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Foreword 

 

Sampled systems emerged with the digitalization of control systems, particularly when 

traditional analog control electronics began to be replaced by computers or microprocessors. These 

digital devices offer numerous advantages, including a wide range of strategies for controller 

design and computation, the ability to implement more complex and efficient algorithms, and better 

adaptation to systems that involve delays.  

This laboratory manual is intended for first-year Master students specializing in Embedded 

Systems Electronics. Its goal is to help students understand and study sampled systems using 

MATLAB. It introduces and guides them in using MATLAB functions and tools related to discrete-

time system analysis. 

The five lab sessions in this manual progressively cover: the mathematical description of 

sampled systems, the determination of a discrete linear system’s transfer function from recurrence 

equations, the stability and accuracy of sampled systems, the dynamic behavior of discrete linear 

systems via state equations, and finally, the analysis and implementation of digital control and 

observation in the state-space domain. 

Through these lab sessions, students will strengthen their theoretical understanding of 

discrete systems while developing practical MATLAB skills. This manual thus serves as an 

essential educational resource for training engineers in modern techniques of analysis and control 

of digital systems. 
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1. Representation of Sampled Systems 

 Sampled systems can be represented in various ways. The following summarizes the 

main modes of representation.  

Continuous System  Sampled System 

Transfer Function:
)(

)(
)(

sU

sY
sG   

 
Transfer Function:

)(

)(
)(0

zU

zY
zGB   

State Representation  

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝑏𝑢(𝑡)  

)()()(  duxCy
T

 

(System of n first-order 

differential equations) 

Sampler with  

Zero-Order Hold  

 

State Representation : 

  )()()1( kTugkTxFkx T   

)()()( kTdukTxhkTy
T

  

(System of n first-order recurrence 

equations) 

Transition from Continuous to Discrete State 

1.1. Transition from Continuous to Discrete State 

The solution to a continuous linear state equation is given by: 

 

  

t

b

ztAAt dzbuexex )()( )(

0  

With 
Ate )( is called the transition matrix 

To obtain the discrete state equation, we set kTt   and define: 

  

kT

zkTAAkt dzubexekTx
0

)(

0 )()(  

Similarly, we have : :)1( Tkt   

  


 

Tk

zTkATkA dzubexeTkx

)1(

0

))1(

0

)1( )()1(  
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this term (1), we obtain 

Factoring out 
ATe  in expression of  Tkx )1(  we obtain : 

 











 





Tk

zkTAAkTAT dzzubexeeTkx

)1(

0

)(

0 )()1(  

 =











  





kT Tk

kT

kTAkTAAkTAT dubedubexee
0

)1(

)()(

0 )()(    

                                        )(kTx  

We perform a change of variable in the second integral to bring it back to the interval [0, T]. 

 ddetkTkT   

Hence, we obtain : 

  







 



T

AATAT dkTubeekTxeTkx
0

)()()1(   

Assuming the input u(t) remains constant between sampling instants u(kT+α)=u(kT) (due to the 

zero-order hold), we can factor it out of the integral.  

  )()()1(
0

)( kTudbeekTxeTkx

T

TAATAT








 

   

We set  {
𝐹 = 𝑒𝐴𝑇                                    which depends only on A

𝑔 = ∫ 𝑒𝐴(𝑇−𝛼)𝑏𝑑𝛼
𝑇

0
 which depends only on A and 𝑏

 

As well as : TT
ch   

This leads to the following discrete-time state-space representation: 

 











)()()(

)()()1(

kTdukTxhkTy

kTugkTxFTkx

T
 

With : 
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F  : Discrete state transition matrix. 

g  : Vector of discrete control input. 

T
h  : Observation vector 

d  : Vector of direct transmission 

Example : 

Assume zero initial conditions. Consider a second-order continuous-time system whose 

transfer function is given by: 

)(

1

)(

)(
)(

asssU

sY
sG


  

From this transfer function, we can determine the following state-space representation: 

 

𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠(𝑠+𝑎)
⇒  𝑠𝑌(𝑠) =

𝑈(𝑠)

𝑠+𝑎
 |
𝑤𝑒 𝑠𝑒𝑡: 𝑌(𝑠) = 𝑥1 ; 𝑠𝑌(𝑠) ⇒ 𝑦̇ = 𝑥1̇ = 𝑥2 

𝑥2 =
𝑈(𝑠)

𝑠+𝑎
 ⇒ 𝑥2̇ = −𝑎𝑥2 + 𝑢 
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  









2

1
01)(

x

x
y  

A discrete-time single-input single-output (SISO) linear system governed by a set of linear 

recurrence equations with constant coefficients can be represented as: 

  )()()()()1( kTxhyetkTugkTxFTkx
T

  

The discrete transition matrix F is obtained by evaluating 
Ate at the sampling period T. The 

same algebraic methods used in the continuous case (such as Laplace transforms) apply here as 

well. 

[
𝑥1

𝑥2
] 

y(t) 
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Let's go back to the solution of the continuous equation of state: 

 dubexetx

t

tAAt




0

)(

0 )()(  

If we use the Laplace transform, we get : 

)()()()()()( 0 subsAxxssxubxAtx   
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
 

By comparing (1) with (2), we observe that: 




1

1))( ASIeAt  
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The vector g  is obtained from the following relation:  
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The observation vector is identical to the one corresponding to the continuous system; therefore, 

we have: 

 01
TT

ch . 

1.2. From Discrete Transfer Function to State Equations: 

The conversion from a discrete transfer function to state-space representation follows the 

same procedure as in continuous-time systems. 

Let’s consider the following example:
)(

)(

)32)(22(

352
)(0

zU

zY
zGB 




  

a. parallel representation: 

Decomposing the transfer function into partial fractions gives: 
𝑌(𝑧)

𝑈(𝑧)
=

−7

(𝑧+2)
+

12

(𝑧+3)
 

By setting: 
)3(

)(
)(

)2(

)(
)( 21







z

zU
zxet

z

zU
zx . We then obtain: 

5𝑧 + 3

(𝑧 + 2)(𝑧 + 3)
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 
 















)(12)(7)(

)()(3)1(

)()(2)1(

21

22

11

kTxkTxkTy

kTukTxTkx

kTukTxTkx

 

Hence, the state equations:  

 
 
 
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1

1
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02

)1(
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)1(

2

1
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1
kTu
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Tkx

Tkx
Tkx 










































  

  )(127)( kTxkTy   

In simulation graphs, the integration symbols are replaced by the delay operator z⁻¹. 

 

 

 

 

 

 

 

Parallel representation 

 

When initial conditions exist, they must be introduced at the output of each delay operator. This 

results from the time-shift property in discrete-time systems. 

𝑍[(𝑥𝑘+1)] = 𝑍[𝑧(𝑥𝑘)] = 𝑧𝑍[(𝑥𝑘)] − 𝑧𝑥0  

Then:      01

1)( xxZzxZ kk  

  

We obtain the result represented by the following diagram: 
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Initial Conditions in Discrete Systems 

 

1.3.  From State Equations to Transfer Function (Direct Computation) 

    )()(1 kTugkTxFTkX   

Taking the Z-transform of the discrete state equation gives: 

)()()( 0 zugzFxxZzXz   

We then have: 

)()()( 0 zugxzzXFZI   

That is : )()()()( 1

0

1 zugFZIxFzIzX    

We again obtain two terms : 

- Transient term : 0

1)()( xFzIzzx   

- Steady-state term : )()()( 1 zugFzIzzx   

For the transfer function, we focus only on the steady-state regime, hence the initial conditions 

are set to zero. We obtain: 

)()()( 1 zugFzIzzx   

By taking into account the z-transform of the observation equation, we obtain: 

 

gFzIhzGB
zU

zY T 1

0 )()(
)(

)(   
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In the case of a system that is not strictly proper, one simply adds the direct transmission term 

« d »: 

 

dgFzIhzGB
zU

zY T
 1
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PWNo. 01 

Sampling presentation using MATLAB 
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PWNo. 01 : Sampling Presentation Using MATLAB 

1. OBJECTIVE 

To discover and learn how to use MATLAB functions and tools related to the study of      

discrete-time systems. 

1. Generation of a discrete-time function 

2. Polynomials 

3. Computation of the Z-transform and its inverse: 

o Residue method 

o Direct method 

2.  Generalities on Discrete Linear Systems: 

A discrete signal f(n) is a sequence of real numbers called samples. n is the index associated with 

the sampling instant: t=nT. where T is the sampling period. 

 

Z-Transform 

The Z-transform of the discrete signal f(n) is the function of the variable z, denoted F(z): 

 

F(z) is expressed by: 

 

Inverse Transform (Time Function) 

The inverse transform is given by the following formula: 

 

-------------------------------------- 

g(t) 

δ[n] 

f(n) 

nT 

t 

nT 
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PART 1 

Generation of a Discrete-Time Function 

Let x(n)=Acos(wn+thita),with n=0,1,2,.........,N. 

Number of simples :N=21; Amplitude A=1; angular frequency w=0.3; 

phase :thita=1; 

Program 1 

--- Enter the data---- 

n=0:N-1; 

x=A.*cos(w.*n+thita); 

% Plot the function x(n) in the continuous domain 

plot(n,x) 

% Plot x(n) in the discrete domain 

stem(n,x);grid 

xlabel('n');ylabel('x(n)') 

title('Fonction x(n)') 

------------------------------ 

Polynomial (Examples) 

 To determine the roots of the polynomial Q=3x^2-3x+2, we use the 
following program: 

Program 2 

Q=[3 -3 2] 

solutions=roots(Q) 

------------------------ 

 To determine the polynomial with roots 1, 2, and 3, where r is the 

vector defining these roots, we use the following program: 

Program 3 

r=[1 2 3] 

% The polynomial obtained is: 

K=poly(r) 

-------------------------- 



     Dr. C. OGAB Sampling presentation using MATLAB.  

 
 

 
12 

 

PART 2 

Z-Transform and Inverse Z-Transform (Examples) 

Determine the inverse Z-transform of the function F(z)=z^3/[(z-0.5)(z-0.75)(z-

1)] 

by defining the discrete domain of the system: z and n. 

1. Transform the denominator into polynomial form 
2. Residue method 
3. Direct method 

---------------------------------- 

1- Transform the denominator into polynomial form 

Program 4 (method 1: we use the collect command.) 

syms n z 

% let Dz the denominator of F(z) 

Dz=(z-0.5)*(z-0.75)*(z-1); 

collect(Dz); 

------------------------------ 

Result of the program 4:  

collect(Dz)=z^3-9/4*z^2+13/8*z-3/8=1.0000*z^3 -2.2500*z^2+1.6250*z-0.3750 . 

 Verify with your results. 

------------------------------ 

Let r be the vector that defines the roots of the denominator Dz (0.5 ; 0.75 ; 

1)  

Program 5 (method 2: we use the poly command) 

r=[0.5 0.75 1] 

% The polynomial obtained is 

den=poly(r) 

-------------------------------- 

Result of the program 5:  

den=[1.0000 -2.2500 1.6250 -0.3750]; 

 Check against your results 

---------------------------------- 

2- Residue Method  
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Let’s now work with F(z)/z 

Program 6 

num=[0 1 0 0]; 

[num,den]=residue(num,den); 

fprintf('\n'); 

fprintf('r1=%4.2f\t',num(1));fprintf('p1=%4.2f\t',den(1)); 

fprintf('r2=%4.2f\t',num(2));fprintf('p2=%4.2f\t',den(2)); 

fprintf('r3=%4.2f\t',num(3));fprintf('p3=%4.2f\t',den(3)); 

Result of the program 6:  

r1=8.00; p1=1.00; r2=-9.00; p2=0.75; r3=2.00; p3=0.50; 

 Verify with your results. 

 Deduce the function f(n)(See the theoretical background on the last page 

of the PW) 

 fn=2*(0.5)^n-9*(0.75)^n+8; Verify with your results. 

 Verify the result by computing the Z-transform of f(n) 

Program 7 

Fz=ztrans(fn,n,z); 

simplify(Fz) 

%result : ans=8*z^3/(2*z-1)/(4*z-3)/(z-1) 

----------------------------------- 

 Verify that the inverse of F(z) gives f(n) 

Program 8 

iztrans(Fz) 

% Result : ans=2*(1/2)^n-9*(3/4)^n+8; 

------------------------------------------- 

 Plot the function f(n)for n ranging from 0 to 40 

Program 9 

n=0:40; 

fn=2*(1/2).^n-9*(3/4).^n+8; 

% plot f(n) in the continuous domain. 

plot(n,fn) 
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% plot f(n) in the discrete domain.  

stem(n,fn);grid 

axis([0 60 0 10]) 

grid 

-------------------------------------------- 

 Use the commands (bar) and (stairs) instead of (plot) and (stem). 

What do you observe? 

--------------------------------------------- 

PART 3  

3- Direct Method  

-Direct Calculation of the Z-Transform with Known Function f(n) 

Program 10 

syms n z;fn=3*(-1)^n+6*n-3;Fz=ztrans(fn);simplify(Fz) 

------------------------------------------------- 

Result of the program 10 : ans =12*z/(z+1)/(z-1)^2 

----------------------------------------------- 

-Direct Calculation of the Inverse Z-Transform with Known Function F(z) 

Program 11 

syms n z;Fz=12*z/(z+1)/(z-1)^2;fn=iztrans(Fz);simplify(fn) 

-------------------------------------------------------------- 

Result of the program 11 : ans =3*(-1)^n-3+6*n 

------------------------------------------------------ 

-We calculate the first 20 values of f(n) using the (dimpulse) instruction, 

after expressing the denominator of F(z) in polynomial form. 

-------------------------------------------------------------------------------------- 

Program 12(poly)  

den=poly([-1 1 1]); 

-------------------------------------------------- 

Result of the program 12 : den=[1 -1 -1 1]; 
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----------------------------------------------- 

Program 13(collect) 

collect((z+1)*(z-1)^2) 

------------------------------------------------ 

Result of the program 13 :ans=z^3-z^2-z+1 

------------------------------------------------ 

Program 14 

num=[12 0];den=[1 -1 -1 1];  

% Thus, the first 20 values can be computed as follows: 

fn=dimpulse(num,den,20) 

Home Work 

1/ Plot the function: y(n)=A.sin(2w.n+thita)+cos(w.n) knowing that:  n=0,1,2,....40, A=10, 

w=314, thita=1  

2/ Let a discrete-time system be defined by its Z-transform: (z+1)/[(z-1)(z^2+2z+2)] 

 Compute the time-domain function f(n) (inverse Z-transform). 

 Compute the first 20 values of f(n). 

 Plot f(n) over the interval [0, 40]. 

----------------------------------- 

Theoretical Background 

H(z)/z = [r1/(z-p1)]+[r2/(z-p2)+---------]  

H(z)= [r1.z/(z-p1)]+[r2.z/(z-p2)]+----------------- 

The impulse response is: 

h[n]=r1*(p1^n)*U[n]+r2*(p2^n)*U[n]+-----=r1*(p1^n)+r2*p2^n)+-------- 

 To deduce the step response (unit step U(z)), we first find: 

Y(z)=H(z).U(z) avec U(z)=z/(z-1) 

Based on the properties of the Z-transform: The time-domain signal (inverse Z-transform) of 

(z/z-a) is given by: a^n.U[n]=a^n, where U[n] is the unit step function. 
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PWNo. 02 : The Transfer Function of Discrete-Time Systems 

1. OBJECTIVE 

 Determine the transfer function of a discrete linear system from a recurrence equation 

 Determine and plot the system response 

 Simulate the system using Sumilink 

-------------------------------------- 

PART 1 

Plot the impulse response of the system defined by the transfer function: 

F(z) = 12*z/((z+1)*(z-1)^2) 

Method 1: Determine the expression of the impulse response f(n), and plot f(n)  

for n=0 to 10. 

-------------------------- 

Program 1 

syms n z;Fz=12*z/[(z+1)*(z-1)^2];fn=iztrans(Fz);simple(fn) 

------------------------- 

Direct methods for n=0 to 10 

 For Methods 2 and 3, one must first determine the vectors (num) and 

(den) of the transfer function F(z) 

- Determine num and den 

num=[.   .   .   . ] ; den=[ .  .  .  . ] 

---------------------------- 

Method 2: Use the 'dimpulse' command. The syntax for this command in MATLAB is 

as follows: 

dimpulse(num,den,10);grid 

--------------------------------- 

Method 3 with 'impulse'  

Program 2 

% Ts: sampling period 

Ts=1 

sysd=tf(num,den,Ts,'variable','z^-1') 

[y,t]=impulse(sysd) 
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impulse(sysd) 

%Plot the step response for n=0 to 10 

[y,t]=step(sysd,10); 

************; grid 

----------------------------- 

 Simulate the previous responses using a Simulink block. 

PART 2 

The following equation describes the relationship between the input and output signals of a discrete 

linear system with initial conditions : x[0]=0 , y[0]=0 

0.5y[n] - 0.25y[n-1] + 0.0625y[n-2]=0.5x[n]+0.5x[n-1] 

1. Find the transfer function H(z) = Y(z)/X(z) 

2. Compute and decompose H(z) = Y(z)/X(z) into partial fractions using the residue method, and 

then deduce H(z). 

Use the instruction below to calculate. : (r1, p1);(r2, p2);...... 

fprintf('\n');  

disp('r1=');disp(num(1));disp('p1=');disp(den(1));  

disp('r2=');disp(num(2));disp('p2=');disp(den(2)); 

3- Plot the impulse response h[n] using direct methods for: n=0:10. 

We demonstrate that : h(n)=[sqrt(2)/4]^n*[cos(n*45°)+5*sin(n*45°)]using the residue 

method. 

5- Plot the step response (response to a unit step U[n]) using direct methods. 

6- Simulate the previous responses using Simulink. 

----------------------------------- 

Theoretical Background 

The following equation describes the relationship between the input and output signals of a 

discrete linear system with initial conditions :x[0]=0 , y[0]=0 

y[n] - 0.5y[n-1] + 0.125y[n-2]=x[n]+x[n-1] 

a) By applying the Z-transform to both sides, we obtain: 
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)()()(125.0)(5.0)( 121 zXzzXzYzzYzzY    

The transfer function is: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1+𝑧−1

1−0.5𝑧−1+𝑂.125𝑧−2
=

𝑧2+𝑧

𝑧2−0.5𝑧+0.125
 

b) To obtain the discrete impulse response h(n), we need to calculate the inverse transform 

of H(z). First, we divide both terms by z, obtaining: 

𝐻(𝑧)/𝑧 =
𝑧 + 1

𝑧2 − 0.5𝑧 + 0.125
 

Using MATLAB's residue function, we obtain the residues and poles of  
𝐻(𝑧)

𝑧
  as follows: 

num=…. ;den=…….. ;[num,den]=residue(num,den); 

fprintf('\n'); 

disp('r1=') ;disp(num(1));disp('p1=') ;disp(den(1));….. 

disp ('r2=') ; disp(num(2)); disp('p2');disp(den(2));……. 

r1=0.5000-2.5000i                p1=0.2500+0.2500i 

r2=0.5000+2.5000i                p2=0.2500-0.2500i 
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With these values, we rewrite 
𝑌(𝑧)

𝑧
 as: 
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PWNo. 03 : Stability and precision of sampled systems 

2. OBJECTIVE 

 Study of the performance of a discrete-time linear system 

 Preparations for the analysis and correction of discrete-time linear systems 

3. Stability of Discrete-Time Systems in the Z-Plane 

Similar to continuous-time systems, poles characterize the system dynamics, and the zeros 

determine its speed of response. 

A discrete-time system is said to be stable if its response to a Dirac impulse input 

converges to zero as time progresses. 

The stability condition for continuous-time systems is: Re (pole) < 0. Using the continuous-to-

discrete mapping relation: ( 𝑍 = 𝑒𝑠𝑇). The stability condition for discrete-time systems becomes: 

|poles| < 1. Indeed: 𝑅𝑒(𝑠) < 0 ⇔ |𝑒𝑠𝑇| + |𝑍| < 1 

Theorem: A discrete-time system is stable if and only if all the poles of its transfer function lie 

strictly inside the unit circle in the complex Z-plane. The further the poles are from the unit circle 

(towards the origin), the more damped the system is.  

------------------------------------------------------ 

PART 1 

Example 1 

Let us consider the discrete-time system "sysd1", defined by the Open-loop transfer function: G(z)=1/[(z-0.1)(z-0.9)] 

 Plot the root locus and determine the stability limits of the system sysd1: (gain, poles, damping, overshoot, 

frequency (ω)) 

Program 1 

Ts=1 

Poles Laplace transform function Poles Z transform function 

Unstable 
Unstable 
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% System Definition: 

sysd1=zpk(,[0.1 0.9],1,Ts) 

% root locus:  

rlocus(sysd1);zgrid 

% Determine the poles and the gain at a selected point on the root locus. 

[k,poles]=rlocfind(sysd1) 

% Determine the poles, damping ratio, and equivalent frequency (ω) of the open-loop sysd1 system. 

damp(sysd1) 

--------------------------------------------------------- 

Example 2  

Determine the stability limits of the system "sysd2" defined by the transfer function F(z)=(z-0.5)/[(z-0.1)(z-0.9)]  

Program 2 

sysd2=zpk([0.5],[0.1 0.9],1,1) 

% Plot the impulse response of both systems, sysd1 and sysd2. 

impulse(sysd1,'g');hold on; impulse(sysd2,'r') 

-------------------------------------------------------------- 

 What can be concluded? Explain. 

-------------------------------------------------------------- 

PART 2  

Example 

Consider a continuous-time system with the following parameters: 

j=0.01;c=0.004;k=10;ki=0.05; 

num=ki; 

den=[j c k] 

 Determine the continuous-time transfer function H 

 Discretize this continuous-time system using a zero-order hold ( Fzoh) 

Recall that: 

Hd=Z[Fzoh(s)xH(s)] 

Ts u(t) 

 

y(t) 

H(s) Fzoh(s)  

 
Sampler 

Hd(z) 
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Hd=[(z-1)/z)].H1 

Knowing that: H1=Z(H0)  

with: H0=(H/s) and  (z-1)/z=(1-z-1) 

 Determine H0 

--------------------- 

Program 

Ts=0.005; 

H0=tf(***********) 

H1=c2d(H0,Ts,'zoh') 

-------------------------- 

- Determine Hd (Hd=[(z-1)/z)].H1) 

------------------------- 

numd=****** 

denumd=****** 

Hd=tf(numd,dnumd,Ts) 

% Plot the Bode diagrams of H and Hd 

bode(H,'r',Hd,'g') 

----------------------------------------------- 

 Plot the root locus of Hd.   

 Is the system stable? Why?  

 Calculate the poles and the equivalent damping ratio of Hd. 

By inserting a compensator D=(z+a)/(z+b), in series with the transfer function Hd; with : a=0.85;b=0  

D=zpk(a,b,1,Ts) 

 Determine the equivalent Open-loop transfer function ‘Ol’. 

 Compare the frequency responses of ‘Hd’ and ‘Ol’ (Bode diagrams). 

bode(Hd,'g',Ol,'r') 

 Plot the root locus of the Open-loop system after inserting the compensator and determine the stability limits. 

 What do you observe? 

 Plot the impulse response of Hd and Ol (Open-loop). What conclusions can be drawn? 

Analysis of the Closed-loop system. 

Cl=feedback(Ol,k); % k: gain placed in the feedback of the Closed-loop system. 
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  Plot the impulse response of the closed-loop system over the period [0 0.08 0 3e-4]. 

 Simulate the impulse responses of (Hd and Ol) in Open-loop, and (Cl) in Closed-loop using Simulink. 
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PWNo. 04 : State-Space Representation of Sampled Systems 

1. OBJECTIVE 

Describing the dynamic behavior of a discrete-time linear system using state-space equations. 

2. Theoretical Background 

A linear system can be represented by state-space equations, as illustrated in the table below. 

 

 

Continuous system Discrete-time system 

State-space 

Equation 
BuAxx 



 
x[k+1]=Fx[k]+Hu[k] 

Observation 

Equation 

y=Cx+Du y[k]=Cx[k]+Du[k] 

A ou F State Transition Matrix or Dynamic Matrix ( nn ) 

B ou H Control Matrix or Input Matrix ( rn ) 

C Observation Matrix or Output Matrix ( np ) 

D Direct Transmission Matrix ( rp ) 

n: Number of state variables = order of the system 

r: Number of control inputs 

p: Number of outputs 

u: Input signal 

y: Output signal. 

PART 1 

 State-Space Representation of a System: 

A=[0 1;0 -1];B=[1;0];C=[1 0];D=0; 

 State-space representation of a continuous-time system (e.g., dc motor) 

Motor_c=ss(a,b,c,d) 

 Conversion of the system from continuous-time state to discrete-time state 

(discretization of the continuous system) 

Program 1 

Ts=1; 



    Dr. C. OGAB Représentation d’État des Systèmes Échantillonnés.   

  
 

 
30 

 

motor_d=c2d(motor_c,Ts) 

[Ad,Bd,Cd,Dd]=ssdata(motor_d) 

PART 2 

Consider a discrete system defined by the following recurrence equation: 

Y[k+3]+2Y[k+2] +5Y[k+1] +Y[k]=U[k] 

U[k] : Input Signal 

Y[k] : Output Signal 

 Write the state equations of the system and determine the matrices: F, H, C, D. 

 Use the following as state variables: X1[k] = Y[k];  X2[k] = Y[k+1];  X3[k] = Y[k+2] 

Program 2 

% Sampling period 

Ts=0.5; 

% Definition of the state-space system - ss( state-space) 

sys=ss(F,H,C,D,Ts); 

% Plot the responses: step response and impulse response 

step(sys,'g'); 

impulse(sys,'r');grid 

PART 3 

% Determine the transfer function of the previous equation; find the numerator 

(num) and denominator (den). 

Program 3 

sys=tf(num,den,Ts); 

% Plot the responses: step response and impulse response 

step(sys,'g'); 

impulse(sys,'r');grid 



    Dr. C. OGAB Représentation d’État des Systèmes Échantillonnés.   

  
 

 
31 

 

PART 4 

- Complete and simulate the following block diagrams 

- Plot the step and impulse responses and compare the results 

Reduced Model 

 

Detailed Model 

 

 

 

 

 

 

 

 

 

 

 

Z-1 
y(t) 
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PWNo. 05 : Control and Observation in Digital State-Space 

1. OBJECTIVE 

The purpose of this lab work is to analyze and implement a digital control system in the         

state-space domain. First, a control law will be designed using direct state feedback, and then 

using estimated state feedback, in order to analyze and compare their performance through 

simulations in the Matlab/Simulink environment. 

2. Practical work: 

Consider the system given by the following discrete-time state-space equation (with initial 

conditions = 0): 

{
𝑥[𝑘 + 1] = 𝐹𝑥[𝑘] + ℎ𝑢[𝑘]

𝑦[𝑘]        = 𝐶𝑥[𝑘] + 𝑑𝑢[𝑘]
  With   𝐹 = [

0 1
−0.368 1.368

];  ℎ = [
0
1
] ; 𝑐 = [0.264 0.368] ;  d=0. 

Part 1 

Create a Simulink file and set the simulation time Tf to 60 s: 

I Represent the state-space equation using the detailed model (see Lab 4). 

II. Apply a unit step input u(k) and plot the response of the system. 

 Study the controllability and observability of this system using the Matlab commands ctrb 

and obsv (see help ctrb and help obsv for more details). 

Part 2 

We aim to design a linear state-feedback control for this system by assigning the following 

closed-loop poles: z1=(0.5-0.5j), z2=(0.5+0.5j). 

 Use the Matlab function place (see help place) to determine the elements of the gain       

vector L for the state-feedback control law (F−hL). Then, implement this control in Simulink 

using a detailed model. e(k)=u(k)-Lx(k).( see Theoretical Background) 

 At the bottom of Figure 1, represent the state-space equation of the system with its 

control using the detailed model. 

 Keeping the same simulation parameters, plot the system response before and after 

applying the control in the same window. Compare the results. 

Part 3 

Suppose that x[k] is not accessible, and we want to associate an observer with this system, having 

dynamics characterized by the following poles: z3=(0.118-0.37j), z4=(0.118+0.37j); 
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 Determine the elements of the observer gain vector v ( (F−vC)) using the Matlab function 

place. 

  At the bottom of Figure 2, represent the state-space equation of the system with its control 

using the state estimated by the observer (use the detailed model). e(k)=u(k)-L𝒙̂(k). ( see 

Theoretical Background) 

 Plot the system response and compare it with the results obtained previously. 

 

Figure 1 

Figure  2 

Theoretical Background 

 To compute the elements of the state-feedback gain vector L, the following equation needs to 

be solved: det(zI-(F-hL))=(z-z1)(z-z2). 

 To compute the elements of the observer gain vector v, the following equation needs to be 

solved: det(zI-(F-vC)=(z-z3)(z-z4). 

- The equation of the observer is given by: 

y(k) 
Z-1 h 

F 

C u(k) 

𝐱 (𝐤 + 𝟏)) 

u(k) y(k) 

𝒚̂(𝒌)

) 
L 

 

H 

F 

𝐱 (𝐤)

)  Z-1 

 
 

State 

Observer 

State-

feedback 

System 
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 Check and validate your results. 
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