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Foreword 
 

This handout is addressed to the students of the first year in the domain of 

science and technology, conformally to the Algerian official pedagogical 

program. It is a course summary providing some knowledge about electrostatics 

and it’s dual the magnetostatics which are the basics of electromagnetism. This 

summary course is followed by some exercises for more understanding the 

concepts introduced in the course. 

The handout is divided in four concise chapters. The first chapter is a 

mathematical reminder dealing with systems of coordinates and some tools of 

vector analysis. Chapter two is devoted to the electrostatics and the concept of 

electrical charge, the properties of the conductors in equilibrium. The third 

chapter deals with electrokinetics that is the conductors are out of equilibrium 

state (electric current and the Kirchhoff laws of linear electrical circuits). 

Finally, the fourth chapter deals with the magnetostatics and the laws governing 

the magnetic field. 

I hope that this work will help the students understanding the fondamental 

principles of electrostatics and magnetostatics. 
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I.1 Coordinates systems and operators of vector analysis. 

There are several orthogonal coordinates systems mainly the cartesian, 

cylindrical, spherical, parabolic, elliptic, hyperbolic, bipolar, jacobi, … 

In this course we are interested uniquely by the classical ones namely, the 

orthogonal system of cartesian, cylindrical and spherical coordinates. 

I.1.2 Cartesian coordinates system (x, y, z) 

 

Figure 1 : cartesian coordinates and elementary variables 

Lets the orthonormal frame R = (O,݁௫ሬሬሬ⃗ , ݁௬ሬሬሬሬሬ⃗  ,݁௭ሬሬሬ⃗ ), in the 3-D affine space. The 

frame R is said cartesian and is associated to the cartesian basis (ex, ey, ey). it is a 

canonical basis, then it is independant of the space location. The position of the 

point M with respect to the origin of the frame is defined as follows :  

ሬሬሬሬሬሬ⃗ܯܱ = ௫ሬሬሬ⃗݁ݔ + ௬ሬሬሬሬ⃗݁ݕ + ௭ሬሬሬ⃗݁ݖ  

The infinitesimal variations of the coordinates x, y, z are dx, dy, and dz so the 

point M gets the elementary displacement dM defined by the following 

expression : 

Mathematical Reminder  [Chapter I]  
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ሬሬሬሬሬሬ⃗ܯ݀ = ௫ሬሬሬ⃗݁ݔ݀ + ௬ሬሬሬሬ⃗݁ݕ݀ + ௭ሬሬሬ⃗݁ݖ݀  

The figure 1 allows us to calculate the elementary surface and volume in the 

cartesian basis. In fact, the elementary surfaces are given by : 

݀ܵ௫ሬሬሬሬሬሬሬ⃗ = ௫ሬሬሬ⃗݁ݖ݀ݕ݀  

݀ܵ௬ሬሬሬሬሬሬሬ⃗ = ௬ሬሬሬሬ⃗݁ݖ݀ݔ݀  

݀ܵ௭ሬሬሬሬሬሬ⃗ = ௭ሬሬሬ⃗݁ݕ݀ݔ݀  

The elementary volume is therefore : ܸ݀ =  ݖ݀ݕ݀ݔ݀

I.1.3 Cylindrical coordinate system (࢘, ,ࣂ  (ࢠ

ሬሬሬሬሬሬ⃗ܯܱ = ௥ሬሬሬ⃗݁ݎ + ௭ሬሬሬ⃗݁ݖ  

ሬሬሬሬሬሬ⃗ܯ݀ = ௥ሬሬሬ⃗݁ݎ݀ + ௥ሬሬሬ⃗݁݀ݎ + ௭ሬሬሬ⃗݁ݖ݀ = ௥ሬሬሬ⃗݁ݎ݀ + ݎ ቆ
߲݁௥ሬሬሬ⃗
ݎ߲

ݎ݀ +
߲݁௥ሬሬሬ⃗
ߠ߲

ቇߠ݀ + ௭ሬሬሬ⃗݁ݖ݀  

ሬሬሬሬሬሬ⃗ܯ݀ = ௥ሬሬሬ⃗݁ݎ݀ + ఏሬሬሬሬ⃗݁ߠ݀ݎ + ௭ሬሬሬ⃗݁ݖ݀  

 

Figure 2 : elements of length, surface and volume in cylindrical coordinates. 

With help of the figure 2, we have : ݁௥ሬሬሬ⃗ = cos ௫ሬሬሬ⃗݁ߠ + sin ௬ሬሬሬሬ⃗݁ߠ  ; 

Mathematical Reminder  [Chapter I]  
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݁ఏሬሬሬሬ⃗ = − sin ߠ ݁௫ሬሬሬ⃗ + cos ௬ሬሬሬሬ⃗݁ߠ =
߲݁௥ሬሬሬ⃗ሬሬሬ⃗

ߠ߲  

݀ܵ௥ሬሬሬሬሬሬ⃗ = ௥ሬሬሬ⃗݁ݖ݀ߠ݀ݎ  

݀ܵఏሬሬሬሬሬሬሬ⃗ = ఏሬሬሬሬ⃗݁ݖ݀ݎ݀  

݀ܵ௭ሬሬሬሬሬሬ⃗ = ௭ሬሬሬ⃗݁ߠ݀ݎ݀ݎ  

ܸ݀ =  ݖ݀ߠ݀ݎ݀ݎ

I.1.4 Spherical coordinates system (࢘, ,ࣂ ࣐) 

The basis is : (݁௥, ݁ఏ, ݁ఝ)   then, ܱܯሬሬሬሬሬሬ⃗ = ௥ሬሬሬ⃗݁ݎ   

ሬሬሬሬሬሬ⃗ܯ݀  = ௥ሬሬሬ⃗݁ݎ݀ + ቀݎ డ௘ೝሬሬሬሬ⃗
డ௥

ݎ݀ + ݎ డ௘ೝሬሬሬሬ⃗
డఏ

ቁߠ݀ + ݎ డ௘ೝሬሬሬሬ⃗
డఝ

݀߮ 

݁௥ሬሬሬ⃗ = ߠ݊݅ݏ cos ߮ ݁௫ሬሬሬ⃗ + sin ߠ sin ߮݁௬ሬሬሬሬ⃗ + cos ߠ ݁௭ሬሬሬ⃗  

݁ఏሬሬሬሬ⃗ = cos ߠ cos ߮ ݁௫ሬሬሬ⃗ + cos ߠ sin ߮݁௬ሬሬሬሬ⃗ − sin ௭ሬሬሬ⃗݁ߠ  

݁ఝሬሬሬሬ⃗ = − sin ߮݁௫ሬሬሬ⃗ + cosφ ݁௬ሬሬሬሬ⃗  

 

Figure 3 : spherical coordinates system 

Mathematical Reminder  [Chapter I]  
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Hence we have : 

ሬሬሬሬሬሬ⃗ܯ݀ = ௥ሬሬሬ⃗݁ݎ݀  + ఏሬሬሬሬ⃗݁ߠ݀ݎ  + ݎ sin ߮݀ߠ ݁ఝሬሬሬሬ⃗  

݀ܵ௥ሬሬሬሬሬሬ⃗ = ଶݎ sin ௥ሬሬሬ⃗݁߮݀ߠ݀ߠ  

݀ܵఏሬሬሬሬሬሬሬ⃗ = ݎ sin ఏሬሬሬሬ⃗݁߮݀ݎ݀ߠ  

݀ܵఝሬሬሬሬሬሬሬ⃗ = ఝሬሬሬሬ⃗݁ߠ݀ݎ݀ݎ  

ܸ݀ = ଶݎ sin  ߮݀ߠ݀ݎ݀ߠ

I.2 differential operators : 

I.2.1 The Gradient : ࢊࢇ࢘ࢍሬሬሬሬሬሬሬሬሬሬሬ⃗ = સሬሬ⃗  

The gradient operator associate a scalar function ݂(ݔ, ,ݕ  a vector of (ݖ

components  ቀడ௙
డ௫

, డ௙
డ௬

, డ௙
డ௭

ቁ, such as ∇ሬሬ⃗  ݂ = డ௙
డ௫

݁௫ሬሬሬ⃗ + డ௙
డ௬

݁௬ሬሬሬሬ⃗ + డ௙
డ௭

݁௭ሬሬሬ⃗  

Recall that ݂݀ = డ௙
డ௫

ݔ݀ + డ௙
డ௬

ݕ݀ + డ௙
డ௭

and  ∇ሬሬ⃗ ݖ݀ = డ
డ௫

݁௫ሬሬሬ⃗ + డ
డ௬

݁௬ሬሬሬሬ⃗ + డ
డ௭

݁௭ሬሬሬ⃗  

Hence we obtain the gradient in any coordinates system as follows : 

݂݀ = (∇ሬሬሬሬ⃗  ݂). ݎ⃗݀  ; where  ݎ⃗݀ = ௫ሬሬሬ⃗݁ݔ݀ + ௬ሬሬሬሬ⃗݁ݕ݀ + ௭ሬሬሬ⃗݁ݖ݀  

 Cartesian coordinates : ݂(ݔ, ,ݕ  (ݖ

∇ሬሬ⃗  ݂ = డ௙
డ௫

݁௫ሬሬሬ⃗ + డ௙
డ௬

݁௬ሬሬሬሬ⃗ + డ௙
డ௭

݁௭ሬሬሬ⃗  

 Cylindrical coordinates : ݂(ݎ, ,ߠ  (ݖ

∇ሬሬ⃗  ݂ = డ௙
డ௥

݁௥ሬሬሬ⃗ + ଵ
௥

డ௙
డఏ

݁ఏሬሬሬሬ⃗ + డ௙
డ௭

݁௭ሬሬሬ⃗  

 Spherical coordinates : ݂(ݎ, ,ߠ ߮) 

∇ሬሬ⃗  ݂ = డ௙
డ௥

݁௥ሬሬሬ⃗ + ଵ
௥

డ௙
డఏ

݁ఏሬሬሬሬ⃗ + ଵ
௥ ୱ୧୬ ఏ

డ௙
డఝ

݁ఝሬሬሬሬ⃗  

Mathematical Reminder  [Chapter I]  
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I.2.2 Divergence of a vector : 

The divergence is defined as the scalar product between the displacement 

element and and the gradient of the vector. 

 Cartesian coordinates : ሬܸ⃗ ,ݔ) ,ݕ  (ݖ

∇.ሬሬሬ⃗  ሬܸ⃗ = డ௏ೣ
డ௫

+ డ௏ೣ
డ௬

+ డ௏೥
డ௭

            ;           ሬܸ⃗ = ቌ
௫ܸ

௬ܸ

௭ܸ

ቍ 

 Cylindrical coordinates : ሬܸ⃗ ,ݎ) ,ߠ  (ݖ

∇.ሬሬሬ⃗  ሬܸ⃗ = ଵ
௥

డ
డ௥

ݎ) ௥ܸ) + ଵ
௥

డ௏ഇ
డఏ

+ డ௏೥
డ௭

      ;           ሬܸ⃗ = ൭
௥ܸ
ఏܸ

௭ܸ

൱          

 Spherical coordinates : ሬܸ⃗ ,ݎ) ,ߠ ߮) 

∇.ሬሬሬ⃗  ሬܸ⃗ = ଵ
௥మ

డ
డ௥

ଶݎ)
௥ܸ) + ଵ

௥ ୱ୧୬ ఏ
డ

డఏ
(sin ߠ ఏܸ) + ଵ

௥ ୱ୧୬ ఏ
డ

డఝ ఝܸ      ;           ሬܸ⃗ = ቌ
௥ܸ

ఏܸ

ఝܸ

ቍ          

I.2.3 Rotational of a vector : 

The operator rotational or curl (∇ሬሬ⃗ ∧) associates to a vector ሬܸ⃗  ,  the cross product 

of ∇ሬሬ⃗  by this vector : ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ = ∇ሬሬ⃗ ∧ ሬܸ⃗  

 Cartesian coordinates : 

ሬሬሬሬሬሬሬ⃗ݐ݋ܴ ሬܸ⃗ =

⎝

⎜
⎛

݁௫ሬሬሬ⃗ ݁௬ሬሬሬሬ⃗ ݁௭ሬሬሬ⃗
߲

ݔ߲
߲

ݕ߲
߲

ݖ߲
௫ܸ ௬ܸ ௭ܸ ⎠

⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

ቆ
߲ ௭ܸ

ݕ߲
−

߲ ௬ܸ

ݖ߲ ቇ

൬
߲ ௫ܸ

ݖ߲
−

߲ ௭ܸ

ݔ߲ ൰

ቆ
߲ ௬ܸ

ݔ߲
−

߲ ௫ܸ

ݕ߲ ቇ
⎠

⎟
⎟
⎟
⎞

ቌ
݁௫ሬሬሬ⃗
݁௬ሬሬሬሬ⃗
݁௭ሬሬሬ⃗

ቍ 

 

 

Mathematical Reminder  [Chapter I]  
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 Cylindrical coordinates : 

൫ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ ൯௥
=

1
ݎ

߲ ௭ܸ

ߠ߲
−

߲ ఏܸ

ݖ߲
 

൫ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ ൯ఏ
=

߲ ௥ܸ

ݖ߲
−

߲ ௭ܸ

ݎ߲
 

൫ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ ൯௭
=

1
ݎ ൤

߲
ݎ߲ ݎ) ఏܸ) −

߲ ௥ܸ

ߠ߲ ൨ 

 Spherical coordinates : 

൫ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ ൯௥
=

1
ݎ sin ߠ ቈ

߲ (sin ߠ ఝܸ)
ߠ߲

−
߲ ఏܸ

߲߮ ቉ 

൫ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ ൯ఏ
=

1
ݎ sin ߠ

߲ ௥ܸ

߲߮
−

1
ݎ

ݎ)߲ ఝܸ)
ݎ߲

 

൫ܴݐ݋ሬሬሬሬሬሬሬ⃗ ሬܸ⃗ ൯ఝ
=

1
ݎ ൤

ݎ)߲ ఏܸ)
ݎ߲

−
߲ ௥ܸ

ߠ߲ ൨ 

I.3 Laplacian operator : 

The Laplacian operator is defined by : 

∆=
߲ଶ

ଶݔ߲ +
߲ଶ

ଶݕ߲ +
߲ଶ

 ଶݖ߲

It can be applied to a scalar function to yield : 

܎∆ = ૒૛܎
૒ܠ૛ + ૒૛܎

૒ܡ૛ + ૒૛܎
૒ܢ૛  Or to a vector yielding to ∆܄ሬሬ⃗ = ૒૛܄ሬሬ⃗

૒ܠ૛ + ૒૛܄ሬሬ⃗

૒ܡ૛ + ૒૛܄ሬሬ⃗

૒ܢ૛ 

I.4 Vector relationships : 

Scalar triple product : 

ܣ⃗ ∙ ሬ⃗ܤ) ∧ (ܥ⃗ = ܥ⃗ ∙ ൫⃗ܣ ∧ ሬ⃗ܤ ൯ = ሬ⃗ܤ ∙ ൫⃗ܥ ∧  ൯ܣ⃗

 

Mathematical Reminder  [Chapter I]  
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Vector triple product : 

ܣ⃗ ∧ ሬ⃗ܤ ∧ ܥ⃗ = ሬ⃗ܤ ൫⃗ܣ ∙ ൯ܥ⃗ − ܣ൫⃗ܥ⃗ ∙ ሬ⃗ܤ ൯ 

For the scalar functions   ݂ܽ݊݀ ݌ , we have : 

∇ሬሬ⃗ (݌݂) = ݂∇ሬሬ⃗ ݌ + ሬሬ⃗∇݌ ݂ 

∇ሬሬ⃗ ∙ ൫݂⃗ܣ൯ = ൫∇ሬሬ⃗ ݂൯ ∙ ܣ⃗ + ݂∇ሬሬ⃗ ∙  ܣ⃗

∇ሬሬ⃗ ൫⃗ܣ ∧ ሬ⃗ܤ ൯ = ሬ⃗ܤ ∙ ∇ሬሬ⃗ ∧ ܣ⃗ − ܣ⃗ ∙ ∇ሬሬ⃗ ∧ ሬ⃗ܤ  

∇ሬሬ⃗ ∧ ൫݂⃗ܣ൯ = ൫∇ሬሬ⃗  ݂൯ ∧ ܣ⃗ + ݂∇ሬሬ⃗ ∧  ܣ⃗

∇ሬሬ⃗ ൫∇ሬሬ⃗ ݂൯ = ∆݂ 

∇ሬሬ⃗ ൫∇ሬሬ⃗ ∧ ൯ܣ⃗ = 0 

∇ሬሬ⃗ ∧ ∇ሬሬ⃗ ݂ = 0ሬ⃗  

∇ሬሬ⃗ ∧ ൫∇ሬሬ⃗ ∧ ൯ܣ⃗ = ∇ሬሬ⃗ ൫∇ሬሬ⃗ ∙ ൯ܣ⃗ −  ܣ⃗∆
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Chapter II 
ELECTROSTATICS 

 
Previously, we have studied, in mechanics the gravitational 

interaction between bodies that are characterised by their masses. 

In the following, we have to consider another interaction, the 

electrostatic interaction, which involves the concept of electric 

charge. Electrostatics is about fixed charges with the Coulomb law. 
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Mathematical Reminder  [Chapter II] 

Ⅱ.1 Introduction : 

From experience, we learn that two bodies rubbed against each other aquire 

charges one with positive charge and the other the negative one. The magnitude 

of transferred charge on every body depend on the number of transferred 

charge. Positive and negative charges are purely conventional. 

Ⅱ.2 Properties of charges : 

Charges have peculiar properties. The charges with the same nature repel each 

other in contrast with the different nature charge they attract. A charged body 

attract a neutral body by the electrostatic force. The electric charge is an intrinsic 

property of any body. A neutral body has equal amount of positive and negative 

charges so that the charge on a neutral body is always zero. 

The principle of charge conservation states that it can neither be created nor 

destroyed but it may simply be transferred from one body to another body. 

Actually, electric charge is quantized any physically existing charge is an integral 

multiple of the elementary charge (e).it isn’t the case for magnetism. 
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Ⅱ.3 Coulomb’s law in vacuum : 

The electric force between like charges is repelent and that between unlike 

charges is attractive. 

This law is called Coulomb’s inverse square law. 

ܨ = ݇
ଶݍଵݍ

ଶݎ  

Where, k is a constant, whose value is given by ∶ ଵ
ସగఌబ

 , if the charges are placed 

in vacuum. If the charges, distance and the force are measured in Coulomb (C), 

meter (m) and Newton respectively, ଵ
ସగఌబ

= 9 × 10ଽܰ݉/ܥଶ. The constant ߝ଴ is 

the permittivity of free space. It’s value is  

8.85 × 10ିଵଶܥଶ/ܰ݉ଶ 

If ݍଵ = ଶݍ = 1 Coulomb and ݎ = 1 meter, then we get 9 × 10ଽ × ଵ×ଵ
ଵమ =

9 × 10ଽ Newton. 

Conditions of validity of Coulomb’s law : 

We have seen that Coulomb’s law between two point charges is an inverse square 

distance law. However, it may be applied to extended objects provided the 

distance between the mis much larger than their dimensions. The separation 

between the charges must be greater than nuclear distance (10-15 m) because for 

distances less than  10-15 m, the nuclear attractive forces become dominant over 

all other forces. 

 



15 
 

Electrostatics  [Chapter II] 

Ⅱ.4 Electric field and potential : 

The environment of an electric charge in wich another charge experiences a force 

(attractive or repulsive), is called the electric field of the electric charge. 

If a charge q0 experiences a force in the space surrounding the charge q, then 

charge q is called the « source charge » and the charge q0 is called a « test 

charge ». Further, the test charge must be vanishingly small so that it does not 

modify the electric field of the source charge. 

The strenght of the electric field at a point in an electric field is the ratio of the 

force acting on the test charge placed at that point to the magnitude of the test 

charge. It is a vector quantity and its direction is along the direction of the force. 

ሬ⃗ܧ =
ܨ⃗
଴ݍ

 

Here, we have assumed that test charge q0 is infinitesimal, therefore the definition 

of strenght of electric field may be expressed as :  

ሬ⃗ܧ = lim
௤బ→଴

ܨ⃗
଴ݍ

 

If the strenght of the electric field ܧሬ⃗  at a point is known, then we can calculate the 

force ⃗ܨ acting on a charge q placed at that point by the following equation 

ሬሬ⃗ࡲ = ሬሬ⃗ࡱࢗ  

Ⅱ.5 Electric field of an isolated point charge :  

In the case of one source charge Q, the force exerted on the test charge q is 

given by the Coulomb’s law : ⃗ܨ = ܭ ொ௤
௥మ ሬ⃗ݑ  
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Hence, the electric fiel dis expressed as : 

ሬ⃗ܧ =
1

଴ߝߨ4

ܳ
ଶݎ ሬ⃗ݑ  

 

Ⅱ.6 Electric field created by a set of point charges (superposition 
principle) :  

A set of point charges placed at points ௜ܲ. We propose to determine the electric 

field created by this set of point charges at a point M distant of ݎ௜ from ௜ܲ. 

This field is obtained by the superposition of the fields created by every charge 

ܳ௜. Each of the fields is calculated as if the source charge was alone. 

The principle of superposition results from the additive property of vectors of 

forces and electric fields. 

ሬ⃗ܧ =
1

଴ߝߨ4
෍

ܳ௜

௜ݎ
ଶ

௜

ሬ⃗ݑ ௜ 

Ⅱ.7 Electric field due to a continuous charge distribution : 

When the charge  ܳ௜ is distributed on a wire with a linear density ߣ, each 

element ݈݀ carrying a charge ݀ܳ =  : and create an elementary field ,݈݀ߣ

ሬሬሬሬሬ⃗ܧ݀ = ଵ
ସగఌబ

ఒௗ௟
௥మ ሬ⃗ݑ    the fiel dis then : ܧሬ⃗ = ଵ

ସగఌబ
∫ ఒௗ௟

௥మ ሬ⃗ݑ  

Electrostatics  [Chapter II] 
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In the case of surface density ߪ so that ݀ܳ =  : we will find that ,ܵ݀ߪ

ሬ⃗ܧ =
1

଴ߝߨ4
ඵ

ܵ݀ߪ
ଶݎ ሬ⃗ݑ  

In the case of volume charge density ݀ܳ =  : we obtain ,ܸ݀ߩ

ሬ⃗ܧ =
1

଴ߝߨ4
ම

ܸ݀ߩ
ଶݎ ሬ⃗ݑ  

Where ݈݀, ݀ܵ and ܸ݀ are lenght, surface and volume elements. 

Ⅱ.8 Electric potential : 

Ⅱ.8.1 Circulation of a vector : 

In mechanics we defined the elementary work dW of a force along an 

infinitesimal path ܯܯᇱሬሬሬሬሬሬሬሬሬ⃗ = ݈݀ሬሬሬ⃗  by the scalar product : 

ܹ݀ = ܨ⃗ ∙ ݈݀ሬሬሬ⃗ = ݈݀ܨ cos  ߠ

When the path AB is not infinitesimal, the work W of the force ⃗ܨ between the 

points A and B, is equal to the sum of the elementary works dW. 

ܹ = ∫ ܨ⃗ ∙ ݈݀ሬሬሬ⃗஻
஺                    

The circulation of a vector along a path AB for an infinitesimal displacement  ݈݀ 

is defined by the scalar product : 

ܥ݀ = ܣ⃗ ∙ ݈݀ሬሬሬ⃗    with  ܣሬሬሬ⃗ = ௫ଓ⃗ܣ + ௬ଔ⃗ܣ + ௭ܣ ሬ݇⃗  

Electrostatics  [Chapter II] 
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Ⅱ.8.2 Calculation of the electric potential : 

We calculate the circulation of the electric vector  ܧሬ⃗ , created by a fixed charge 

Q, when traveling an elementary displacement :  ܯܯᇱሬሬሬሬሬሬሬሬሬ⃗ = ݈݀ሬሬሬ⃗  

ܥ݀ = ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗  

In polar coordinates, we have the radial component of the electric field, 

consequently : 

ܥ݀ = ݎ݀ܧ =
1

଴ߝߨ4

ܳ
ଶݎ ݎ݀ = −݀ ൤

1
଴ߝߨ4

ܳ
ݎ ൨ 

The vector ܧሬ⃗ , derive from a scalar function : ܸ = ଵ
ସగఌబ

ொ
௥

+  named electric ; ܥ

potential if we let the potential vanishing at infinity, then the constant C will 

vanish, and we get : 

ܸ =
1

଴ߝߨ4

ܳ
ݎ

 

So, we can write :  ܧሬሬሬ⃗ ∙ ݈݀ሬሬሬ⃗ = −ܸ݀ , then  ܧ௫݀ݔ + ݕ௬݀ܧ + ݖ௭݀ܧ = ܸ݀ 

Expressed in vector notation : ܧሬ⃗ = ሬሬሬሬሬሬሬሬሬሬ⃗݀ܽݎ݃− ܸ 

න ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗
஻

஺
= − න ܸ݀ = ஺ܸ − ஻ܸ

஻

஺
 

Consequently :  

ර ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗ = 0 

The circulation of the electric field along a closed path is null. 
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Ⅱ.8.3 Electric potential of a charges distribution : 

As for the electric field, we use the principle of superposition. The potential 

created by n fixed charges,ܳଵ,ܳଶ, ܳଷ, ⋯ ܳ௡ is : 

ܸ =
1

଴ߝߨ4
෍

ܳ௜

௜ݎ

௡

௜ୀଵ

 

When the charge Q, is sprayed on a wire with a linear density , ߣ = ݀ܳ/݈݀ and 

in the case of surface charge distribution ߪ = ݀ܳ/݀ܵ or a volume charge 

distribution ߩ = ݀ܳ/ܸ݀ 

The potential for the three type of distribution is the following : 

ܸ = ଵ
ସగఌబ

∫ ఒ
௥

݈݀  ,  ܸ = ଵ
ସగఌబ

∫ ఙ
௥

݀ܵ  ,    ܸ = ଵ
ସగఌబ

∫ ద
௥

ܸ݀   

Example : 

Calculation of the electric field and electric potential of a charge Q evenly 

distributed on a surface of a disc, at a point M along the z-axis : 

ܳ = ܵ and ܵߪ =  ଶܴߨ

݀ܳ = ሬ⃗ܧ݀             ,         ܵ݀ߪ = ௄ௗொ
௉ெమ ሬ⃗ݑ     ,       ݀ܵ =  ݎ݀ݎߨ2

ܧ݀ = ௄ఙௗௌ
௉ெమ cos ߙ  ,    cos ߙ = ௭

௉ெ
    and    ܲܯଶ = ଶݎ +  ଶݖ

The total electric field will be : 

ܧ = ݖߪܭߨ2 න
ݎ݀ݎ

ଶݎ) + ଶ)ଷ/ଶݖ =
ߪ

଴ߝ2
ݖ ቈ

1

ඥ(ݎଶ + (ଶݖ
቉

଴

ோோ

଴
 

Lets changing the variables : ݑ = ଶݎ + ݑ݀ ଶ soݖ =  : then we obtain ݎ݀ݎ2

(ݖ)ܧ =  
ߪ

଴ߝ2
ቈ

ݖ
|ݖ| −

ݖ

ඥ(ݎଶ + (ଶݖ
቉ 
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  ݖ > 0, |ݖ| = (ݖ)ܧ : then we get  ݖ+ =  ఙ
ଶఌబ

൤1 − ௭
ඥ(௥మା௭మ)

൨  

 ݖ < 0, |ݖ| = (ݖ)ܧ : then we get  ݖ− =  − ఙ
ଶఌబ

൤1 + ௭
ඥ(௥మା௭మ)

൨ 

Calculation of the electric potential : 

Using the circulation of the electric field along the oz axis, we have : 

ܸ݀ = ሬ⃗ܧ− ∙ ݈݀ሬሬሬ⃗ = ⟹  ݖ݀ܧ−     ܸ = − න  ݖ݀(ݖ)ܧ

For ݖ > 0 and using the expression of the electric field with the change of 

variable : ݑ = ଶݎ + ݑ݀  ଶ thenݖ =  : we obtain the electric potential ,ݎ݀ݎ2

(ݖ)ܸ =  
ߪ

଴ߝ2
ቂඥݖଶ + ܴଶ − ቃݖ +  ௧௘ܥ

For ݖ < 0 we find : 

(ݖ)ܸ =  
ߪ

଴ߝ2
ቂඥݖଶ + ܴଶ + ቃݖ +  ௧௘ܥ

As ݖ → 0, we have ܸ = 0, and the ܥ௧௘ = 0 

At ݖ = 0, the electric potential is continuous and the electric field is 

discontinuous as plotted bellow : 
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Ⅱ.8.4 Topography of the electric field : 

The presence of an electric charge in a region of space, does modify the electric 

properties of that region by creating at any point of the region an electric field. 

Field line : 

A field line is an oriented curve in which the fiel dis tangent at each point of 

curve. The field lines of positive and negative charges are drawn bellow : 

 
 

Figure Ⅱ.1 

 

Figure Ⅱ.2 

As we can see, two opposite charges allow a new topography.  

Field tube : 

A field tube is a virtual surface formed by the field lines pushed on a closed 

curve. 

Electrostatics  [Chapter II] 
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Figure Ⅱ.3 

Surface equipotential : 

A surface equipotential is a surface where all the points are in the same potential 

V. 

1. The field lines are perpendicular to the surface potentials. 

If we consider a displacement, ܯܯᇱሬሬሬሬሬሬሬሬሬ⃗ = ݈݀ሬሬሬ⃗ , on a surface equipotential 

(figure. ), we find that : 

ܸ݀ = ሬ⃗ܧ− ∙ ݈݀ሬሬሬ⃗ = ሬ⃗ܧ− ∙ ᇱሬሬሬሬሬሬሬሬሬ⃗ܯܯ = 0 

Hence, ܧሬ⃗  is perpendicular to ܯܯᇱሬሬሬሬሬሬሬሬሬ⃗ . 

 
                  Figure Ⅱ.4                                            Figure Ⅱ.5 

 

2. The potential decreases along the field line. 

3. Indeed, an infinitesimal displacement, ܯܯᇱሬሬሬሬሬሬሬሬሬ⃗ = ݈݀ሬሬሬ⃗ , in the direction of ܧሬ⃗  on 

the line field lead to : 

ܸ݀ = ሬ⃗ܧ− ∙ ݈݀ሬሬሬ⃗ = ሬ⃗ܧ− ∙ ᇱሬሬሬሬሬሬሬሬሬ⃗ܯܯ = −หܧሬ⃗ ห ∙ หܯܯᇱሬሬሬሬሬሬሬሬሬ⃗ ห 
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ܸ݀ < 0 ⟹   ெܸᇲ < ெܸ 

4. So, the field line is oriented from the upper potential to the lower 

potential. 

5. The electric field is stronger where the potentials are close to each other. 

Indeed, if we consider two infinitesimal displacements (Figure Ⅱ.5) : 

ଵܯଵܯ
ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = ݈݀ଵሬሬሬሬሬ⃗      and       ܯଶܯଶ

ᇱሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = ݈݀ଶሬሬሬሬሬሬ⃗   

We have : 

ܸ݀ = ଵሬሬሬሬ⃗ܧ ∙ ᇱܯଵܯ
ଵሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = ଵሬሬሬሬ⃗ܧ− ∙ ݈݀ଵሬሬሬሬሬ⃗ = −หܧଵሬሬሬሬ⃗ ห ∙ ห݈݀ଵሬሬሬሬሬ⃗ ห 

And :  

ܸ݀ = ଶሬሬሬሬ⃗ܧ ∙ ᇱܯଶܯ
ଶሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = ଶሬሬሬሬ⃗ܧ− ∙ ݈݀ଶሬሬሬሬሬሬ⃗ = −หܧଶሬሬሬሬ⃗ ห ∙ ห݈݀ଶሬሬሬሬሬሬ⃗ ห  

But :  ห݈݀ଵሬሬሬሬሬ⃗ ห < ห݈݀ଶሬሬሬሬሬሬ⃗ ห   ⟹ หܧଵሬሬሬሬ⃗ ห > หܧଶሬሬሬሬ⃗ ห 

  
Figure Ⅱ.6 

Ⅱ.9 Work of an electric force : 

We put an electric charge q at a point of the space where exist an electric field 

ሬ⃗ܧ , the charge experience the action of electric force : 

ܨ⃗ = ሬ⃗ܧݍ , the work of the force is then : 

ܹ݀ = ܨ⃗ ∙ ݈݀ሬሬሬ⃗  

Along the path AB, we have : 

ܹ = න ܨ⃗ ∙ ݈݀ሬሬሬ⃗
஻

஺
= ݍ න ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗

஻

஺
= )ݍ ஺ܸ − ஻ܸ) 
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Ⅱ.9.1 Potential energy : 

The potential energy of a point charge placed in an external electric field 

is defined as the work of the electric force acting on the charge, moved 

from a point M of potential V, to a reference point R, where the charge 

doesn’t experience the external field. In that point, the potential is null. 

(ܯ)௣ܧ = න ܨ⃗ ∙ ݈݀ሬሬሬ⃗
ோ

ெ
= ݍ න ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗

ோ

ெ
= )ݍ  ெܸ − ோܸ) 

Hence : 

(ܯ)௣ܧ = ݍ ெܸ 

The Coulomb force is then conservative and its work between any two 

points is independant of the path experienced. 

(ܯ)௣ܧ݀− = ܨ⃗ ∙ ݈݀ሬሬሬ⃗  

Ⅱ.9.2 Internal energy of electric charge distribution : 

The internal energy of two point charges is defined as the work provided 

by an operator for assembling the charges initially non-interacting. It is 

the potential energy of the second charge in  the field of the first charge or 

vice- versa. Let two charges ݍଵand ݍଶ, placed respectively at points 

ଶܯଵܯ ଶ, distant from each other byܯ ଵandܯ =  ଵଶݎ

The work provided by an operator to bring the charge ݍଶ to the point ܯଶ 

without varying the kinetic energy (adiabatically) is given by : 

ܹ = න ܨ⃗ ∙ ݈݀ሬሬሬ⃗
ெమ

ஶ
= − න ଵ→ଶሬሬሬሬሬሬሬሬሬ⃗ܨ

ெమ

ஶ
∙ ݈݀ሬሬሬ⃗ = ଶݍ න ଵሬሬሬሬ⃗ܧ

ெమ

ஶ
∙ ݈݀ሬሬሬ⃗  

Where ܨଵ→ଶሬሬሬሬሬሬሬሬሬ⃗  , is the electric force exerted by the ݍଵcharge on the charge 

 : ଶ then we haveݍ

ܷ = ܹ = ଶݍ ଵܸ =
ଶݍଵݍܭ

ଵଶݎ
 

This is the internal energy of the system of the two charges ݍଵand ݍଶ. 
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Ⅱ.9.3 The electric dipole : 

The electric dipole is constitued by two equal and opposite charges 

− ݀݊ܽ ݍ+  spaced by a distance ݀ which is little compared to the ,ݍ

distance of observation ݎ.       ݀ ≪  ݎ

We can define the electric dipole moment as : 

⃗݌ =  ⃗݀ݍ

 
Figure Ⅱ.7 

Electric potential created by a dipole : 

We calculate the potential produced by the dipole at the point M situated 

at a distance r from the middle O of the dipole : 

ܸ =
ݍ

଴ߝߨ4
൤

1
ଵݎ

−
1
ଶݎ

൨ =
ݍ

଴ߝߨ4

ଶݎ − ଵݎ

ଶݎଵݎ
 

The distance of observation ݎ, is larger than the distance ݀ between the 

two charges of the dipole. Let H be the projection of B over AM : 

ܪܣ = ݀ cos ߠ = ଶݎ − ଶݎ : ଵ, we can use the approximationݎ = ଵݎ =  ݎ

Hence the potential will be after using the relation : (1 + ௡(ߝ = 1 +  ߝ݊

Whence ߝ ≪ 1, so we get the potential created at M, by the dipole as : 

ܸ =
1

଴ߝߨ4

ܲ cos ߠ
ଶݎ  
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Calculation of the electric field created by a dipole : 

We determine the electric field by using the relations : 

ሬ⃗ܧ = ሬሬሬሬሬሬሬሬሬሬ⃗݀ܽݎ݃− (ܸ) ; ܸ݀ = ሬ⃗ܧ− ∙ ݈݀ሬሬሬ⃗  

In polar coordinates ( figure below), we can get the components of the 

electric field in the following : 

ܸ݀ = ݎ௥݀ܧ)− + (ߠ݀ݎఏܧ = ൬
߲ܸ
൰ݎ߲ ݎ݀ + ൬

߲ܸ
൰ߠ߲  ߠ݀

௥ܧ = − ቀడ௏
డ௥

ቁ
ఏ

= ଵ
ସగఌబ

௉ ୡ୭ୱ ఏ
௥య     and   ܧఏ = − ቀଵ

௥
డ௏
డఏ

ቁ
௥

= ଵ
ସగఌబ

௉ ୱ୧୬ ఏ
௥య  

  

Figure Ⅱ.8 

Ⅱ.9.4 Gauss’s theorem : 

Electric flux : 

Graphically : Electric flux Φா, represents the number of E-field lines 

crossing a surface. Mathematically : it is an inner product of the electric 

field with the surface crossed by the latter. 
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For non-uniform E-field and surface, direction of the area vector is not ⃗ܣ, 

is not uniform. 

 

ܣ⃗݀ = Area vector for small area element ݀ܣ 

Electric flux   ݀Φா = ሬ⃗ܧ ∙ ሬሬሬሬሬ⃗ܣ݀  

The electric flux of ܧሬ⃗  through surface S :   Φா = ∫ௌܧሬ⃗ ∙  ܣ⃗݀

Example : 

For a closed surface : 
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Recall that the direction of area vector ݀⃗ܣ  goes from inside to outside of 

closed surface S. 

Electric flux over a closed surface S is :    Φா = ∮ௌܧሬ⃗ ∙ ሬሬሬሬሬ⃗ܣ݀  

We notice that if we remove the spherical symmetry of closed surface, the 

total number of E-field lines crossing the surface remains the same. 

 

  Φா = ∮ௌܧሬ⃗ ∙ ሬሬሬሬሬ⃗ܣ݀ = ∮ௌᇲܧሬ⃗ ∙ ሬሬሬሬሬ⃗ܣ݀ =
ݍ
଴ߝ

 

For any closed surface S, and ݍ is the net electric charge enclosed in closed 

surface S. 

Gauss law : 

ாߔ   = ∮ௌܧሬ⃗ ∙ ሬሬሬሬሬ⃗ܣ݀ =
ݍ
଴ߝ

 

Ⅱ.9.5 Electric field calculation with Gauss law : 

1. Infinite line of charges : 

Linear charge density ߣ, cylindrical symmetry : 

The electric field directs radially outward from the rod.  

Construct a Gaussian surface S in the shape of a cylinder, making up of a curved 

surface   ܵଵ, and the top and bottom circles  ܵଶ,  ܵଷ. Gauss’ Law :    

∮ௌܧሬ⃗ ∙ ሬሬሬሬሬ⃗ܣ݀ =
 ݁݃ݎℎܽܿ ݈ܽݐ݋ݐ

଴ߝ
=

ܮߣ
଴ߝ
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2. Infinite sheet of charge : 

 

Uniform surface charge density ߪ : 

The electric field directs perpendicular to the sheet of charge. Construct 

Gaussian surface S in the shape of a cylinder of cross-sectional area A. 
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Gauss’Law : 

∮ௌܧሬ⃗ ∙ ሬሬሬሬሬ⃗ܣ݀ =
ߪܣ
଴ߝ

 

∫ௌభ
ሬ⃗ܧ ∙ ሬሬሬሬሬ⃗ܣ݀ = ሬ⃗ܧ                      0  ⊥  over the whole surface ଵܵ  ܣ⃗݀

∫ௌమ
ሬ⃗ܧ ∙ ሬሬሬሬሬ⃗ܣ݀  + ∫ௌయ

ሬ⃗ܧ ⋅ ሬሬሬሬሬ⃗ܣ݀ = ሬ⃗ܧ )     ܣܧ2  ∥ ଶሬሬሬሬ⃗ܣ݀ ሬ⃗ܧ ,   ∥ ଷሬሬሬሬ⃗ܣ݀  ) 

ܣܧ2 =
ߪܣ
଴ߝ

   ⇒ ܧ     =
ߪ

଴ߝ2
 

3. Uniformly charged sphere : (Total charge = ܳ) 
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Ⅱ.10 Conductors in electrostatic equilibrium : 

A good electrical conductor has electrons that aren’t bound to any atom and 

therefore are free to move about within the material. When no net motion of 

charge occurs within a conductor, the conductor is said to be in electrostatic 

equilibrium.   

A conductor in electrostatic equilibrium has the following properties : 

a) The electric field is zero everywhere inside the conductor. 

 

b) Any net charge on an isolated conductor must reside entirely on its 

surface. 

c) The E-field just outside a charged conductor is perpendicular to the 

conductor’s surface and has a magnitude  ఙ
ఌబ

 , where ߪ is the surface 

charge density at that point. 
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d) A conductor in electrostatic equilibrium constitute an equipotential 

volume. 

ܸ݀ = ሬ⃗ܧ− ∙ ݈݀ሬሬሬ⃗          where  ݈݀ሬሬሬ⃗ = ᇱሬሬሬሬሬሬሬሬሬ⃗ܯܯ    then V is constant. 

The electric field is zero inside the conductor, so the potential is uniform over 

the conductor volume. 
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Ⅱ.10.1 Electrostatic pressure : 

The charges on the surface of the conductor are submitted to the repulsive forces 

of the bulk charges. The force exerted by unit surface, or electrostatic pressure, 

can be calculated by multiplying the electric mean-field on the conductor 

surface by the charge of the unit surface. The electric mean-field previously 

calculated is : 

ܧ = ఙ
ଶఌబ

    hence, the electrostatic pressure : ݌ = ܧߪ = ఙమ

ଶఌబ
 

Ⅱ.10.2 Power of spikes : 
The experiment shows that the distribution of charges on the conductor surface 

doesn’t correspond to a constant charge density. The surface density is 

particularly great at the spike. So, it is the same for the electric field near the 

spike. 

This phenomenon can be explained by considering two spheres of different rays 

ܴଵ ܽ݊݀ ܴଶ (ܴଶ < ܴଵ), linked by a tiny wire. For this reason, the spheres are kept 

in the same potential V. As they are very far from each other, we can write : 

ଵܸ = ଶܸ  ⟹  
ܭ
ܴଵ

ඵ ଵߪ ݏ݀ =
ܭ
ܴଶ

ඵ  ݏଶ݀ߪ

By symmetry, the charges are evenly distributed on the surface of each sphere 

 : It follows that .(ݏݐ݊ܽݐݏ݊݋ܿ ݁ݎܽ ଶߪ ଵܽ݊݀ߪ)

ఙభ
ோభ

= ఙమ
ோమ

      so, the little sphere carry the bigest density of charge.  
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Ⅱ.10.3 Capacitance of a conductor : 

Whenever an electric charge is deposited on a conductor, its potential increases. 

The deposited charge spreads over its surface. For any conductor, the electric 

potential (V) is directly proportional to the charge store (Q). Hence, ܳ ∝ ܸ and 

ܳ =  .where C is a constant known as Capacitance of the conductor ܸܥ

The capacitance of a conductor (C) is defined as the amount of charge required 

to make the potential 1 unit (1 volt). 

S.I Unit of capacitance is Farad (F) and we have : ܥ = ொ
௏

 

The Farad is a very large unit hence smaller practical units are used. Smaller 

units used are :  

 

Example : 

Calculation of the capacitance of a spherical conductor. 

On every point situated at a distance r from the center of the sphere of radius R, 

the potential is given by :        ܸ = ܭ ொ
௥
 

On a point of the surface of the sphere :    ܸ = ܭ ொ
ோ

= ଵ
ସగఌబ

ொ
ோ

 

So we get the following capacitance :     ܥ = ொ
௏

=  ଴ܴߝߨ4

For example the capacity of the earth is about (ܴ = ܥ : (݉݇ 6400 =  .ܨߤ710
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Ⅱ.10.4 Electrostatic energy of a conductor : 

Let dEp the variation of the potential energy undergone by an elementary 

charge, brought back from infinity (chosen as reference potential) to the 

conductor :                      

௣ܧ݀ =  ݍܸ݀

Where q and V are the charge and potential respectively in an intermediate 

state. During charge transfer on the conductor, his total charge and so the 

absolute value of his potential increase. The internal energy of the conductor 

when the charge is completed is given by : 

௣ܧ = න ݍܸ݀− = න
ݍ
ܥ

ொ

଴

ொ

଴
 ݍ݀

௣ܧ = ଵ
ଶ

ொమ

஼
= ௣ܧ    ଶ       orܸܥ = ଵ

ଶ
ܸܳ 

The electrostatic energy for a set conductors in equilibrium is the 

generalization of the relation above : 

௣ܧ = ෍ ܳ௜ ௜ܸ

ே

௜ୀଵ

 

Ⅱ.11 Influence phenomenon : 

Ⅱ.11.1 Partial influence : 

Considering an electrically neutral conductor A at the figure below, let’s 

approach the latter by the conductor B positively charged as in the figure. 

The conductor B create in the space and in particular in the conductor A an 

electric field ܧሬ⃗ ஻. 
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Explanation : the free electrons on conductor A go, under the action of this 

field, in the inverse direction of ܧሬ⃗ ஻. These electrons accumulate 

progressively in front of B and at the equilibrium they get negative charges 

so that the result is −ܳ. These charges, resulting from influence electrisation, 

bring their contribution to the electric field inside and outside of the 

conductor. They create an induced electric field ܧሬ⃗ ௜ opposite to the field 

ሬ⃗ܧ ஻reducing the total electric field. Hence the system attain the equilibrium 

state. 

 

Ⅱ.11.2 Total influence : 

 

We get a total influence when the field lines going from B attain A by 

enclosing B by A. ܳ஻ = −ܳ஺௜௡௧ 
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Ⅱ.11.3 Capacitors : 

 

A capacitor is system formed by two conductors in total influence. When we 

apply a potential difference between the plates by connecting them to an 

external source (a generator), the capacitor gets a charge. 

Capacitance of a capacitor : 

We define the capacity of a capacitor by : 

ܥ =
ܳ

∆ܸ =
ܳ

ଵܸ − ଶܸ
 

ܳ is the charge carried by each of the plates (+Q for one and –Q for the other) 

and ∆ܸ = ଵܸ − ଶܸ is the difference of potential between the plates. The 

capacitance is an intrinsec property of every capacitor. Its value depend on the 

geometry of the conductors and the distance between them. 

Capacitance of a parallel plate capacitor : 

 

The electric field between the plates is uniform, it is given by : ܧ = ఙ
ఌబ

ߪ  ;  = ொ
ௌ
 

Q is the capacitor charge. – ܸ݀ = ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗ = ܸ ⟹  ݔ݀ܧ = ఙ
ఌబ

݁ = ொ௘
ఌబௌ

  ⟹ ܥ = ఌబௌ
௘
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Capacitance of a spherical capacitor : 

 

As shown in the figure, the spherical capacitor is made of two concentric 

spheres. If we apply Gauss’s theorem we obtain the electric field between the 

two spheres : 

ሬ⃗ܧ =
1

଴ߝߨ4

ܳ
 ଶݎ

Knowing that :  ܧ = − ௗ௏
ௗ௥

         then :   −ܸ݀ = .ܧ  ݎ݀

ܸ = ∫ −ܸ݀ = ொ
ସగఌబ

∫ ௗ௥
௥మ

ோమ
ோభ

௏మ
௏భ

   so that,  ∆ܸ = ଵܸ − ଶܸ = ொ
ସగఌబ

ቀ ଵ
ோభ

− ଵ
ோమ

ቁ 

Hence : ܥ = ଴ߝߨ4
ோభோమ

ோభିோమ
 

Ⅱ.11.4  Capacitors connection : 

a. Serial connection : 

We consider a set of capacitors connected in series on figure a. when a 

difference of potential is applied between the two ends of the connection, the 

left plate of the first capacitor will carry a charge Q. the total voltage of the 

set will be written simply by : 

∆ܸ = ( ଴ܸ − ଵܸ) + ( ଵܸ − ଶܸ) + ( ଶܸ − ଷܸ) + ⋯ + ( ேܸିଵ − ேܸ) 

So, we get : ∆ܸ = ொ
஼భ

+ ொ
஼మ

+ ொ
஼య

+ ⋯ + ொ
஼ಿ

= ܳ ∑ ଵ
஼೔

ே
௜ୀଵ  
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The voltage corresponds to the unique capacitor of equivalent capacitance : 

1
௘௤ܥ

= ෍
1
௜ܥ

ே

௜ୀଵ

 

b. Parallel connection : 

Lets N capacitors, parallel connected, with the same voltage V as in the 

figure below. ܳ௜ ܽ݊݀ ܥ௜ are the charge and capacitance for the ith 

capacitor, we have then :     ܳ௜  ௜ܸ  the total charge carried by all theܥ  =

capacitors is then :    

ܳ = ෍ ܳ௜

ே

௜ୀଵ

= ෍ ௜ܸܥ
ே

௜ୀଵ

= ܸ ෍ ௜ܥ

ே

௜ୀଵ

 

The equivalent capacitance is the sum of the individual capacitances 

௘௤ܥ = ෍ ௜ܥ

ே

௜ୀଵ
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CHAPTER III 
ELECTROKINETICS 

In this chapter we shall discuss the dynamics of charges.  
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Introduction : 
When the charges are stationary, an electrostatic field and static potential are 

developed in their vicinity. If the charges are placed in a region of non-uniform 

potential, they start to move and a current is set up. In conductors the electrons in 

the outermost orbits are relatively loosely bound to their respective atoms. When 

the conductors are placed in an electric field, a force starts to act on these free 

electrons. The direction of the force on positive charges is along the direction of 

the field and on negative charges is opposite to the field. The free charges start to 

move under the action of this force. The flow of free charges in a conductor 

constitutes the electric current.  

Ⅲ.1 Electric current : 

The moving electrons are the source of the electric current.It can also be carried 

by ions in electrolyte. The current is a physical quantity that can be measured and 

expressed numerically. The current in a circuit at any instant can be measured by 

determining the quantity of charge passing per second through the cross-section 

of the wire at that instant. If the rate of flow of charge is independent of time 

(steady state ) and q charges flows through the circuit in time t then current is 

given by : 

݅ =
ݍ
ݐ
 

If the rate of the flow of charges varies with the time than the instantaneous current 

is given by : 

݅ =
ݍ݀
ݐ݀  

If the charge is measured in Coulomb and time in seconds then the unit of current 

is Ampere. Thus a current of 1 ampere means that there is 1 Coulomb of charge 

passing through the cross-section of wire every 1 second. 
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1 ampere = 1 Coulomb/1 second 

Electric current is a scalar quantity as it doesn’t follow the law of vector addition. 

The arrows used in the electric circuits represent the direction of flow of positive 

charges. 

 Ⅲ.2 Current density vector : 

If a current is flowing in the conductor then the current per unit area of it, when 

the area is taken along a direction normal to the current, is known as current 

density. Let us consider a current flowing through a conductor of lenght ݈ and 

uniform cross-sectional area A. Suppose this current is due to the motion the 

electrons only. These electrons will possess the average drift velocity vd in a 

direction opposite to that of applied field. The value of vd for one second, in fact, 

gives the distance travelled by the electrons in one second. Therefore, the volume 

of the cylindar around the path traversed by electrons in one second is given by :  

ܸ݀ = ௗሬሬሬሬ⃗ݒ ∙ ሬሬሬሬ⃗ݏ݀  

If N is the number of charge carriers (electrons of charge e) per unit volume then 

the charge passing through the area ݀ݏሬሬሬሬ⃗  in one second is 

ݍ݀ = ܰ݁൫ݒௗሬሬሬሬ⃗ ∙ ሬሬሬሬ⃗ݏ݀ ൯ 

But charge passing per second is nothing but the current, hence 

ܫ݀ =  ܰ݁൫ݒௗሬሬሬሬ⃗ ∙ ሬሬሬሬ⃗ݏ݀ ൯ 

Here, the quantity ܰ ௗሬሬሬሬ⃗ݒ݁  is a vector, called the current density. The current density 

is represented by ⃗ܬ and has the same direction as that of drift velocity. 

ܬ⃗ =  ௗݒ⃗݁ܰ
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Thus, we can write : 

ܫ݀ = ܬ⃗ ∙ ሬሬሬሬ⃗ݏ݀  

If we take a small element dI through a small area ds around a point and if d sis 

normal to dI then current density at that point is given by : 

ܬ⃗ =
ܫ݀
ݏ݀

ሬ݊⃗  

When the unit vector ሬ݊⃗  represents the direction of current. 

If ݀ୄݏis the area element perpendicular to the current at a point then, current 

density may also be defined as : 

ܬ⃗ =
ܫ݀

ୄݏ݀
 

From the equations above, we can write an expression for the total current 

through a total surface S, using surface integral, as : 

ܫ = ඵ ܫ݀ = ඵ ܬ⃗ ∙ ݀ܵሬሬሬሬ⃗ = ඵ ܰ݁ ൫ݒௗሬሬሬሬ⃗ ∙ ሬሬሬሬ⃗ݏ݀ ൯ 

Here double integral sign represent the integration over the entire closed surface 

taken into consideration. 

Ⅲ.3 Movement of electrons in the vacuum : 

Two parallel plates A and B are placed in the vacuum and separated by a 

distance ݀, submitted to a difference of potential V=VA- VB (figure a). an 

electric field ܧሬ⃗  is created so that : 

ܧ = ஺ܸ − ஻ܸ

݀
=

ܸ
݀

 

If an electron is emited by the plate B, he will be submitted to an electrical 

force :  ⃗ܨ = ሬ⃗ܧ݁− = ݉ܽ⃗               ܽ⃗ = ௗ௩ሬ⃗
ௗ௧

= − ௘
௠

ሬ⃗ܧ  
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The acceleration being constant, the movement of the electrons, is then 

uniformly accelerated, which is not the case in the metals. 

 

Ⅲ.4 Movement of the electrons in a conductor : 

In a metal, in absence of an external electric field, the free electrons moves 

randomly. Their average velocity is zero, however, in presence of an electric 

field the drive movement lead to an electric current. If we consider the effect of 

the crystal lattice on the moving electrons by a frictional force of the form :   

݂⃗ =  ݒ⃗݇−

Writng the fondamental relation of dynamics for the electron, one has : 

ܨ⃗ + ݂⃗ = ݉ܽ⃗ 

Where ܽ⃗, is the acceleration of the electron. Projecting this relation on the ox 

axis, we get : 

 

and
  

ܧ݁− − ௫ݒ݇ = ݉ܽ௫                 ⟹      ݉
௫ݒ݀

ݐ݀
+ ௫ݒ݇ =  ܧ݁−
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Or the following relation : 

௫ݒ݀

ݐ݀
+

݇
݉

௫ݒ = −
݁
݉

 ܧ

It is a first order differential equation with constant coefficients and second 

member wich has a general solution consisting of the sum of two solutions : 

(ݐ)௛ݒ = −
݁
݇

ܧ + ݌ݔ݁ ܣ ൬−
݇
݉

 ൰ݐ

With the initial condition v(0)=0, we obtain the constant ܣ = ௘
௞

 ܧ

Which gives : 

(ݐ)௛ݒ  = − ௘
௞

ܧ ൬1 − ݌ݔ݁ ܣ ቀ− ௞
௠

ቁ൰ݐ = ௟ݒ− ൬1 − ݌ݔ݁ ܣ ቀ− ௞
௠

 ቁ൰ݐ

Where : ݒ௟ = ௘
௞

߬ is the limiting velocity attained by the electrons and   ܧ = ௠
௞

 

the relaxation time. The drift velocity is plotted in the figure below. 

 

Ⅲ.5 Macroscopic Ohm’s Law : 

The experience shows that : the ratio of the voltage and the current in between 

two points of a metallic conductor is constant, 

ܸ =  ܫܴ

That is the Ohm’s Law. The constant R is the electric resistance of the 

conductor, it is expressed in Ohms (Ω). 
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Local formulation of Ohm’s Law : 

A cylindrical conductor, of lenght ݈ and cross-section ܵ, submitted to a 

differential potential ܸ then it results on any point of the conductor, an 

electric field ܧሬ⃗  so that :  ܸ݀ = ሬ⃗ܧ− ∙ ݈݀ሬሬሬ⃗   

ሬ⃗ܧ  and ݈݀ሬሬሬ⃗  are parallel, one has : 

∫ ܸ݀௏మ
௏భ

= ܧ− ∫ ݈݀௟
଴     ⟹      ܸ = ଵܸ − ଶܸ =    ݈ܧ

 

݈ܧ =  : so we have ,   ܵܬܴ

ܬ = ௟
ோௌ

ܧ = ߪ   or   ܧߪ = ௟
ோௌ

 

 is the conductivity which has units Ωିଵ݉ିଵ, the electrical resistance will ߪ

be : ܴ = ௟
ఙௌ

 

At the microscopic scale, we can write :  ܬ = ݒ݁݊− = ௡௘మ

௠
 so that we  ܧ

obtain the conductivity as : ߪ = ௡௘మ

௞
  rewritten with the relaxation time as : 

ߪ = ௡௘మ

௞
߬       in vector form ⃗ܬ = ሬ⃗ܧߪ  which is the local form of Ohm’s Law. 

Ⅲ.6 Resistors in combination : 

a) Serial combination : 
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The same current flowing through all the resistors connected from A to B. 

஺ܸ − ஻ܸ = ( ஺ܸ − ெܸ) + ( ெܸ − ேܸ) + ( ேܸ − ௉ܸ) + ⋯ 

So that : ஺ܸ − ஻ܸ = ܴଵܫ + ܴଶܫ + ⋯ ܴேܫ = ܴ௘௤ܫ 

⟹  ܴ௘௤ = ∑ ܴ௜
ே
௜ୀଵ  : the equivalent resistance is the sum of all the resistances.  

b) Parallel combination : 

 

Now, the same potential difference is applied on the terminals of the 

resistors, hence : 

஺ܸ − ஻ܸ = ܴଵܫଵ = ܴଶܫଶ = ⋯ = ܴேܫே 

And : ܫ = ଵܫ + ଶܫ + ⋯ +  : ே    then  we will haveܫ

 (௏ಲି௏ಳ)
ோ೐೜

= (௏ಲି௏ಳ)
ோభ

+ (௏ಲି௏ಳ)
ோమ

+ ⋯ + (௏ಲି௏ಳ)
ோಿ 

 

So the equivalent resistance is :   

 
1

ܴ௘௤
= ෍

1
ܴ௜

ே

௜ୀଵ

 

Ⅲ.7 Joule effect : 

The circulation of the current in a conductor yields a loss of energy by 

heating. We can evaluate the dissipated energy during the passage of the 

current. If dq is charge that passes from point A to point B of the conductor, 

then the work of the electric forces is : 
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ܹ݀ = ( ஺ܸ − ஻ܸ)݀ݍ 

This quantity of charge is related to the current by : ݀ݍ =   ; so ݐ݀ܫ

ܹ݀ = ( ஺ܸ − ஻ܸ) ݐ݀ܫ     ܸ = ( ஺ܸ − ஻ܸ) =  ܫܴ

The work will be written as : ܹ݀ = ݐ݀ܫܸ =  ଶdtܫܴ

This dissipated energy is the Joule’s heating. It coresponds to an electric 

power :    ܲ = ௗௐ
ௗ௧

=  ଶܫܴ

As ܸ and ܫ are constant so the electric power will be constant in the time. 

Ⅲ.8 Generators : 

 

Lets a generator (G), apply a potential difference ஺ܸ − ஻ܸ > 0 in the terminals 

of a conductor AB. 

In the steady state, we have ݀݅ݒଔ⃗ = 0 in all the points of the circuit, including 

the generator, and the field lines are closed curves. If the conductor was closed 

on himself, we will have : 

∮ ሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗ = 0    because of  ܧሬ⃗ = ሬሬሬሬሬሬሬሬሬሬ⃗݀ܽݎ݃−  (ܸ) 

∮ ఫ⃗
ఙ

∙ ݈݀ሬሬሬ⃗ = 0   which leads to : ଔ⃗ = 0 

It is the circulation of the field ܧ௠ሬሬሬሬሬ⃗  in the generator that ensure the potential 

difference, ஺ܸ − ஻ܸ. This circulation is called the electromotive force ݁ of the 

generator, although it has the dimensions of a potential. We have : 

                                                 ݁ = ∫ ௠ሬሬሬሬሬ⃗ܧ ∙ ݈݀ሬሬሬ⃗ = ஺ܸ − ஻ܸ 

Electrokinetics  [Chapter III] 



50 
 

Ⅲ.9 Generators in combination : 

 Serial combination : 

 

Lets N generators (݁௜,  ௜), in serial connection as represented in the figureݎ

the same current I traversing each of them. The voltage in the terminals of 

the ith generator is written as : 

௜ܸା − ௜ܸି = ݁௜ −  ܫ௜ݎ

The voltage in the terminals of the whole generators is : 

஺ܸ − ஻ܸ = (݁ଵ + ݁ଶ + ⋯ + ݁ே) = ܫଵݎ) + ܫଶݎ + ⋯ + (ܫேݎ = ݁ −  ܫݎ

 Parallel combination : 

    The figure shows that the equivalent generator delivers a current ܫ 

equal to the sum of all the currents delivered by each of the generators. 

 

ܫ = ∑ ௜ܫ
ே
௜ୀଵ              

The voltage between A and B is then : 

஺ܸ − ஻ܸ = ݁ − ݎ
ܫ
ܰ

= ݁ − ቀ
ݎ
ܰቁ  ܫ

Electrokinetics  [Chapter III] 



51 
 

Electrokinetics  [Chapter III] 

Ⅲ.10 Network analysis : 

 Ⅲ.10.1 Kirchhoff’s first law : 

Circuit network analysis can be carried out using Kirchhoff’s laws. Kirchhoff’s 

first law applies to currents at a junction in a circuit. It states that :  

The sum of currents flowing into the node or equivalently a junction is equal to 

the sum of currents flowing out of the node. 

It is merely a consequence of charge conservation. 

 

Figure Ⅲ.1  currents of known direction of flow into and out of a node. 

ଵܫ + ଶܫ = ଷܫ + ସܫ +  ହܫ

In some cases, the direction of current flow is not known and, in this situation, we 

can arbitrarily assign a direction, as shown in Figure Ⅲ.1    assuming that all the 

currents are non-zero, at least one of the currents must have a negative value, 

indicating that the arrow has been drawn in the wrong direction. Current can not 

flow into the node from all three directions without current flowing out. 

Ⅲ.10.2 Kirchhoff’s second law : 

Kirchhoff’s second law applies to voltage drops across components in a 

circuit. It states that : 
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Kirchhoff’s second law concerns the potential differences across 

components in a circuit. It states that : 

The directed sum of potential differences across the components of the 

closed loop circuit is zero. 

 

Figure Ⅲ.2 (a-c) : Two closed loops with a power supply (a), without a 

power supply assumed current direction (b) and without a power supply 

with actual current direction (c). 

Remember that : 

 For loops, the assumed positive is where the current flows out of the 

cell. 

 For components, the assumed positive is where it flows into the 

component. 

In figure (a), Kirchhoff’s second law states that: 

ଵܸ − ଶܸ − ଷܸ − ସܸ = 0 

The same principle applies in Figure Ⅲ.2(b), where an assumed current 

flow has been added. In this case, the diagram has added wires to indicate 

that it is joined to a larger circuit. This helps clarify that in this case, as there 

is no direct current supply, current must enter and exit the loop. 

ଵܸ + ଶܸ + ଷܸ + ସܸ = 0 
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Validity of Kirchhoff’s current Law 

KCL means Kirchhoff’s current law : 

 KCL is temperature independent variation in the circuit. 

 KCL is valid for linear,non-linear, passive and active elements. 

 KCL is valid for lumped electrical networks only, not for distributed 

electrical networks. KCL is invalid at high frequencies. 

 Kirchhoff’s law is not valid for time-varying magnetic fields. 

Validity of Kirchhoff’s second law : 

 KSL is independent of the variation in temperature in the circuit. 

 KSL is valid for linear, non-linear, passive and active elements. 

 KSL is only valid for lumped electrical networks, not for distributed 

electrical circuit networks.  

Example : 

Calculation of the currents in a network
 
:
 

 

Calculate the currents I1, I2, I3, respectively, in branches AB, CD, EF. The 

orientation of the currents is arbitrary as in the figure. 
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In the node C we have :    

 

From the loop CDFEC, we have : 

 

From the loop CDBAC, we have : 

 

The resolution of the system of 3 equations and 3 unknowns I1, I2, I3  

 

From these expressions, knowing the numerical values of  ݁ଵ and ݁ଶ 

of the resistances, we can determine the veritable orientation of the currents. 

 

 

 



 
 

 

 

 

 

 

 

CHAPTER IV 
ELECTROMAGNETISM  

In the second chapter, we have studied, the interaction of two 

electrical bodies mainly, electrostatics. We will consider presently, 

another interaction, the magnetic interaction, in fact they are 

dual to each other. 
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Ⅳ.1. definition of the Magnetic field : 

Consider a particle of charge q and moving at a velocity ⃗ݒ. From the experience  

we have the following observations : 

(1) The magnitude and direction of ܨ஻ሬሬሬሬ⃗  depends on ⃗ݒ and ܤሬ⃗ . 

(2) The magnetic force ܨ஻ሬሬሬሬ⃗  vanishes when ⃗ݒ is parallel to ܤሬ⃗ . However, when ⃗ݒ 

makes an angle ߠ with ܤሬ⃗ , the direction of ܨ஻ሬሬሬሬ⃗  is perpendicular to the plane 

formed by ⃗ݒ and ܤሬ⃗ , and the magnitude of  ܨ஻ሬሬሬሬ⃗  is proportional to sin  .ߠ

(3) When the sign of the charge of the particle is switched from positive to 

negative (or vice versa), the direction of the magnetic force also reverses. 

 

Figure Ⅳ.1 : the direction of the magnetic force. 

The above observations can be summarized by the following equation : 

஻ሬሬሬሬ⃗ܨ  = ݒ⃗ݍ × ሬ⃗ܤ  

The Lorentz force is : ⃗ܨ = ሬ⃗ܧ൫ݍ + ݒ⃗ × ሬ⃗ܤ ൯ which is the combination of the elctric 

force and the magnetic force applied on the charge q. 
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Ⅳ.2 Biot-Savart law : 

 

The physists Biot and Savart found the expression of the magnetic field 

obtained by Oersted in his experiment in 1820. 

A wire conductor of infinite lenght, traversed by a current ܫ, create at a point M 

in of the space situated at a distance ݎ from the wire, a magnetic field where : 

 The direction is that the field lines are circles enclosing the wire. 

 The magnitude is : 

ܤ =
଴ߤ

ߨ2
ܫ
ݎ
 

Where, ߤ଴, is the magnetic permeability of the vacum. In the MKSA system 

units, ߤ଴ =  10ି଻ Henry per meter : H/mߨ4

Every infinitesimal current of an oriented lenght ݈݀ሬሬሬ⃗  traversed by a current of 

magnitude ܫ , produce an elemental magnetic field in the point M :  

ሬሬሬሬሬ⃗ܤ݀ (ܯ) =  
଴ߤ

ߨ4
ሬሬሬ݈⃗݀ܫ ∧ ሬ⃗ݑ

ଶݎ  

This the Biot-Savart law in its differential form, we can integrate it over a loop 

to  find out that : 

ሬ⃗ܤ = ර ሬሬሬሬሬ⃗ܤ݀ =
଴ߤ

ߨ4
ර

ሬሬሬ݈⃗݀ܫ ∧ ሬ⃗ݑ
ଶݎ  

Where, the integration is taken over a closed wire. 

Electromagnetism  [Chapter IV] 
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 Ⅳ.2 Biot-Savart law : 

Ⅳ.3 Derivation of Ampere’s law : (Ampere’s theorem) 

From Biot-Savart’s law, the magnetic fiel dis due to a long straight wire is,  

ܤ =
଴ߤ

ߨ2
ܫ
ݎ
 

 

Since ܤሬ⃗  and ݈݀ሬሬሬ⃗  are in the same direction,  

ሬ⃗ܤ ∙ ݈݀ሬሬሬ⃗ = ݈݀ܤ cos 0 =         ݈݀ܤ

ර ሬ⃗ܤ ∙ ݈݀ሬሬሬ⃗ =
଴ߤ

ߨ2
ܫ
ݎ

ර ݈݀ =
଴ߤ

ߨ2
ܫ
ݎ

(ݎߨ2)     ⟹        ර ሬ⃗ܤ ∙ ݈݀ሬሬሬ⃗ =  ܫ଴ߤ

Ⅳ.4 Laplace force : 
A current element, placed in an external magnetic field ܤሬ⃗ , is submitted to an 

electromagnetic force (Laplace force) : 

݂݀⃗ = ଓ⃗ ݀߬ ∧ ሬ⃗ܤ   or  ݂݀⃗ = ଔ௦ሬሬ⃗ ݀ܵ ∧ ሬ⃗ܤ    where   ݂݀⃗ = ݈݀ ܫ ∧ ሬ⃗ܤ  

For respectively, volumic current of density ଓ⃗, surface current of density ଔ௦ሬሬ⃗  and a 

linear current of intensity ܫ. 

Ⅳ.5 Electromagnetic Induction phenomena. (Faraday law) : 

These phenomenon will be studied in the quasi-steady approximation, that is :  

 Considering the intensity of the current ݅(ݐ) the same along the wire. 
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 Using the same formalism as for the steady regime. 

The phenomenon of electromagnetic induction is the appearance of an electric 

field, so an electromotive induction force, in a circuit under the influence of a 

magnetic field, when the circuit is in a relative displacement with respect to 

the induction lines created by the magnetic field. 

There are two key laws that describe electromagnetic induction: 

1. Faraday’s law, this relates the rate of change of magnetic flux through a 

loop to the magnetude of the electromotive force ߳  induced in the loop. The 

relationship is : ࣕ = − ࢶࢊ
࢚ࢊ

 

The electromotive force refers to the potential difference across 

the unloaded loop (i.e. when the resistance in the circuit is high). In practice 

it is often sufficient to think of the electromotive force as voltage since both 

voltage and the electromotive force are measured using the same unit, 

the volt. This is the analog of the third Newton law in mechanics (back-

reaction) 

2. Lenz law, is a consequenceof energy conservation applied to 
electromagnetic induction. It was formulated by Heinrich Emil Lenz in 
1833. Lenz's law tells us the direction that current will flow. It states that 
the direction is always such that it will oppose the change in flux which 
produced it. This means that any magnetic field produced by an induced 
current will be in the opposite direction to the change in the original field. 
Lenz's law is incorporated into Faraday's law with a minus sign, the 
inclusion of which allows the same coordinate system to be used for both 
the flux and the electromotive force. The result is sometimes called the 
Faraday-Lenz law,    ࣕ = − ࢶࢊ

࢚ࢊ
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