par deux méthodes.

Solution. On a

I-1) P(z,y) =5z* —5y* — 3y + 1 :
oP
gp—lox a—:_loy—3 32P 92P
fP et agyp 89&'2 7 = 0.

=10
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I1-1) Puisque f est holomorphe sur C alors le couple (P,Q) vérifie les
conditions de Cauchy-Riemann, c’est a dire :

oP  9Q

el 1
or Oy (1)
ob_"bo .,
oy  Ox

De l’équation (1) on tire By 10z, d’ou :
Y

Qla,y) = / 10z dy
= 10zy + C(2).

D’une part d’autre part on a :
(2) = —10y — 3= —[10y + C'(z)] <= —C'(z) = -3

— C(z) = /3 dx = 3x 4+ c; c € R. Finalement :

Q(x,y) =10zy +3x +c; c € R.

II1-1) On a f(z) = f(z,y) = P(z,y) +iQ(x,y) - - - -(3) telle que :
£(0,0) = 142i = £(0,0) = P(0,0)+iQ(0,0) => 1+ic = 14+2i = ¢ = 2.
En substituant ceci dans (3), on obtient :

f(z) = b52* —5y* — 3y + 1 +i(10zy + 3z + 2)
= 52° +3iz+ 1+ 2i.

IV-1) La dérivée de f :

Méthode 01(directe) : f'(z) = 10z + 3i, Vz € C.

Meéthode 02 : Puisque f est holomorphe sur C donc :

, _orP .0Q
= 10z +i(10y + 3)
= 10z + 31.
I-2) P(z,y) = —y* + 32%y + Tx + 1 :
oPr
oF Gry +7 E —3y" + 32° ?P  9°P
8275 et — —— 4+ —— = 0.
0 P 0°P ox2  Oy?
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I1-2) Conjuguée harmonique Q) :

0
De l’équation (1) on tire 8_Q = 6zy + 7, d'ot :
Y

Qr,y) = / (62 +7) dy
= 3zy® + Ty + C(x).

D’une part d’autre part on a :
(2) = —3y? + 322 = —[3y* + C'(z)] <= —C'(z) = 32?

— C(z) = —/3:1:2 dr = —2° + ¢ ; c € R. Finalement :

Qz,y) = —2* + 3> + Ty +¢; c€R.

III-2) On a f(z) = f(x,y) = P(z,y) +iQ(x,y) - - - -(3) telle que :
£(0,0) = 142 = £(0,0) = P(0,0)+iQ(0,0) = 14ic = 142 = ¢ = 2.
En substituant ceci dans (3), on obtient :

f(2) = =P +32% + 7o+ 1 +i(—2® 4+ 329 + Ty + 2)
= i Tz 41+ 2.

IV-2) La dérivée de f :

Méthode 01(directe) : f'(z) = —3iz*> + 7, Vz € C.

Meéthode 02 : Puisque f est holomorphe sur C donc :

orP 0

= 6wy + 7+ (=32 + 3y°)
= —3iz 4+ 7.

5.3 Exercices supplémentaires

Exercice 5.1. Démontrer que les fonctions suivantes sont harmoniques :
1) P(z,y) =32 = 3y* —2zy — 2y +5; x,y € R.

2) P(z,y) = e *¥sin (z* 4+ y*) z,y € R.

3) P(x,y) = 22° — 3y%x + 322y —y® x,y € R.

Exercice 5.2. Montrer que les fonctions données sont harmoniques et
trouver la fonction analytique f(z) = P(x,y) + iQ(z,y) la plus générale
pour laquelle :

1) Q(z,y) = vy
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2) Q(z,y) = ' — 62°y* + ¢
3) P(z,y) = 3a%y — y’
2
4) P(x,y) = nyz, avec 2% + y* # 0.
Exercice 5.3. Obtenir I’équation de Laplace en coordonnées polaires (r,0).

Exercice 5.4. Déterminer les relations que doivent vérifier les constantes
a,b,c,d,e pour que la fonction suivante soit harmonique :

P(z,y) = azx’ + baty + ca®y? + day® + ey’

Trouver ensuite une fonction analytique f(z) = P(x,y) + iQ(z,y)
correspondante.

Exercice 5.5. Sous quelles conditions le polynome suivant est-il
harmonique ¢
P(z,y) = ax® + ba’y + cxy + dy.

Exercice 5.6. I) Démontrer que les fonctions suivantes sont
harmoniques :

1) P(x,y) = 32% — 92y® —day +3; x,y € R.

2) P(x,y) = 22" + 2y — 122%* — 2y + 3 z,y € R,

I1) Trouwver la fonction Q pour que f soit holomorphe; f = P +iQ).

I11) Si f(0,0) =3 — i, exprimer f(z) en fonction de z.
IV) Calculer f'(z) par deuxr méthodes.

Exercice 5.7. Soz’tU:{zeC/ -1 <x<m, yGR}.SizGU

POSONS
sin x

P(x,y) =

e Montrer qu’il existe une unique fonction holomorphe f vérifiant f(0) =0
et P = Re(f).

cosx + coshy’

76



Bibliographie

[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1953.

2] K. Allab, Eléments d’Analyse : fonction d’une variable réelle. O.P.U,
2002.

[3] A. Angot, Compléments de mathématiques. Maisons Masson, 1982.

[4] J.  Arnaudies, Séries entieres, séries de Puiseux, séries de
Fourier-Et compléments sur les fonctions presque-périodiques, 2e cycle
universitaire, agrégations de mathématiques. Fllipses Marketing, 1999.

[5] S. Balac, L. Chupin, Analyse et algebre : Cours de mathématiques
de deuxieme année avec exercices corrigés et illustrations avec Maple.
PPUR presses polytechniques, 2008.

[6] A. F. Beardon, Complex Analysis, Wiley, 1979.

[7] H. Catan, Théorie Elémentaire des Fonctions Analytiques d’une ou
Plusieurs Variables Complexes, Hermann, Paris, 1985.

[8] R. V. Churchill, Complex Variables and Applications, McGraw-Hill,
1960.

[9] P. Dyke, An introduction to Laplace transforms and Fourier series.
Springer, 2014.

[10] M. El-Amrani, Suites et séries numériques, Suites et séries de fonctions.
Ellipses, 2011.

[11] D. Fredon, M. Bridier, Mathématiques pour les sciences de I'ingénieur.
Dunod, 2003.

[12] S. Guerre-Delabriere, Suites, séries, intégrales : Cours et exercices
corrigés niveau L2. FEllipses, 2009.

[13] G. J. O. Jameson, A First Course in Complex Analysis, Chapman and
Hall, 1970.

[14] J. Kuntzmann, Variable Complexe, Hermann, Paris, 1967. Manuel de
premier cycle.

[15] B. Malgrange, Equations Différentielles Linéaires et Transformation
de Fourier : Une Introduction . Sociedade Brasileira de Mathematica,
1989.

7



BIBLIOGRAPHIE

[16] J. P .Marco, P. Thieullen, J. A. Weil, Mathématiques L2 : Cours
complet avec 700 tests et exercices corrigés. Pearson, 2007.

[17] J. J. O’Connor and E. F. Robertson, History of Mathematics web site,
http://www-history.mcs.st-and.ac.uk/history/.

[18] N. Piskounov, Calcul différentiel et intégral, Tome 1 et 2. Editions Mir,
Moscou 1980 ou Edition Ellipses, 1993.

[19] W. Rudin, Analyse Réelle et Compleze, Masson, Manuel de deuxieme
cycle, Paris, 1975.

[20] M. R. Spiegel, Variables Complexes : Cours et Problémes, Série
Schaum, vol. 12, New York, 1973.

78


http://www-history.mcs.st-and.ac.uk/history/

	Fonctions holomorphes et les conditions de Cauchy-Riemann
	Les nombres complexes
	Les fonctions élémentaires
	La fonction exponentielle ez
	Les fonctions trigonométriques
	Les fonctions hyperboliques
	Le logarithme complexe

	Les fonctions holomorphes
	Limite d'une fonction
	Continuité
	Dérivabilité

	Les conditions de Cauchy-Riemann
	Les conditions de Cauchy-Riemann exprimées en coordonnés polaires
	Les dérivées fz et f

	Exercices supplémentaires

	Séries entières. Rayon de convergence. Domaine de convergence. Développement en séries entières. Fonctions Analytiques
	Les séries entières
	Le rayon de convergence R
	Le domaine de convergence D
	Propriétés des séries entières

	Développement en séries entières
	Fonctions analytiques
	Exercices supplémentaires

	Théorie de Cauchy
	Théorème de Cauchy
	Les intégrales curvilignes

	La Formule Intégrale de Cauchy
	Exercices supplémentaires

	Applications
	Propriétés analytiques des fonctions holomorphes
	Théorème du Maximum
	Théorème de Liouville
	Théorème de Rouché
	Théorème des Résidus 
	Points singuliers
	Point singulier essentiel et pôles
	Les Résidus 

	Calcul d’intégrales par la méthode des Résidus
	Intégrales de la forme 02 R(,) d 
	 Intégrales de la forme -+ f(x) dx 
	Intégrales de la forme 0+ x-1 Q(x) dx 

	Exercices supplémentaires

	Les fonctions harmonique
	Définitions et Notations
	Conjuguée harmonique
	Exercices supplémentaires

	Bibliographie

