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Introduction

Our goal in this set of lecture notes is to provide students with a strong
foundation in mathematical analysis. Such a foundation is crucial for future
study of deeper topics of analysis. Students should be familiar with most
of the concepts presented here after completing the calculus sequence. How-
ever, these concepts will be reinforced through rigorous proofs. The lecture
notes contain topics of real analysis usually covered in a 10-week course: the
completeness axiom, sequences and convergence, continuity, and differentia-
tion. The lecture notes also contain many well-selected exercises of various
levels. Although these topics are written in a more abstract way compared
with those available in some textbooks, teachers can choose to simplify them
depending on the background of the students. For instance, rather than intro-
ducing the topology of the real line to students, related topological concepts
can be replaced by more familiar concepts such as open and closed intervals.
Some other topics such as lower and upper semicontinuity, differentiation of
convex functions, and generalized differentiation of non-differentiable con-
vex functions can be used as optional mathematical projects. In this way,
the lecture notes are suitable for teaching students of different backgrounds.
Hints and solutions to selected exercises are collected in Chapter 5. For each
section, there is at least one exercise fully solved. For those exercises, in
addition to the solutions, there are explanations about the process itself and
examples of more general problems where the same technique may be used.
Exercises with solutions are indicated by a I and those with hints are indi-
cated by a B. Finally, to make it easier for students to navigate the text, the
electronic version of these notes contains many hyperlinks that students can
click on to go to a definition, theorem, example, or exercise at a different
place in the notes. These hyperlinks can be easily recognized because the
text or number is on a different color and the mouse pointer changes shape
when going over them
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Chapter 1

Logic and mathematical
reasoning

At the intersection of philosophy and mathematics, logic is a fundamental
branch that enables the determination of the truth value of propositions and
the construction of mathematical reasoning. This document serves as an in-
troduction to this crucial branch of mathematics. We will define the concepts
of proposition and operator, construct truth tables, explain implications, re-
ciprocal implications, and equivalence, before delving into the various types
of reasoning used in mathematics.

Formal logic (symbolic logic) In mathematics, the systematic study of
reasoning is called formal logic. It analyzes the structure of arguments, as
well as the methods and validity of mathematical deduction and proof.

This chapter is concerned with first-order propositional logic. First-order
here means that there is no quantification over propositions, and proposi-
tional means that there is no quantification over terms. We consider mainly
intuitionists logic, where A ? A is not valid in general. We also study clas-
sical logic. In addition, we consider minimal logic, which is the subset of
intuitionists logic with implication as only connective. In this setting we
study detors and detor elimination.
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1.1 Propositional Logic

1.1 Propositional Logic

Definition 1.1.1. (Proposition)
A proposition is a statement which has a truth value either true or false.

Notation: Variables are used to represent propositions. The most common
variables used are P , Q , and R.

Example 1.1.1. 1) P : 2 is even , Q : 2 + 2 = 5 , R : 2 + 2 = 4 are
popositions.
2) x+ 2 = 2x is not a proposition.

Definition 1.1.2. ( Negation)
The negation of a proposition P is also called not P , and is denoted by

P .

Example 1.1.2. 1) If P : 2 is even then P : 2 is not even .
2) If P : 2 + 2 = 5 then P : 2 + 2 ̸= 5 .

Definition 1.1.3. (Truth-value)
The truth-value is one of the two values, ”true” (T ) or ”false” (F ) ,

that can be taken by a given logical formula in an interpretation (model)
considered . Sometimes the truth value T is denoted in the literature by 1,
and F by 0 .

P P

1 0

0 1

It is important to understand how to construct a truth table as we will
use it many times in this course. This connector is quite intuitive as we use
it in our daily lives.

Example 1.1.3. P : “ Algiers is the capital of Algeria ” (its value is V )
P : “Algiers is not the capital of Algeria” (its value is F)
Q : “ π is an integer ” (F)
Q : “ π is not an integer ” (V)

7



Logic and mathematical reasoning

1.2 Logical Connectors

1.2.1 Conjunction

Definition 1.2.1. (Conjunction) ; (And) : denoted ∧
If P and Q are two propositions then their conjunction is the proposition

whose value is true only when both are true. A conjunction can also be written
P ∧Q which is read P and Q. .

P Q P ∧Q

1 1 1

1 0 0

0 1 0

0 0 0

Example 1.2.1. 1) A triangle has three sides and a square has four sides”
is a conjunction

2) Let P : 2 ≤ 3 and Q : 22 ≤ 32 , the proposition P ∧Q is true.

1.2.2 Disjunction

Definition 1.2.2. (Disjunction);(Or) : denoted ∨
A compound statement of the form P or Q is known as a disjunction and

it is denoted by P ∨ Q . The disjunction of P and Q has value false only
when both are false.

8



1.2 Logical Connectors

P Q P ∨Q

1 1 1

1 0 1

0 1 1

0 0 0

1.2.3 Implication

Definition 1.2.3. ( Implication) : denoted (=⇒)

A conditional statement of the form ” if . . . then . . .” is known
as a conditional or an implication.
A conditional statement has two components: If P , then Q. Statement P
is called the antecedent (hypothesis, or premise) and statement Q the conse-
quent (or conclusion) .
We write P =⇒ Q ; and read P implies Q .

A conditional statement can be written a number of different, but equiva-
lent, ways :
- If P then Q .
- P implies Q .
- Q if P .
- p only if Q .
- P is sufficient for Q .
- Q is necessary for P .
The implication of P and Q has value false only when P is true and Q is
false .

The truth table for the proposition P =⇒ Q is as follows :

9



Logic and mathematical reasoning

P Q P =⇒ Q

1 1 1

1 0 0

0 1 1

0 0 1

Example 1.2.2. 1) ”If a polygon has three sides, then it is a triangle” is a
conditional statement.

2) ”If 1 ≤ 3 , then 1 + 1 ≤ 1 + 3” is a true implication.

3) ”If π and 2 + 3i are real numbers then 2 + 3i is real number” is a
true implication.

4) ”If 2+3 = 5 , then 3×2+3×3 = 20” is a false implication because
when x = 5 , then 3x = 15 .

Definition 1.2.4. (Converse of implication)
The converse of P =⇒ Q is the proposition Q =⇒ P

Example 1.2.3. Let P : x is a prime number different from 2” and q Q : is
odd”. One has P =⇒ Q but we do not haveQ =⇒ P .

Theorem 1.2.1. For all propositions P and Q , the following statements are
true .
1) P =⇒ P ∨Q and Q =⇒ P ∨Q.
2) P ∧Q =⇒ P and P ∧Q =⇒ Q.

Proof.

1) We give a truth table for P =⇒ P ∨Q as follows.

10



1.2 Logical Connectors

P Q P ∨Q P =⇒ P ∨Q

1 1 1 1

1 0 1 1

0 1 1 1

0 0 0 1

Then P =⇒ P ∨Q is always true.
The truth table for Q =⇒ P ∨ Q is analogous to the one for P =⇒ P ∨ Q
the conclusion is the same.

2) In order to prove that P ∧Q =⇒ P for all propositions P and Q , we
give a truth table for P ∧Q =⇒ P

P Q P ∧Q P ∧Q =⇒ Q

1 1 1 1

1 0 0 1

0 1 0 1

0 0 0 1

Then P ∧ P =⇒ Q is always true.
The truth table for P ∧Q =⇒ Q is analogous to the one for P ∧Q =⇒ P

1.2.4 Equivalence

Definition 1.2.5. (Equivalence) : denoted ( ⇐⇒) “ P is equivalent
to Q ”

11



Logic and mathematical reasoning

The symbol for equivalence is ( ⇐⇒) a double arrow that resembles the
implication arrow discussed earlier.

Two mathematical statements are equivalent if they have the same truth
values. The statement of the form P if, and only if Q is called an equivalence
or biconditional statement. It is often abbreviated as P iff Q and is written in
symbols as ⇐⇒ . It is equivalent to the compound statement “ P implies Q ,
and Q implies P ” composed of two CONDITIONAL statements. The truth-
values of P and Q must match for the biconditional statement as a whole to
be true.

The truth table for the proposition P ⇐⇒ Q is as follows :

P Q P ⇐⇒ Q

1 1 1

1 0 0

0 1 0

0 0 1

Example 1.2.4. 1) A triangle is equilateral if, and only if, it is equiangular”
is a biconditional statement. 2) The proposition ” (1 = 1) ⇐⇒ (0 = 0)” is
true, the proposition ” (1 = 0) ⇐⇒ (0 = 2) ” is true, whereas the proposition
” (1 = 0) ⇐⇒ (0 = 0 =)” is false. 3) For all real x x, x ̸= 0 and y, we have
y = x ⇐⇒ y

x
= 1 is true. 4) The equivalence statement (y = x ⇐⇒ y2 = x2

is not true for all real x and y: for example 22 = (−2)2 ⇏ 2 = −2.

Definition 1.2.6. (Contrapositive)

The contrapositive of P =⇒ Q is the proposition Q =⇒ P . It can be
shown that these two are equivalent:

P =⇒ Q ⇐⇒ Q =⇒ P

The equivalence can easily be verified using truth table:
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1.2 Logical Connectors

P Q P Q P =⇒ Q Q =⇒ P

1 1 0 0 1 1

1 0 0 1 0 0

0 1 1 0 1 1

0 0 1 1 1 1

Properties 1.2.2. 1) Morgan’s laws :

P ∧Q ⇐⇒ P ∨Q, and P ∧Q ⇐⇒ P ∨Q

2) Idempotents of ∧ and ∨ .

P ⇐⇒ P ∧ P, and P ⇐⇒ P ∨ P

3) Commutativity of ∧ and ∨

P ∧Q ⇐⇒ Q ∧ P, and P ∨Q ⇐⇒ Q ∨ P

4) Associativity of ∧ and ∨

P ∧ (Q ∧R) ⇐⇒ (P ∧Q) ∧R

P ∧ (Q ∨R) ⇐⇒ (P ∨Q) ∨R

5) Distributivity of ∧ over ∨ and ∨ over ∧ respectively .

P ∧ (Q ∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R)

6) Double negation law ;

P ⇐⇒ P

7) Absorption laws :
P ∨ (P ∧Q) ⇐⇒ P

P ∧ (P ∨Q) ⇐⇒ P
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Logic and mathematical reasoning

Exercise 1.2.1. Prove the following equivalence by drawing the truth table:

P =⇒ Q ⇐⇒ P ∨Q.

Solution

P Q P P =⇒ Q P ∧Q

1 1 0 1 1

1 0 0 0 0

0 1 1 1 1

0 0 1 1 1

The truth table establishes that these corresponding pairs of compound
statements are logically equivalent.

1.3 Predicates and Quantifiers

1.3.1 Predicates

Definition 1.3.1. (Predicate) A predicate is a statement that contains
variables and that may be true or false depending on the values of these
variables.

Example 1.3.1. 1) Let P (x) : x2 < x is a predicate . One has P (1) : 12 <

1 is false and P (2) : 22 < 2 is even false. But for x =
1

2
P (

1

2
) :

1

4
<

1

2
is true .

A predicate can also be made a proposition by adding a quantifier. There
are two quantifiers:

1.3.2 Universal quantification

Definition 1.3.2. (Universal quantifier)
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1.3 Predicates and Quantifiers

A universal quantifier is a quantifier meaning ”for all”, ”for any”, ”for
each” or ”for every”, denoted by ∀ .
Here is a formal way to say that for all values that a predicate variable x can
take in a domain A, the predicate is true:

∀x ∈ A : P (x).

which is read as for all x belonging to A , P (x) is true .

Example 1.3.2. All natural numbers of the form 2n+1 are odd is written:
∀n , 2n+ 1 is odd.

1.3.3 Existential quantification

Definition 1.3.3. (Existential quantifier)
An existential quantifier is a quantifier meaning ”there exists”, ”there is

at least one” or ”for some” , denoted by ∃ .
Here is a formal way to say that for some values that a predicate variable x
can take in a domain A, the predicate is true:

∃x ∈ A : P (x).

which is read some for all x belonging to A , P (x) is true .

Example 1.3.3. There exists a natural number n satisfying , n×n = n+n
can be written: ∃n : n× n = n+ n.

Remark 1.3.1. A unique existential quantifier is a quantifier meaning
”there is a unique”, ”there is exactly one” or ”there exists only one” , de-
noted by ∃! .
Here is a formal way to say that for some values that a predicate variable x
can take in a domain A, the predicate is true:

∃!x ∈ A : P (x).

which is read , there exists only one x belonging to A , P (x) is true .

Example 1.3.4. ∃!x ∈ R : x+ 2 = 5 : there is a real number x such that
x+ 2 = 5 , which is true .

15



Logic and mathematical reasoning

Properties 1.3.1. We observe, at least intuitively, that the negations of ∃
and ∀ are correlated in the following manner.

∀ x, P (x) ⇐⇒ ∃ x, P (x).

∃ x, P (x) ⇐⇒ ∀ x, P (x).

Exercise 1.3.1. Write the negations by interchanging ∀ and ∃.

a) There is a real number x such that , x2 < 0.
b) Every integer is even.
c) There is an integer x such that : x2 + x+ 3 = 0.

Solution a) ∃ x ∈ R : x2 < 0. ⇐⇒ ∀ x ∈ R : x2 ≥ 0.
. b) There is an integer which is not even.
c) ∃ x ∈ ZZ : x2 + x+ 3 = 0 ⇐⇒ ∀x ∈ ZZ : x2 + x+ 3 ̸= 0.

1.3.4 Nested Quantifiers

Two quantifiers are nested if one is within the scope of the other. The order
of existential quantifiers and universal quantifiers in a statement is impor-
tant.
♠ When we have one quantifier inside another, we need to be a little careful.

Example 1.3.5. Consider the following proposition over the integers:

∀x ∈ ZZ ,∃y ∈ ZZ : x+ y = 0.

• The proposition is true.
• The existence of y depends on x : if you pick any x, I can find a y that
makes x+ y = 0 true.

Example 1.3.6. Consider the following proposition over the integers:

∃ x ∈ ZZ ,∀ y ∈ ZZ : x+ y = 0.

The proposition is false.
The existence of y does not depend on x : there is no y that will make
x+ y = 0 true for every x .

16



1.4 Methods of Proof

Example 1.3.7. Consider the following proposition over the integers:

∃ y ∈ ZZ ,∀ x ∈ ZZ : x+ y = x.

The proposition is true.
There is y = 0 that will make x+ y = x for every x.

Example 1.3.8. Suppose we claimed . ” For every real number, there’s a
real number larger than it ”.
We’d write this as :

∀x ∈ R ,∃y ∈ R : y > x.

• The proposition is true.

♠ We can exchange the same kind of quantifier (∃ , ∀ ) .
These statements are equivalent:

∀x,∀y , P (x, y) ⇐⇒ ∀y,∀x , P (x, y).

∃x,∃y , P (x, y) ⇐⇒ ∃y,∃x , P (x, y).

1.4 Methods of Proof

Now we have all the tools to carry out complete mathematical reasoning.
Reasoning allows us to establish a proposition based on one or more initial
propositions that are accepted (or previously proven) by following the rules
of logic.

1.4.1 Direct Methods

We have already seen one way of proving a mathematical statement of the
form: If P , then Q . Based of the fact that the implication P =⇒ Q is
false only when P is true and Q is false, the idea behind the method of proof
that we discussed was to assume that P is true and then to proceed, through
a chain of logical deductions, to conclude that Q is true. Here is the outline
of the argument:

Example 1.4.1. Prove the statement: If n is even, then n2 is even.
Assume that the integer n is even.

17



Logic and mathematical reasoning

∃k ∈ ZZ, n = 2k =⇒ n2 = 4k2

=⇒ n = 2(2k2).

which shows that n2 is even.

1.4.2 Proof by Contrapositive

The proposition Q =⇒ P is called the contrapositive of the proposition
P =⇒ Q .
A proposition and its contrapositive are equivalent, which means that one
can be proven to prove the other. For example, to prove P =⇒ Q , we can
use contrapositive reasoning to prove Q =⇒ P .

Example 1.4.2. Prove the statement: If n2 is even, then n is even.
Assume that the integer n is not even . It then follows that

∃k ∈ ZZ, n = 2k + 1 =⇒ n2 = (2k + 1)2 = 4k2 + 4k + 1

=⇒ n2 = 2(2k2 + 2k) + 1.

=⇒ n2 = 2k′ + 1. such that (k′ = 2k + 1).

which shows that n2 is not even.

1.4.3 Reasoning by Contradiction (Absurd)

To prove that a proposition P is true we may assume that P is false then P
is true. Therefore we show that it would lead to a contradiction or a false
statement

Example 1.4.3. Prove that
√
2 is irrational .

Let P :
√
2 is irrational. Now assume that P is false then P is true, that

is
√
2 is rational. Then there are some integers a and b with no common

factors:

18



1.4 Methods of Proof

∃a ∈ ZZ,∃b ∈ ZZ⋆,
√
2 =

a

b
=⇒ a2 = 2b2

=⇒ a2 iseven

=⇒ a2 = 2c , c ∈ ZZ

=⇒ 4c2 = 2b2 , by substituting

=⇒ 2c2 = b2

=⇒ b2 is even

=⇒ b is even

This means that a and b have a common factor 2 which is a contra-
diction, and so P must be false and P is true

1.4.4 Proof by Counter-Example

To show that a proposition of the form ∀ x : P (x) is false ”, we show that
its negation ∃ x : P (x) is true ”. This is providing a counter-example.

Example 1.4.4. Let P be the proposition ∀n ∈ N , n2 + 1 is a prime
number ”.
Prove that P is false . To prove that P is false, we will show that its negation
P is true.
P is the proposition ∃n ∈ N suchthat n2 + 1 is not a prime number
Let n = 3 . Then n2 + 1 = 10 . 10 is not a prime number. n is a
counter-example of proposition P .

1.4.5 Proof by Mathematical Induction

To prove a proposition in the form ∀n : P (n) where n is a natural number,
it suffices to prove it in two steps:

1) P (n0) is true for a certain base step n0 : Usually the base case is
n = 1 or n = 0 .
2) P (n) =⇒ P (n+ 1). That is, if P (n) is true, then P (n+ 1) is true.
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Logic and mathematical reasoning

Example 1.4.5. Prove that 3n−1 a multiple of 2 for all natural numbers n .

1) Show it is true for n = 1 31 − 1 = 3 − 1 = 2 : One has 2 is a
multiple of 2. That was easy. 31 − 1 is true

2) Assume it is true for n and prove that 3n − 1 is a multiple of 2 ?

3n − 1 = 2k =⇒ 3n × 3− 1× 3 = 2k × 3

=⇒ 3n+1 × 3− 1 = 2 + 2k × 3

=⇒ 3n+1 × 3− 1 = 2(1 + 3k)

=⇒ 3n+1 × 3− 1 = 2k′ , suchthat k′ = 1 + 3k.

Therefore ∀n ∈ N , 3n − 1 a multiple of 2

Exercise 1.4.1. Rewrite the following sentences using quantifiers:

1. f is a constant function on R .

2. The graph of the function f intersects the line y = x.

3. The equation sin x = x has one and only one solution in R .

4. For every integer, there exists an integer that is strictly greater.

Exercise 1.4.2. Negate the following formulas:

• 0 ≤ x ≤ 25 =⇒
√
x ≤ 5.

• 0 < x ≤ 1 or 2 ≤ y ≤ 3.

• ∃x ∈ R : cos(x) = 0 and ∃x ∈ R : sin(x) = 0.

• ∀ϵ > 0, ∃η > 0,∀x ∈ D ; | x− x0 |< η =⇒ | f(x) ∗ f(x0) |< ϵ.

Exercise 1.4.3. Prove the following formulas:
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1.4 Methods of Proof

1. | x |< 0.1 =⇒ | 2x2 − x |< 0.2 (Direct proof).

2. For any integer n, n2 + 3n is even (Proof by cases).

3. ∀n ∈ N : n2 is even =⇒ n is even(Contrapositive)..

4.
√
2 is irrational (Proof by contradiction).

5. ∀ a, b ∈ R+ :
a

1 + b
=

b

1 + a
=⇒ a = b (Proof by contradiction).

6. ∀n ∈ N : 2n > n (Proof by induction).

7. For real numbers a, b, c, and d such that a ≤ b and c ≤ d , is it
always true that ac ≤ bd ? (Counterexample)
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Chapter 2

Sets, Relations and
Applications

This course aims to cover some basic of set theory and it’s properties. Through-
out this chapter, we will learn about sets, relations and functions. we will
infer that sets and relations are interconnected with each other ( relations
define the connection between the two given sets). After that, we will delve
further in relations where we define another kind that can be considered a
function.

2.1 Basic concepts of set theory

2.1.1 Sets and Elements

Definition 2.1.1. Intuitively, a set is a collection of objects with certain
properties. The objects in a set are called the elements or members of the
set. We usually use uppercase letters to denote sets and lowercase letters to
denote elements of sets. If a is an element of a set A, we write a ∈ A . If a
is not an element of a set A, we write a ∈ A . To specify a set, we can list
all of its elements, if possible, or we can use a defining rule. For instance,
to specify the fact that a set A contains four elements a, b, c, d we write :

A = {a, b, c, d}.

Although sets can contain many different types of elements, numbers are
probably the most common for mathematics. For this reason particular im-
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2.1 Basic concepts of set theory

portant sets of numbers have been given their own symbols.
N : The set of natural numbers .
ZZ : The set of integers .
IQ : The set of rational numbers.
R : The set of real numbers .
IC : The set of complex numbers .

An empty set, denoted by ∅ , is a set that does not contain any elements.
A set E = {a} , consisting of a single element, is called a singleton.

Example 2.1.1. 1) The set A given by A = {a1, 2, 3, 4} is an explicit
description.
2) The set {x , is a prime number} is implicit.
3) {x : x ∈ {1, 3, 5} and x ≤ 1} is an empty set.

Definition 2.1.2. If a set A contains exactly n elements where n is a non-
negative integer, then A is a finite set, and n is called the cardinality of A.
We write Card(A) = n .
If Card(A) is finite, A is a finite set; otherwise, A is infinite .

Example 2.1.2. 1) A = {1, 5, 9, 4,
√
3} , Card (A) = 5 .

2) The set B = {x x ∈ ZZ : −3 < x < 7} Card (B) = 8.
3) Card (∅ = 0).
4) The set of positive integers is an infinite set.

Definition 2.1.3. (Equality)
Two sets A and B are equal if each element of A is an element of B and vice
versa. This is denoted, A = B . Formally ;

A = B ⇐⇒ ∀ x : x ∈ A ⇐⇒ x ∈ B. (2.1.1)

Example 2.1.3. Let A =} − 2,−1, 0, 1, 2} and B = {n : n ∈ ZZ , −2 ≤
n ≤ 2}. Then A=B.

Definition 2.1.4. ( Equivalent sets ) The two sets are equivalent, if the
number of elements is the same for two different sets. For example, A =
{1, 2, 3, 4} and B = {7, a, 3, z} are equivalent.

Definition 2.1.5. (Subset) The set A is a subset of B denoted by A ⊆ B
if and only if every element of A is olso an element of B.

A ⊆ B ⇐⇒ ∀ x : x ∈ A =⇒ x ∈ B. (2.1.2)
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Remark 2.1.1.
• If A ⊆ B , and A ̸= B , then A is said to be a proper subset of B

and it is denoted by A ⊂ B .
• A ⊈ B is the negation of A ⊆ B More formally,

A ⊈ B ⇐⇒ A ⊆ B

⇐⇒ ∀ x : x ∈ A =⇒ x ∈ B

=⇒ ∃x : x ∈ A ∧ x ̸∈ B

• The empty set is a subset of every set,including the empty set itself .

Example 2.1.4. 1. {14, 22, 55} ⊆ {14, 22, 55} .
2. {a, x} ⊂ {a, y, y, t} .
3. N ⊆ ZZ ⊆ IQ ⊆ R.
4. {

√
2, i} ⊈ R.

Definition 2.1.6. Given a set E, the power set of E is the set of all subsets
of E. The power set is denoted by P(E). Formally

P (E) = {A,A ⊆ E}. (2.1.3)

Remark 2.1.2. • The number of elements in the power set of E is 2n ,
where n is the number of elements in set E . That is card(P(E)) = 2n , where
n = card(E).
• A ∈ P (E) , means A ⊆ E.

Example 2.1.5. If E = {1, 2, 3} , then card(P(E)) = 8 and

P (E) = {∅, {1}, , {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

2.1.2 Set Operations

Definition 2.1.7. (Set Intersection)
The intersection of A and B denoted by A∩B is the set of all elements that
are in both A and B. That is,

A ∩B = {x : x ∈ A and x ∈ B}. (2.1.4)

We say that A and B are disjoint sets if A ∩B = ∅.
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2.1 Basic concepts of set theory

Example 2.1.6. 1. {1, 2, 3, 4, 5} ∩ {6, 8, 4, 5, 3} = {3, 4, 5}.
2. {x ;x ≥ 0} ∩ {x;x ≥ 2} = {x;x ≥ 2}.
3. N ∩ ZZ ∩ R = N.

Definition 2.1.8. (Set Union )
The union of A and B denoted by A ∪B is the set of all elements that are
in A or in B or in both A and B. That is,

A ∪B = {x : x ∈ A or x ∈ B}. (2.1.5)

Example 2.1.7. 1. {1, 2, 3, 4, 5} ∪ {6, 8, 4, 5, 3} = {1, 2, 3, 4, 5, 6, 8}.
2. {x ;x ≥ 0} ∪ {x;x ≥ 2} = {x;x ≥ 0}.
3. N ∪ ZZ ∪ R = R.

Lemma 2.1.1. For any two sets A and B, we have

card(A ∪B) = card(A) + card(B)− card(A ∩B). (2.1.6)

Theorem 2.1.2. If A and B are any sets, then :
1. A ∩B ⊆ A and A ∩B ⊆ B.
2. A ⊆ A ∪B and B ⊆ A ∪B.

Properties 2.1.3. 1. Commutative laws:

A ∩B = B ∩ A ; A ∪B = B ∪ A.

2. Associative laws:

(A ∩B) ∩ C = A ∩ (B ∩ C) ; (A ∪B) ∪ C = A ∪ (B ∪ C).

3. Distributive laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) ; A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

4. Domination laws:

A ∩ ∅ = ∅ ; A ∪ E = E.

5. Identity laws:
A ∪ ∅ = A ; A ∩ E = A.

6. Idempotent laws:

A ∪ A = A ; A ∩ A = A.
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Definition 2.1.9. (Set complement)
Let A subset of the universal set E. The complement of A relative to E
denoted by CE(A) or A is the set of elements that are in E and not in
A.That is,

CE(A) = A = {x ∈ E ; x ̸∈ A}. (2.1.7)

Example 2.1.8. Let the universe be R :
1. {0} = {x; x ̸= 0} = R∗

2. {−1, 1} = ]−∞,−1[∪]1,+∞[.

Properties 2.1.4. Let A and B subsets of the universal set E :
▶ E = CE

E = ∅..
▶ CE(CEA) = A = A.
▶ A ∪ A = E and A ∩ A = ∅.
▶ A ⊂ B =⇒ B ⊂ A.
▶ A ∩B = A ∪B and A ∪B = A ∩B.

Definition 2.1.10. (Set difference)
The difference of A and B is the set of elements that are in A but not in B ,
denoted by A\B . That is,

A\B = {x;x ∈ A ∧ x ̸∈ B}. (2.1.8)

Example 2.1.9. 1. {1, 2, 3, 4} \ {3, 4, 5} = {1, 2}.
2. R\{0} = {x;x ∈ R ∧ x ̸= 0}.

Properties 2.1.5. Let A and B subsets of the universal set E:
• A\B = A ∩B.
• A\B ⊂ A.
• A\A = ∅.
• A ⊂ B ⇐⇒ A\B = ∅.

Definition 2.1.11. (Set Symmetric Difference)
The symmetric difference of set A and set B, denoted by A△B, is the set
containing those elements in exactly one of A and B. Formally :

A△B = (A\B) ∪ (B\A) = (A ∩B) ∪ (B ∩ A). (2.1.9)

Example 2.1.10. If A = {1, 2, 3, 4, 5, 10} and B = {1, 2, 3, 4, 5, 6, 7, 8, 9}
, then A\B = {10} and B\A = {0, 7, 8, 9} . Hence A△B = {0, 7, 8, 9, 10}.
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Properties 2.1.6. • A△B = B△A.
• A△∅ = A.
• A△A = ∅.
• A△B = A△B.
• A△B = (A ∪B)\(A ∩B).

Definition 2.1.12. (Set Cartesian product)
The Cartesian product of A and B denoted by A×B is the set of all ordered
pairs. That is :

A×B = {(a, b) : a ∈ A ∧ b ∈ B}. (2.1.10)

The equality in A×B is defined by:

(x1, y1) = (x2, y2) ⇐⇒ x1 = x2 ∧ y1 = y2.

Example 2.1.11. Let A = {1, 2, 3} and B = {4, 5} , then :
A×B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.
B × A = {(4, 1), (5, 1), (4, 2), (5, 2), (4, 3), (5, 3)}.

Remark 2.1.3. In general,
• A×B ̸= B × A.
• card (A×B) = card (A) × card (B).

Exercise 2.1.1. Let A, B and C be three subsets of the set E. Show that:

1. A = B ⇐⇒ A ∩B = A ∪B.

2. A ∪B = A ∩ C ⇐⇒ B ⊂ A ⊂ C.

3. A ∩B = ϕ ⇐⇒ A ∪B = E.

4. A∆B = ϕ ⇐⇒ A = B.

5. (A ∩B)\C = (A\C) ∩ (B\C) = (A\C) ∩B = (B\C) ∩ A.

2.2 Binary Relations on a Set

A relation is an association between objects. A book on a table is an example
of the relation of one object being on another. It is especially common to
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speak of relations among people. For example, one person could be the niece
of another. In mathematics, there are many relations such as equals and less-
than that describe associations between numbers. To formalize this idea, we
make the next definition.

2.2.1 Basic Defnitions

Definition 2.2.1. (Binary Relation)

Let E be a set. A binary relation ℜ on E is a property that applies to
pairs of elements from E . We denote xℜy to indicate that the property is
true for the pair (x; y) ∈ E × E.

Example 2.2.1. 1. The inequality ≤ is a relation on N ; ZZ, and R .

2. The inclusion relation in the power set of E : AℜB ⇐⇒ A ⊂ B.

3. The divisibility relation on the integers: mℜn ⇐⇒ m divides n.

Remark 2.2.1. • In other words, a relation from A to B is a set ℜ of
ordered pairs where the first element of each ordered pair comes from A and
the second element comes from B.

• If (a, b) ∈ ℜ , then we say that a is related to b by ℜ.

• aℜb write to express that (a, b) ∈ ℜ and aℜb to express that
(a, b) ̸∈ ℜ

• A relation on a set A is a subset of A× A.

Definition 2.2.2. ( Properties of Relations )
There are several properties that are used to classify relations on a set. We
will introduce the most important of these here :
Let ℜ be a binary relation in E :

• ℜ is reflexive Iff ∀x ∈ E : xℜx.

• ℜ is symmetric Iff ∀x, y ∈ E : xℜy =⇒ yℜx.
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• ℜ is anti-symmetric Iff ∀x, y ∈ E : (xℜ) ∧ (yℜx) =⇒ x = y.

• ℜ is transitive Iff ∀x, y, z ∈ E : (xℜ) ∧ (yℜz) =⇒ xℜz.

2.2.2 Equivalence Relation

Definition 2.2.3. (Equivalence Relation)

A relation ℜ is said to be an equivalence relation if it is simultaneously
reflexive, symmetric, and transitive on E .

Example 2.2.2. The relation ℜ of ” being parallel ” is an equivalence re-
lation for the set E of all lines in the plane :

1. Reflexivity : A line is parallel to itself .
2. Symmetry : If line D is parallel to D’, then D’ is parallel to D .
3. Transitivity : If line D is parallel to D’ and D’ is parallel to D”, then D
is parallel to D” .

Definition 2.2.4. ( Equivalence Classes )
Let ℜ be an equivalence relation on E . Let x ∈ E , the equivalence class of
x denoted by C(x) or ẋ is defined as the set of all those point of E which are
related to x under the relation ℜ .

C(x) = ẋ = {y ∈ E : yℜx}.

Let ℜ be an equivalence relation on E and a, b ∈ E , where aℜb , then
a and b have the same equivalence class.

Definition 2.2.5. ( Quotient set of relation )

Let ℜ be an equivalence relation on a set E. The quotient set of E by ℜ
is the set of equivalence classes of ℜ , denoted by E/ℜ:

E/ℜ = {ẋ : x ∈ E}.

Example 2.2.3. Consider the following relation on ZZ :

xℜy ⇐⇒ ∃k ∈ ZZ : x− y = 2k.
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1. Reflexivity : ℜ is reflexive because ∃k = 0 : x−x = 2×0 = 0, thus xℜx.
2. Symmetry : Suppose xℜy , then :

∃k ∈ ZZ : x− y = 2k =⇒ y − x = 2k′, with k′ = −k ∈ ZZ.

Therefore, yℜx . Hence, ℜ is symmetric.
3. Transitivity : Suppose xℜy and yℜz . Then,

∃k ∈ ZZ : x− y = 2k , and ∃k′ ∈ ZZ : y − z = 2k′

by adding these equations, we obtain x− z = 2k′′, with k′′ = k +−k′ ∈ ZZ.
Thus, xℜz . Therefore, ℜ is transitive. Consequently, ℜ is an equivalence
relation.
The equivalence class of an element x :

ẋ = {y ∈ E : yℜx}

= {y ∈ E : x− y = 2k}

= {x− 2k , k ∈ ZZ}

0̇ = {y ∈ E : yℜ0}

= {y ∈ E : 0− y = 2k}

= {−2k , k ∈ ZZ}

= {...,−4,−2, 0, 2, 4, ...}

1̇ = {y ∈ E : yℜ1}

= {y ∈ E : 1− y = 2k}

= {1− 2k , k ∈ ZZ}

= {...,−3,−1, 0, 1, 3, ...}

and 0̇ = 2̇ , 1̇ = 3̇ .
Therefore,

E/ℜ = {0̇, 1̇}.
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2.2.3 Order Relation

Definition 2.2.6. ( Order Relation )
A binary relation ℜ on E is an order relation if and only if it is reflexive,
anti-symmetric, and transitive. We then say that (E;ℜ) is an ordered set.

Two elements x and y of E are said to be comparable if xℜy or yℜx.

Definition 2.2.7. ( Total Order and Partial Order )
Let ℜ be an order relation on E. If any two elements x and y are always
comparable, we say that ℜ is a total order relation and the set E is called
totally ordered. Otherwise (i.e., if there exist at least two non-comparable
elements x and y), we say that ℜ is a partial order relation and the set E is
called partially ordered.

Total Order :

∀x ∈ E,∀y ∈ E : (xℜy) ∨ (yℜx).

Partial Order :

∃x ∈ E,∃y ∈ E : (xℜy) ∧ (yℜx).

Example 2.2.4. • ≤ is a total order on N ; ZZ, and R .
• The divisibility relation in N∗ is a partial order.

Exercise 2.2.1. In R , the binary relation ℜ is defined as follows :

∀x, y ∈ R : x2 − 1 = y2 − 1.

1. Show that ℜ is an equivalence relation on R .

2. Determine the quotient set ℜ/R.

Exercise 2.2.2. Let ℜ be a binary relation on R3 defined by

(x, y, z)ℜ(a, b, c) ⇐⇒ (| x− a |≤ b− y and z = c).

1. Show that ℜ is a partial order relation on R3 .

2. Is the order total on R3 ?
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2.3 Applications

In this section we formally define what we mean by a” function ”. This
is done using only the set-theoretic concepts developed up to now. We in-
troduce notation to simplify the discussion and definition of these concepts.
Examples of simple functions such as the identity function, the characteris-
tic function and constant functions are presented. Given a function, f, on
a set A, we define the restriction of this function on a subset, D, of A. We
state what we mean by ” equal functions ”. The expressions ” one-to-one ”, ”
injective ”, ” onto ”, ” surjective ” and ” bijective functions ” are also defined.

2.3.1 Defnitions and Examples

Definition 2.3.1. Let E and F be two sets. An application from E to F is
any correspondence f associating each element x of E a single element y of F.
E is the starting set. An element of E, usually x, is an antecedent or a pre-
image. F is the arrival set. An element of F, usually y, which is associated
with x by the application f is the image of x by f. All this is denoted by :

f : E −→ F

x 7−→ y = f(x)

We say that:
• y is the image of x (under f ).

• x is the pre-image of y (under f ).
• f maps x onto y, and symbolize this statement by : f : x 7−→ y
• E is the starting set of f
• F is the arrival set or codomain of f .

Example 2.3.1.
• The application : :

f : E −→ E

x 7−→ y = f(x) = x.

is called the identity application in E and is denoted : IdE. • Let A ⊂ E .
The application :
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f : E −→ {0, 1}

x 7−→ y = f(x) =

{
1, if x ∈ A.
0, if x ∈ A.

.

is called the indicator or characteristic application of part A and is denoted
by : 1A or χA.

Remark 2.3.1. 1. An application is a function whose domain of dentition
is the entire starting set.
2. The graph of an application f : E −→ E is the set :

Γf = {(x, f(x)) ∈ E × F ;x ∈ E}.

Definition 2.3.2. An application f is a function of E in F whose domain
definition Df is equal to E.

Definition 2.3.3. An application from a set E to a another set F is a
relation which to every element x ∈ E assigns a unique element y ∈ F .
Formally, using predicate logic:

f Application ⇐⇒ ∀ x ∈ E , ∃! y ∈ F : y = f(x). (2.3.1)

Definition 2.3.4. (The equality of applications)
Two applications f : E −→ F and g : E ′ −→ F ′ are called equal
if and only if they have the same domain E = E ′ , the same codomain
F = F ′ and ∀ x ∈ E : f(x) = g(x).

f = g ⇐⇒

{
E = E’ and F = F’

∀ x ∈ E : f(x) = g(x).
(2.3.2)

Definition 2.3.5. (Restrictions and Extensions)
Let f be a function from E to F .
1. The restriction of f to a subset A ⊂ E is the function denoted
f|A : A −→ F defined by :

f|A = f(x), ∀ ∈ A.

2. The extension of f to a set E ′ containing E is any function g from E ′

to F whose restriction is f .
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Example 2.3.2. If f is the identity function from R+ to itself, it has in-
finitely many extensions to R , among which:

1. The identity function on R .

2. The absolute value function from R to itself .

3. The function h defined by h(x) =
1

2
(x+ | x |) , which is identically

zero on R− .

2.3.2 Direct Image and Inverse Image

Often in mathematics, particularly in analysis and topology, one is interested
in finding the set of image points or inverse image of an application acting on
a given set, which brings us to the two following definitions that are waiting
to be understood .

Definition 2.3.6. ( Image of a Subset)
Let E and F be two sets and f an application from E to F .

For any part A of E , the direct image of A by f, denoted f(A), is defined
by :

f(A) = {f(x) , x ∈ A}.
y ∈ f(A) ⇐⇒ ∃x ∈ A, y = f(x).

i.e.: the images, of all elements x of A, which belong to F .
We have f(A) ⊂ F .

Definition 2.3.7. ( Inverse Image of a Subset )
Let , f : E −→ F nd consider the subset B ⊂ F . The inverse image of
the subset B under f , which we write f−1(B) is the subset of E that consists
of the pre-images of elements in B .

f−1(B) = {x ∈ E : f(x) ∈ B}.

i.e.: The elements of E (not necessarily all of them) whose images f(x) belong
to B. We have, for x ∈ E , the equivalence :

x ∈ f−1(B) ⇐⇒ f(x) ∈ B..
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Exercise 2.3.1. Let f : R −→ R be an application defined by :

∀x ∈ R, , f(x) = x+ 1.

1. Find the direct image by f of the set : A = {−2,−1, 1, 2, 3, 4}.

2. . Find the reciprocal image by f of the set B = [−3, 2]

Solution f : R −→ R , f(x) = x+ 1
1. et’s find the direct image by f of the set A = {−2,−1, 1, 2, 3, 4} :

f(−3) = −2, f(−2) = −1, f(−1) = 0, f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5.

Hence f(A) = {−2,−1, 0, 1, 2, 3, 4, 5}.

2. Now , we have to find f−1(B) ; the reciprocal image , by f , of the
interval B = [−3, 2] :

f−1(B) = f−1([−3, 2]) = {x ∈ R, f(x) ∈ [−3, 2]}.

Let x ∈ R :

x ∈ f−1(B) ⇐⇒ f(x) ∈ [−3, 2]

⇐⇒ −3 ≤ f(x) ≤ 2

⇐⇒ −3 ≤ x+ 1 ≤ 2

⇐⇒ −4 ≤ x ≤ 1

⇐⇒ x ∈ [−4, 1].

Hence , f−1(B) = [−4, 1].

Properties 2.3.1. Let f : E −→ F be a application , A ; B be two subsets
of E, and C ; D be two subsets of F , we have the following properties. Notice
how the inverse image always preserves unions and intersections, although
not always true for the image of an application. Then the images of inter-
sections and unions satisfy :
• f(A ∩B) ⊂ f(A) ∩ f(B).
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• f(A ∪B) = f(A) ∪ f(B).

• f−1(C ∩D) = f−1(C) ∩ f−1(D).

• f−1(C ∪D) = f−1(C) ∪ f−1(D).

• A ⊂ B =⇒ f(A) ⊂ f(B).

• C ⊂ D =⇒ f−1(C) ⊂ f−1(D).

• f−1(C) = f−1(C.

• A ⊂ f−1(f(A)).

• f−1(f(C)) ⊂ C.

Example 2.3.3. Let the application : f : R −→ R be defined by :
∀x ∈ R, f(x) = x2 and the subsets of R , A = [0, 1] and B = [−1, 0] . We
then have :
f(A) = f(B) = [0, 1] hence f(A)∩f(B) = [0, 1] , but A∩B = {0} , hence
f(A∩B) = f(0) = {0} so f(A∩B) ⊂ f(A)∩ f(B) only without equality.

2.3.3 Injective, Surjective and Bijective Applications

Definition 2.3.8. ( Injective )
Let E ; F be two sets and f : E −→ F be a application . f is injective
(one-to-one ) if every element in E is mapped to a unique element in F. More
formally :

f Injective ⇐⇒ ∀x1, x2 ∈ E : x1 ̸= x2 =⇒ f(x1) ̸= f(x2).

or

f Injective ⇐⇒ ∀x1, x2 ∈ E f(x1) = f(x2) =⇒ x1 = x2.

Example 2.3.4. Prove that f : [0,+∞[ −→ R defined by f(x) = x2 is
injective.
Suppose that f(x1) = f(x2) for some x1, x2 ∈ [0,+∞[, then
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f(x1) = f(x2) ⇐⇒ x2
1 = x2

2

⇐⇒ | x1 |=| x2 |

⇐⇒ x1 = x2.

Thus, f is injective.

Definition 2.3.9. ( Surjective )
An application f : E −→ F is surjective (or onto) if and only if for every
element y ∈ F , there is an element x ∈ E with y = f(x).

∀ y ∈ F, ∃ x ∈ E : y = f(x).

Another formulation: f is surjective if and only if f(E) = F .

Example 2.3.5. Prove that f : R −→ [0,+∞[ defined by f(x) = x2 is
surjective.
proof that : ∀ y ∈ [0,+∞[,∃ x ∈ R : y = f(x).

y = f(x) ⇐⇒ y = x2

⇐⇒ | x |= √
y

⇐⇒ (x =
√
y) ∨ (x = −√

y).

Hence, ∀ y ∈ [0,+∞[,∃ x =
√
y ∈ R : y = f(x). . Consequently , f is

surjective

Definition 2.3.10. ( Bijective )
An application f : E −→ F is bijective if and only if for every element
y ∈ F , there is a unique element x ∈ E with y = f(x) :

∀ y ∈ F, ∃! x ∈ E : y = f(x).

f bijective ⇐⇒ f injective ∧ f surjective.

Example 2.3.6. Prove that f : [0,+∞[ −→ [0,+∞[ defined by f(x) = x2

is bijective.
proof that : ∀ y ∈ [0,+∞[,∃! x ∈ [0,+∞[ : y = f(x).

y = f(x) ⇐⇒ y = x2

⇐⇒ x =
√
y
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Hence, ∀ y ∈ [0,+∞[,∃! x =
√
y ∈ R : y = f(x). . Consequently , f is

bijective

Definition 2.3.11. (Inverse Application)
Let f be bijection from the set E to the set F. The inverse function of f is the
function that assigns to an element y belonging to F the unique element x in E
such that f(x) = y. The inverse function of f is denoted by : f−1 : F −→ E
. Hence, f−1(y) = x when f(x) = y.

Properties 2.3.2. Let f : E −→ F be a bijective application , then
f−1 : F −→ E is a bijective application.

Example 2.3.7. Let f : R −→ R defined by f(x) =
4x+ 2

5
suppose f is

invertible so , find the inverse of f .
proof that : ∀ y ∈ [0,+∞[,∃! x ∈ [0,+∞[ : y = f(x).

f(x) =
4x+ 2

5
⇐⇒ y =

4x+ 2

5

=⇒ x =
5y − 2

4

Then : f−1(x) =
5x− 2

4
.

Definition 2.3.12. (Composite Applications)

Given functions f : E −→ F and g : F −→ G , we define the
composition function g ◦ f of f and g as the function g ◦ f : E −→ G
given by

(g ◦ f)(x) = g(f(x)), ∀x ∈ E.

Example 2.3.8. f : R −→ R and g : R −→ R with f(x) = −3x+ 1
and g(x) = 2x− 5 :
find (f ◦ g)(x) and (g ◦ f)(x).

(f ◦ g)(x) = f [g(x)]

= f(2x− 5)

= −3(2x− 5) + 1.

= −6x− 15.
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(g ◦ f)(x) = g[f(x)]

= g(−3x+ 1)

= 2(−3x+ 1)− 5.

= −6x− 3.

We remark that (f ◦ g)(x) and (g ◦ f)(x) produced different answers.

Definition 2.3.13. If f : E −→ F and g : F −→ E , then f and g
are inverse applications of one another relative to composition iff .

g ◦ f = IE and f ◦ g = IF .

▶ If f has an inverse, then it is unique

Theorem 2.3.3. Let f : E −→ F and g : F −→ G be two functions
and let B ⊂ G . The following hold:

1. (g ◦ f)−1(B) = f−1(g−1(B)).

2. If f and g are injective, then g ◦ f is injective .

3. If f and g are surjective, then g ◦ f is surjective.

4. If g ◦ f is injective, then f is injective .

5. If g ◦ f is surjective, then g is surjective.

Exercise 2.3.2. Let f : E −→ F be a function. Let A; B be two subsets
of the set E and C; D be two subsets of the set F. Show that:

1. f(A ∩B) ⊂ f(A) ∩ f(B) , f(A ∪B) = f(A) ∪ f(B).

2. f is injective ⇐⇒ f(A ∩B) = f(A) ∩ f(B).

3. f−1(C ∩D) = f−1(C) ∩ f−1(D) , f−1(C ∪D) = f−1(C) ∪ f−1(D).

4. f(f−1(C)) ⊂ C.
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5. f is surjective ⇐⇒ f(f−1(C)) = C.

6. f−1(C) = f−1(C).

7. f−1(C∆D) = f−1(C)∆f−1(D).

Exercise 2.3.3. Consider the function f defined by :

f : R −→ R

x 7−→ f(x) =
2x

1 + x2
.

1. Is f injective ? Surjective ?

2. Show that f(R) = [−1, 1].

3. Show that the function g defined by :

g : [−1, 1] −→ [−1, 1]

x 7−→ g(x) = f(x).

is a bijection and find its inverse function g−1 .

40



Chapter 3

Real Functions of One Real
Variable

This chapter is devoted to the functions of a real variable which are often
modeled for the study of curves and mechanical calculations. In this regard,
we present the foundations of the functions of a real variable, where the
objective is to know and interpret the notion of the limit, continuity and
differentiability of a function, and to present some of their properties

3.1 Notions of function

3.1.1 General definitions

Definition 3.1.1. We call digital function on a set D any process which,
at all element x of D , allows to associate at most one element of the set R ,
then called image of ? and denoted f(x) . The elements of R which have an
image by f form the definition set of f , noted D .

Definition 3.1.2. We call a graph, or representative curve, of a function f
defined on an interval D ⊆ R , the set

Γf = {(x, f(x)) , x ∈ D}.

formed from the points (x, f(x)) ∈ R2 of the plan provided with an orthonor-
mal coordinate system ( o, I, J).
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3.1.2 Bounded functions, monotonic function

Definition 3.1.3. Let f : D −→ R be a function. We say that:

a) f is bounded from above if there is a number M such that for all x
from D , f(x) ≤ M , we write:

∃M ∈ R ,∀x ∈ D : f(x) ⪯ M.

b) f is bounded from below if there is a number m such that for all x from
D : f(x) ≥ m . we write: such that for all x from D , f(x) ≤ M , we write:

∃m ∈ R , ∀x ∈ D : f(x) ≥ m.

c) f is bounded if it is bounded both from above and below. It is to say: such
that for all x from D , f(x) ≤ M , we write:

∃M ∈ R ,∀x ∈ D : | f(x) |≤ m.

d) Function that is not bounded is called unbounded function .

Definition 3.1.4. Let f : D −→ R be a function . We say that:

▶f is increasing on D ⇐⇒ ∀ x, y ∈ D : x < y =⇒ f(x) ≤ f(y).

▶f is strictly increasing on D ⇐⇒ ∀ x, y ∈ D : x < y =⇒ f(x) < f(y).

▶f is decreasing on D ⇐⇒ ∀ x, y ∈ D : x < y =⇒ f(x) ≥ f(y).

▶f is strictly decreasing on D ⇐⇒ ∀ x, y ∈ D : x < y =⇒ f(x) > f(y).

▶ f is monotonic (strictly monotonic, respectively) on D if f is increasing or
decreasing (strictly increasing or strictly decreasing, resp) on D .

Example 3.1.1.

a) Exponential functions exp : R −→ R is strictly increasing.

b) The absolute value function x −→ |x| defined on R is not monotonic
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3.2 Limit of a Function

3.1.3 Even , odd , periodic function

Definition 3.1.5. Let I be an interval of R symmetric with respect to 0 .
Let f : I −→ R be a function. We say that:

▶ f is even on I ⇐⇒ ∀ x ∈ I : f(−x) = f(x).

▶ f is odd on I ⇐⇒ ∀ x ∈ I : f(−x) = −f(x).

Example 3.1.2.
a) The function defined on R by x −→ xm , ( m ∈ N ) is even.

b) The function defined on R by x −→ x2m+1 , ( m ∈ N ) is odd.

Definition 3.1.6. Let f : R −→ R be a function and T a real number ,
T > 0 . The function f is called periodic of period T if:

∀x ∈ R : f(x+ T ) = f(x).

Example 3.1.3. The functions cos and sin are 2π periodic . The tangent
function is π periodic.

3.2 Limit of a Function

The concept of a function is the fundamental concept of calculus and analysis.
Real function f of one real variable is a mapping from the set D ⊆ R, a subset
in real numbers R , to the set of all real numbers R.

f : D −→ R

x 7−→ f(x).

D is the domain of the function f , where D = {x ∈ R, f(x) makes sense}.

3.2.1 Limits

Definition 3.2.1. ( Limits )
Limits are used to analyze the local behavior of functions near points of in-
terest. A function f is said to have a limit l at x0 if it is possible to make
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the function arbitrarily close to l by choosing values closer and closer to x0

. Note that the actual value at x0 is irrelevant to the value of the limit.

The notation is as follows:

lim
x−→x0

f(x) = l.

which is read as : ( the limit of f(x) as x approaches x0 is l ) We can
write :

lim
x−→x0

f(x) = l ⇐⇒ ∀ϵ > 0,∃η > 0,∀x ∈ D :| x−x0 |< η =⇒ | f(x)−l |< ϵ.

3.2.2 Left-hand Limits

Definition 3.2.2. ( The left-hand limit )
The left-hand limit of a function f as it approaches x0 is the limit :

lim
x−→x−

0

f(x) = l.

We can write :

lim
x−→x−

0

f(x) = l ⇐⇒ ∀ϵ > 0,∃η > 0,∀x ∈ D : x ∈]x0−η, x0[ =⇒ | f(x)−l |< ϵ.

3.2.3 Right-hand Limits

Definition 3.2.3. ( The right-hand limit )
The right-hand limit of a function f as it approaches x0 is the limit :

lim
x−→x+

0

f(x) = l.

We can write :

lim
x−→x+

0

f(x) = l ⇐⇒ ∀ϵ > 0,∃η > 0,∀x ∈ D : x ∈]x0, x0+η[ =⇒ | f(x)−l |< ϵ.
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3.2.4 Existence of the limit

Theorem 3.2.1. (Existence of the limit)
Let f be a real valued function defined on a set D ⊆ R , then lim

x−→x0

f(x) = l.

exists if and only if:

lim
x−→x−

0

f(x) = lim
x−→x+

0

f(x) = lim
x−→x0

f(x).

Example 3.2.1. Let f be a real valued function defined by:

f : [−1; 1] −→ R

f(x) =

{
0, , −1 ≤ x ≤ 0.
1, , 0 ≤ x ≤ 1.

.

lim
x−→x0

f(x) does not exist because lim
x−→0−

f(x) = 0 and

lim
x−→0+

f(x) = 1.

3.2.5 Limit of a function at infinity

Definition 3.2.4. Limits at infinity are used to describe the behavior of
functions as the independent variable increases or decreases without bound.
we write :

lim
x−→±∞

f(x) = l.

The graph of the function will have a horizontal asymptote at y = l .
a) lim

x−→+∞
f(x) = l. if

∀ ε > 0 ,∃ A > 0 : x > A =⇒ | f(x)− l |< ε.

We say that f has a (finite) limit l at +∞ if when x becomes very large
f(x) becomes very close to l .

b) lim
x−→−∞

f(x) = l. if

∀ ε > 0 , ∃ A > 0 : x < −A =⇒ | f(x)− l |< ε.

we say that f has a (finite) limit at −∞ if, when x becomes very large in
negative value , f(x) becomes very close to l.
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3.2.6 Properties of the limit

Properties 3.2.2.
The following properties remain true if one replaces each limit by a one-

sided limit, or a limit for x −→ ∞.
Let f and g be two given functions whose limits for x −→ x0 we know,

lim
x−→x0

f(x) = l1 , lim
x−→x0

g(x) = l2.

1) lim
x−→x0

[f(x) + g(x)] = lim
x−→x0

f(x) + lim
x−→x0

g(x) = l1 + l2.

2) lim
x−→x0

[f(x)× g(x)] = lim
x−→x0

f(x)× lim
x−→x0

g(x) = l1 × l2.

3) lim
x−→x0

[λf(x)] = λ lim
x−→x0

f(x) = λl1.

4) lim
x−→x0

f(x)

g(x)
=

l1
l2
. if l2 ̸= 0

Theorem 3.2.3. Suppose that :

f(x) ≤ h(x) ≤ g(x).

(for all x) and that
lim

x−→x0

f(x) = lim
x−→x0

g(x).

Then
lim

x−→x0

f(x) = lim
x−→x0

g(x) = lim
x−→x0

h(x).

Corollary 3.2.4. If lim
x−→x0

f(x) = 0 and g is a bounded function. Then

lim
x−→x0

(f × g)(x) = 0.

Indeterminate form Some forms of limits are called indeterminate.
An indeterminate form is an expression whose limit cannot be determined
solely from the limits of the individual functions. Example of indeterminate
forms:

0

0
,
∞
∞

, +∞−∞ , 0×∞ , ∞0.
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Exercise 3.2.1. Use the definition of limit to prove that :

1) lim
x −→2

(3x− 7) = −1.

2) lim
x −→3

(x2 + 1) = 10.

2) lim
x −→1

x+ 3

x+ 1
= 2.

Exercise 3.2.2. Let f be the function given by :

f : R −→ R

f(x) =

{
x, if x ∈ IQ ∩ [0, 1].

1− x, if x ∈ IQ ∩ [0, 1].

Determine which of the following limits exist. For those that exist find their
values.

1) lim
x−→ 1

2

f(x).

2) lim
x−→0

f(x).

3) lim
x−→1

f(x).

Exercise 3.2.3. Let a ∈ R , let f be the function given by :

f : R −→ R

f(x) =

{
x2, if x > 1.

ax− 1, if x ≤ 1.

Find the value of a such that lim
x−→1

f(x) exists.

3.3 Continuous Functions

Continuous functions are functions that take nearby values at nearby points.
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3.3.1 Continuity of a function at a point

Definition 3.3.1. Let I ⊆ R and f : R −→ R be a function. we say that
f is continuous at a point x0 ∈ I if :

lim
x−→x0

f(x) = f(x0).

Otherwise, f is said to be discontinues at x0

We can write :

f is continuous at x0 ⇐⇒ ∀ϵ > 0,∃η > 0,∀x ∈ D :| x−x0 |< η =⇒ | f(x)−f(x0) |< ϵ.

Remark 3.3.1. A function f is continuous at x = x0 if the following three
conditions hold:

1) f(x0) is defined (that is, x0 belongs to the domain of f )

2) lim
x−→x0

f(x) exists (that is, left-hand limit = right-hand limit)

3) lim
x−→x0

f(x) = f(x0).

Example 3.3.1. Consider the function

f : R −→ R

f(x) =| x |=
{

x, if x ≥ 0.
−x, if x ≤ 0.

This function is continuous at all x0.

Example 3.3.2. Consider the function

f : R −→ R

f(x) =

{
sinx

x
, if x ̸= 0.

1, if x = 0.
.

This function is continuous at all 0 , because :

lim
x−→0

f(x) = lim
x−→0

sinx

x
= f(0) = 1.
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3.3.2 Continuity of a function in an interval

Definition 3.3.2. 1. f is said to be continuous in an open interval ]a, b[
if it is continuous at every point x0 in this interval.

2. f is said to be continuous in the closed interval [a; b] if :

• f is continuous in ]a; b[ :

• f is right continuous at a point a , i.e. lim
x−→a+

f(x) = f(a).

• f is left continuous at a point b , i.e. lim
x−→b−

f(x) = f(b).

Example 3.3.3.
• Every polynomial function is continuous on R.

• Every rational function is continuous on its domain.
• sin(·) and cos(·) are continuous everywhere on R.
• The square root is continuous on R+.

3.3.3 Continuity on the left on the right

Definition 3.3.3. Consider a function f : D −→ R , I being an interval
of R.
1. The function is continuous to the right at x0 if :

lim
x−→x+

0

f(x) = f(x0) ⇐⇒ ∀ϵ > 0,∃η > 0,∀x ∈ D : x0 < x < x0+η =⇒ | f(x)−f(x0) |< ϵ.

2. The function is continuous to the left at x0 if :

lim
x−→x−

0

f(x) = f(x0) ⇐⇒ ∀ϵ > 0,∃η > 0,∀x ∈ D : x0−η < x < x0 =⇒ | f(x)−f(x0) |< ϵ.

3. f is continuous at x0 if and only if these two limits exist and are equal:

lim
x−→x+

0

f(x) = f(x0) = lim
x−→x−

0

f(x).

Exercise 3.3.1. Consider the function :
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f : R −→ R

f(x) =

{
x2 + a, if x > 2.
ax− 1, if x ≤ 2.

.

Find the value of a such that f is continuous.

3.3.4 Operations on continuous functions

Theorem 3.3.1. The basic properties of continuous functions follow from
those of limits: If f : D −→ R and g : D −→ R are continuous at x0

of D , and α is a constant, then :

1. f + g is continuous at x0

2. αf is continuous at x0

3. f × g is continuous at x0

4. If f(x0) ̸= 0 , then
1

f
is continuous at x0.

5. If g(x0) ̸= 0 , then
f

g
is continuous at x0.

Theorem 3.3.2. Let f : I −→ R and g : J −→ R two functions such
that f(I) ⊆ J . If f is continuous at x0 of I and if g is continuous at f(x0) ,
then g ◦ f is continuous at x0

Example 3.3.4. Determine whether h(x) = cos(x2−5x+2) is continuous.
Note that , h(x) = f(g(x)) , where f(x) = cos(x) and g(x) = x2 − 5x+ 2
Since both f and g are continuous for all x , then h is continuous for all x.

3.3.5 Operations on continuous functions

We can redefine functions with removable discontinuities to obtain continuous
functions.
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Proposition 3.3.3. When we can remove a discontinuity by redefining the
function at that point, we call the discontinuity removable. (Not all discon-
tinuities are removable, however.)

If lim
x−→x0

f(x) = l , but f(x0) is not defined, we define a new function

f̃(x) =

{
f(x) , for x ̸= x0

l , for x = x0.

which is continuous at x0 . It is called the continuous extension of f(x) to
x0.

Example 3.3.5. Find a continuous extension of the function f(x) =
sinx

x
.

The domain of f is D = R∗ , then f is discontinuous at x = 0 because f(0) is
not defined.
Since lim

x−→0
f(x) exists, the discontinuity is removable. We know that

lim
x−→0

sinx

x
= 1. For the function to be continuous at zero we need to define

f(0) we make

f(0) = lim
x−→0

f̃(x) =
sinx

x
= 1.

and redefine the function :

f̃(x) =

{
f(x) , forx ̸= 0
1 , for x = 0.

We say f̃ is the continuous extension of f to x = 0.

3.3.6 Intermediate Value Theorem (IVT)

he intermediate value theorem describes a key property of continuous func-
tions. It states that a continuous function on an interval takes on all values
between any two of its values.

Theorem 3.3.4. Let f : [a, b] −→ R such that :
• f is continuous on the closed interval [a, b]

• k be any number between f(a) and f(b).

Then, there exists at least c ∈]a, b[ such that f(c) = k.
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The most used version of the intermediate value theorem given as :

Theorem 3.3.5. Let f : [a, b] −→ R such that :
• f is continuous on the closed interval [a, b]

• f(a)f(b) < 0

Then, there exists at least c ∈]a, b[ such that f(c) = 0.

Example 3.3.6. Show that the equation 4x3 − 6x2 + 3x − 2 = 0 has a
solution in the interval [1, 2].

Consider the function f(x) = 4x3 − 6x2 + 3x− 2 over the closed interval
[1, 2] .
The function f is a polynomial, therefore it is continuous over [1, 2].
We have f(1) = −1 and f(2) = 12 , hence f(1)f(2) < 0 by the Mean-
Value-Theorem there exists a value c in the interval ]1, 2[ such that f(c) = 0
, i.e. there is a solution for the equation f(x) = 0 , in the interval ]1, 2[.

3.4 Differentiability of a function

3.4.1 Differentiability of a function at a point

Below, we note I a non-empty interval of R.

Definition 3.4.1. Let f : D −→ R be a function, and let x0 ∈ D . we say
that f is differentiable at x0 if the limit

lim
x−→x0

f(x)− f(x0)

x− x0

exists, and finite. This limit is called the derivative of f at x0, we note f
′(x0).

Alternative formula for the derivative:

lim
h−→0

f(x0 + h)− f(x0)

h
.

Properties 3.4.1.
If f is differentiable at x0 , then the curve representing the function f

have a tangent to the point (x0, f(x0)) , with the slope f ′(x0).
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3.4.2 Left Differentiability and Right Differentiability

Definition 3.4.2.
• The left-hand derivative of a function f at x0.

lim
x−→x−

0

f(x)− f(x0)

x− x0

• The right-hand derivative of a function f at x0.

lim
x−→x+

0

f(x)− f(x0)

x− x0

f is differentiable at x0 if and only if these two limits exist and are equal.

Example 3.4.1. Show that f(x) =| x− 1 | is not differentiable at x = 0.
• The right-hand derivative at x = 0 :

lim
x−→1+

| x− 1 | −0

x− 1
= lim

x−→1+

x− 1

x− 1
= 1

• The left-hand derivative at x = 0 :

lim
x−→1−

| x− 1 | −0

x− 1
= lim

x−→1−

−(x− 1)

x− 1
= −1

So the right-hand and left-hand derivatives differ.

Remark 3.4.1. We say that a function f is differentiable on an interval D
when f is differentiable in any point of D .

3.4.3 Differentiability of a function in an interval

Definition 3.4.3.
1. f is said to be differentiable in an open interval ]a, b[ if it is differ-

entiable at every point x0 in this interval.

2. f is said to be differentiable in the closed interval [a, b] if :

• f is differentiable in ]a, b[:

• f is right differentiable at a point a , i.e.
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lim
x−→a+

f(x)− f(x0)

x− x0

= f ′(a)

• f is left continuous at a point b , i.e.

lim
x−→b−

f(x)− f(x0)

x− x0

= f ′(b)

3.4.4 Operations on derivative

Let f, g : D −→ R two functions. We assume that f and g are differentiable
of x. Therefore,

1. f + g is differentiable , and

(f + g)′(x) = f ′(x) + g′(x).

2. f × g is differentiable , and

(f × g)′(x) = f ′(x)× g(x) + f(x)× g′(x).

3. λf is differentiable , and

(λf)′(x) = λf ′(x).

4. If g(x) ̸= 0 , then
f

g
is differentiable , and

(
f

g
)′(x) =

f ′(x)× g(x)− f(x)× g′(x)

(g(x))2
.

Theorem 3.4.2. (Derivatives of composite functions)
Let f : I −→ R and g : J −→ R two functions such that f(I) ⊆ J
. If f is differentiable of x, and g is differentiable of f(x) , then g ◦ f is
differentiable of x and

(g ◦ f)′(x) = g′((f(x))f ′(x).

Example 3.4.2. The function f(x) = sin(2x) is the composition of two sim-
pler functions, namely: f(x) = g(h(x)) where g(u) = sinu and h(x) = 2x.
Since g and h are differentiable then g′(u) = cosu and h′(x) = 2:

Therefore the derivative of the composite functions rule implies that :

f ′(x) = (g(h(x)))′ = h′(x) · g′(h(x)) = 2 cos(2x).
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Definition 3.4.4. ( Derivative of inverse function )

Let f be a function that is differentiable on an interval I . If f has an
inverse function f−1 , then f−1 is differentiable at any x for which f ′(f−1(x)).
Moreover,

(f−1)′(x) =
1

f ′(f−1(x))
.

3.4.5 Applications of Derivatives

Derivatives have various applications in Mathematics, We’ll learn about these
two applications of derivatives:

I. Monotonicity of functions
Derivatives can be used to determine whether a function is increasing, de-
creasing or constant on an interval.

Theorem 3.4.3. Let f be a differentiable function on an interval I :

1. f is increasing on I ⇐⇒ ∀x ∈ I : f ′(x) ≥ 0.

2. f is decreasing on I ⇐⇒ ∀x ∈ I : f ′(x) ≤ 0.

3. f is constant on I ⇐⇒ ∀x ∈ I : f ′(x) = 0.

II. Extremum of Functions
An extremum of a function is the point where we get the maximum or min-
imum value of the function in some interval.

Proposition 3.4.4. Let f : I −→ R be a function, and let c ∈ I . We
say that c is a critical point of f if f ′(c) = 0 or f ′(c) is undefined.

Let f : I −→ R is differentiable, and c ∈ I be a critical point of f .
Then

1. If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c , then
f(c) is the maximum value of f .
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2. If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c , then
f(c) is the minimum value of f .

Example 3.4.3. Find the extremum of f(x) = 3x2 − 18x+ 5 on [0, 7].
First, we find all possible critical points :
f ′(x) = 0 ⇐⇒ 6x− 18 = 0 ⇐⇒ x = 3.

for x ∈ [0, 3[ , we have f ′(x) < 0 and for x ∈]3, 7] , we have f ′(x) > 0
Then f(3) = −22 is the minimum value of f on [0, 7].

III. Rolle’s Theorem

In analysis, special case of the mean-value theorem of differential calculus
is Rolle’s theorem.

Theorem 3.4.5. Let f : [a, b] −→ R such that

• f is continuous on the closed interval [a, b],

• f is differentiable on the open interval ]a, b[,

• f (a) = f (b).

Then, there exists c ∈]a, b[ such that f ’(c) = 0.

IV. Mean Value Theorem
Let a, b ∈ R with a < b and

f : [a, b] −→ R. Suppose f is continuous on [a, b] and differentiable on

]a , b [ . Then there exists c ∈]a, b[ such that

f ′(c) =
f(b)− f(a)

b− a
.

V . Indeterminate Forms and L’Hospital’s Rule

In this section, we will learn how to evaluate functions whose values can-
not be found at certain points.
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Theorem 3.4.6. Consider f and g are continuous functions on [a , b] which
are differentiable at every point in ]a , b[, except possibly at x0 ∈ [a, b] . As-
sume that:

1. g(x) ̸= 0 and g′(x) ̸= 0 at every point in [a , b]:

2. lim
x−→x0

f(x)

g(x)
=

0

0
or lim

x−→x0

f(x)

g(x)
=

∞
∞

.

3. lim
x−→x0

f ′(x)

g′(x)
exists. Then :

lim
x−→x0

f(x)

g(x)
exists and lim

x−→x0

f(x)

g(x)
= lim

x−→x0

f ′(x)

g′(x)
.

Remark 3.4.2. Note that the rule is also valid for one-sided limits and for
limits at infinity or negative infinity.

Example 3.4.4. Find lim
x−→1

lnx

x− 1

lim
x−→1

lnx

x− 1
=

0

0
.

Thus, we can apply l’Hospital’s Rule:

lim
x−→1

lnx

x− 1
= lim

x−→1

(lnx)′

(x− 1)′
= lim

x−→1

1
x

1
= 1

Exercise 3.4.1. Determine the values of x at which each function is con-
tinuous. The domain of all the functions is R.

(1) f(x) =

{
| sinx

x
| , if x ̸= 0.

0 , if x = 0.

(2) f(x) =


sinx

| x |
, if x ̸= 0.

0 , if x = 0.

57



Real Functions of One Real Variable

(3) f(x) =

{
xsin 1

x
, if x ̸= 0.

0 , if x = 0.

(4) f(x) =

{
cosπx

2
, if | x |≤ 1.

| x− 1 | , if | x |> 1.

Exercise 3.4.2. Prove that the equation x2 − 2 = cos(x + 1) has at least
two real solutions. (Assume known that the function cosx is continuous.)

Exercise 3.4.3. Prove that the equation cosx = x has at least on solution
in R. (Assume known that the function cosx is continuous.)

Exercise 3.4.4. Determine the values of x at which each function is differ-
entiable.

1.) f(x) =

{
xsin 1

x
, if x ̸= 0.

0 , if x = 0.

2.) f(x) =

{
x2sin 1

x
, if x ̸= 0.

0 , if x = 0.

Exercise 3.4.5. Use L’Hospital’s Rule to find the following limits (you may
assume known all the relevant derivatives from calculus)

a. lim
x−→2

x3 − 4x

3x2 + 5x− 2
.

b. lim
x−→0

ex − e−x

sin(x)cos(x)
.

c. lim
x−→1

x− 1
√
x+ 1−

√
2
.

d. lim
x−→0

ex − e−x

ln(1 + x)
.

Exercise 3.4.6. Consider the function :

f(x) =

{
e

−1

x2 , if x ̸= 0.
0 , if x = 0.

Prove that f ∈ Cn(R) for every n ∈ N.
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Chapter 4

Usual functions

In this chapter, we review some fundamental functions frequently encoun-
tered in calculus and analysis. These include the logarithmic and exponen-
tial functions, as well as the trigonometric and hyperbolic functions. Under-
standing their definitions, properties is essential for solving a wide range of
mathematical problems.

4.1 Logarithmic Functions

Definition 4.1.1. ( The Natural Logarithm function )

The function that satisfies the following two conditions is called the nat-
ural logarithm function and is denoted by ln:

1. ∀ x ∈ R∗
+ : (ln(x))′ =

1

x
.

2. ln(1) = 0.

Properties 4.1.1. According to the previous dentition, the function ln(x) is

differentiable on R∗
+ and ∀ x ∈ R∗

+ ; (ln(x))′ =
1

x
.

• Let g be a positive function differentiable and non-zero on I then the
function ln(g(x)) is differentiable on I and its derivative:

(ln(g(x)))′ =
g′(x)

g(x)
.
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Properties 4.1.2. (Limits and classical inequalities)

• lim
x−→+∞

ln(x) = +∞.

• lim
x−→0+

ln(x) = −∞.

• lim
x−→+∞

ln(x)

x
= 0.

• lim
x−→+∞

ln(x)

xα
= 0. α ∈ R∗

+.

• lim
x−→0+

xln(x) = 0.

• lim
x−→0

ln(x+ 1)

x
= 1.

Properties 4.1.3. (Algebraic properties of the function ln(x))

For all x, y ∈ R∗
+ and α ∈ IQ , we have the following properties:

• ln(x× y) = ln(x) + ln(y).

• ln(x
y
) = ln(x)− ln(y).

• ln( 1
x
) = −ln(x).

• ln(xα) = αln(x).

4.2 Exponential Functions

Definition 4.2.1. The inverse function of the function ln(·) is called the
exponential function and is denoted by: exp(·) or e· , and satisfies the fol-
lowing properties:

1) ∀ x ∈]0,+∞[ : x = eln(x).

1) ∀ y ∈ R : y = ln(ey).
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Proposition 4.2.1.
1) The function exp(·) is continuous and strictly increasing on R.

2) The function ex is differentiable on R and we have:

∀ x ∈ R : (ex)′ = ex.

3) If u is differentiable on I then: the function eu(x) is differentiable
on I and its derivative defined by:

∀ x ∈ I : (eu(x))′ = u′(x)eu(x).

Proposition 4.2.2. (Limits and inequalities)

• lim
x−→−∞

ex = 0.

• lim
x−→+∞

ex = +∞.

• lim
x−→+∞

xe−x = 0.

• lim
x−→+∞

xα

ex
= 0, α ∈ R

• lim
x−→+∞

ex

xα
= +∞ , α ∈ R

• lim
x−→0

ex − 1

x
= 1.

Properties 4.2.3. (Algebraic properties of the exponential function)

For all x, y ∈ R∗
+ and α ∈ IQ , we have the following properties:

• ex+y = ex · ey.

• e−x = 1
ex
.

• ex−y =
ex

ey
.

• eαx = (ex)α.

61



Usual functions

4.3 Hyperbolic cosine, sine and tangent func-

tions

Any function f defined on R can be uniquely decomposed into a sum of
two functions fev and fod where fev is an even function and odd is an odd
function. This means for every x ∈ R we can write :

f(x) =
f(x) + f(−x)

2
+

f(x)− f(−x)

2
.

and we choose :

fev(x) =
f(x) + f(−x)

2
and fod(x) =

f(x)− f(−x)

2
.

We can easily check that this decomposition is unique, and fev is an even
function and fod is an odd function.

4.3.1 Hyperbolic cosine

Definition 4.3.1. We call the hyperbolic cosine function and denoted ch
or cosh , the even part of the exponential function defined by

cosh : R −→ R

x 7−→ cosh(x) =
ex + e−x

2
.

4.3.2 Hyperbolic sine

Definition 4.3.2. We call the hyperbolic cosine function and denoted sh
or sinh , the even part of the exponential function defined by

sinh : R −→ R

x 7−→ sinh(x) =
ex − e−x

2
.
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4.3.3 Hyperbolic tangent

Definition 4.3.3. We call the hyperbolic cosine function and denoted th
or tanh , the even part of the exponential function defined by

tanh : R −→ R

x 7−→ tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
.

Proposition 4.3.1. The functions cosh(x), sinh(x) and th(x) have the fol-
lowing properties:

• The function cosh(x) is a function defined on R , continuous and even .

• The function sinh(x) is a function defined on R, continuous and odd.

• The function tanh(x) is a function defined on R, continuous and odd.

• The functions cosh(x), sinh(x) and th(x) are differentiable on R and
their derivatives are defined by:

∀ x ∈ R,


(cosh(x))′ = sinh(x).
(sinh(x))′ = cosh(x).
(tanh(x))′ = 1

cosh2(x)
= 1 + tanh2(x)

• cosh(0) = 1 , sinh(0) = 0 and tanh(0) = 0.

• lim
x −→ −∞

sinh(x) = −∞ , lim
x −→ −∞

cosh(x) = +∞ , and lim
x −→ −∞

tanh(x) = −1.

• lim
x −→ +∞

sinh(x) = +∞ , lim
x −→ +∞

cosh(x) = +∞ , and lim
x −→ +∞

tanh(x) = 1.

Proposition 4.3.2. For every real x, we have:

• cosh(x) + sinh(x) = ex.

• cosh(x)− sinh(x) = e−x.
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• cosh2(x)− sinh2(x) = 1.

For all (x, y) ∈ R2 , we have the following formulas:

• cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).

• cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y).

• sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y).

• sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y).

• tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
.

• tanh(x− y) =
tanh(x)− tanh(y)

1− tanh(x) tanh(y)
.

4.4 The inverse hyperbolic functions

4.4.1 The inverse of hyperbolic Sine function

From the above table of variation of sinh(·) we have: sinh(·) is continuous
and strictly increasing on R. Hence, it realizes a bijection from R into R.

Definition 4.4.1. The inverse function of the hyperbolic sine function on
R is denoted argsh(x) or sh−1(x).

argsh : R −→ R

x 7−→ argsh(x).

Proposition 4.4.1. The function argsh(x) has the following properties:

1. The function argsh(x) is defined on R, it is continuous and strictly
increasing on R.

2. ∀ x ∈ R ; argsh(sinh(x)) = x.

3. ∀ y ∈ R ; sinh(argsh(y)) = y.
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4. ∀ x, y ∈ R ; y = sinh(x) ⇐⇒ x = argsh(y).

5. argsh(x) is odd function.

Proposition 4.4.2. The function argsh(x) is differentiable on R and ver-
ifies:

∀x ∈ R ; (argsh(x))′ =
1√

1 + x2
.

Proposition 4.4.3.

∀x ∈ R ; argsh(x) = ln(x+
√
1 + x2).

4.4.2 The inverse of hyperbolic Cosine function

From the table of variation of the function cosh(x) above we have: cosh(x) is
continuous and strictly increasing on [0,+∞[. So it forms a bijection from
[0,+∞[ into [1,+∞[

Definition 4.4.2. The inverse function of the restriction of cosh(x) on
[0,+∞[ is denoted by argch(x) or ch−1(x).

argch : [1,+∞[−→ [0,+∞[

x 7−→ argch(x).

Proposition 4.4.4. The argch(x) function has the following properties:

▶ The function argch(x) is defined on [1,+∞[ , it is continuous and
strictly increasing on [1,+∞[.

▶ ∀ x ∈ [0,+∞[ ; argch(cosh(x)) = x.

▶ ∀ y ∈ [1,+∞[ ; cosh(argch(y)) = y.

▶ ∀ x ∈ [0,+∞[ ; ∀ y ∈ [1,+∞[ ; y = cosh(x) ⇐⇒ x = argch(y).

Proposition 4.4.5. The inverse hyperbolic cosine function is differentiable
on ]1,+∞[ and verifies:

∀ x ∈]1,+∞[ : (argch(x))′ =
1√

x2 − 1
.
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Proposition 4.4.6.

∀x ∈]1,+∞[ ; argch(x) = ln(x+
√
x2 − 1).

4.4.3 The inverse hyperbolic tangent function

From the table of variation of the function tanh(x) above we have: tanh(x)
is continuous and strictly increasing on R. So it makes is a bijection from
R into ]− 1, 1[.

Definition 4.4.3. The inverse function of the function tanh(x) on R is
denoted by argth(x) or th−1(x)

argth : ]− 1, 1[ −→ R

x 7−→ argth(x).

Proposition 4.4.7. The function argth(x) has the following properties:

▶ The function argth(x) is defined on ] − 1, 1[ , it is continuous and
strictly increasing on ]− 1, 1[ .

▶ ∀ x ∈ R ; argth(tanh(x)) = x.

▶ ∀ y ∈]− 1, 1[ ; tanh(argth(y)) = y.

▶ ∀ x ∈ R ; ∀ y ∈]− 1, 1[ ; y = tanh(x) ⇐⇒ x = argth(y).

▶ The argth(x) function is odd.

Proposition 4.4.8. The function argth(x) is differentiable on ]−1, 1[ and
verifies:

∀ x ∈]− 1, 1[ : (argth(x))′ =
1

1− x2
.

Proposition 4.4.9.

∀x ∈]− 1, 1[ ; argth(x) =
1

2
ln(

1 + x

1− x
).
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Exercise 4.4.1. solve the equation :

4 cosh(2x) + 10 sinh(2x) = 5 ., cosh(x) =
13

5

Exercise 4.4.2.

1. Calculate :

S =
n∑

k=0

sinh(kx)... , C =
n∑

k=0

cosh(kx).

2. Linearize sinhx · cosh(2x) , coshx · cosh(2x).

3. Verify that sinh(2x) = 2 sinhx · coshx and then calculate.

Exercise 4.4.3.

Consider the following hyperbolic equation, given in terms of a constant
k .

2 cosh2(x) = 2 sinh(x) + k.

a. Find the range of values of k for which the above equation has no real
solutions.

b. Given further that k =1 , find in exact logarithmic form, the solutions
of the above equation.

Exercise 4.4.4. Let f : R −→ R be the function defined by

f(x) = argch
√
1 + x2

1. Determine the domain of definition of f

2. Calculate argch(cosh(t)), for all t ∈ R

3. Show that ∀ x ∈ R : f(x) = argsh | x | .

4. Calculate f ′(x) , for all x ∈ R∗ .

5. Is f differentiable at 0 ?
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4.5 Trigonometric Functions

4.5.1 Recalls on the functions cos(x) and sin(x)

Proposition 4.5.1. The functions x 7−→ cos(x) and x 7−→ sin(x) are
defined on R and satisfy the following properties:

1. ∀ x ∈ R ; | cos(x) |≤ 1 ∧ | sin(x) |≤ 1.

2. cos(x) and sin(x) are 2π-periodic i.e.:

∀ x ∈ R ; cos(x+ 2π) = cos(x) and sin(x+ 2π) = sin(x).

3. The function cos(x) is even and the function sin(x) is odd, i.e.:

∀ x ∈ R ; cos(−x) = cos(x) and sin(−x) = − sin(x).

4. ∀ x ∈ R : cos2 x) + sin2(x) = 1.

5. The functions cos(x) and sin(x) belong to C∞(R) and we have: is
odd, i.e.:

∀ x ∈ R ; (cos(x))′ = − sin(x) and (sin(x))′ = cos(x).

Proposition 4.5.2. (Trigonometric addition formulas)
For all (x, y) ∈ R2 , we have the following formulas:

• cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

• cos(x− y) = cos(x) cos(y) + sin(x) sin(y).

• sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).

• sin(x− y) = sin(x) cos(y)− cos(x) sin(y).

• cos(2x) = cos2(x)− sin2(x) = 2 cos2(x)− 1 = 1− 2 sin2(x).

• sin(2x) = 2 sin(x) cos(x).
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• sin(x) + sin(y) = 2 sin(
x+ y

2
) cos(

x− y

2
).

• sin(x)− sin(y) = 2 cos(
x+ y

2
) sin(

x− y

2
).

• cos(x) + cos(y) = 2 cos(
x+ y

2
) cos(

x− y

2
).

• cos(x)− cos(y) = 2 sin(
x+ y

2
) sin(

x− y

2
).

4.5.2 Recalls on the Tangent function.

Definition 4.5.1. The tangent function is one of the main trigonometric
functions and defined by:

tan : R\{π
2
+ kπ , k ∈ ZZ} −→ R

x 7−→ tan(x) = sin(x)
cos(x)

.

Proposition 4.5.3. The function tan(x) is differentiable on
R\{π

2
+ kπ , k ∈ ZZ} and we have:

∀ x ∈ R\{π
2
+ kπ , k ∈ ZZ} : (tan(x))′ =

1

cos2(x)
= 1 + tan2(x).

Proposition 4.5.4. The function tan(x) checks the following properties:

1. The function tan(x) is π-periodic i.e :

∀ x ∈ R\{π
2
+ kπ , k ∈ ZZ} : tan(x+ π) = tan(x).

2. For any x, y ∈ R\{π
2
+ kπ , k ∈ ZZ} we have:

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
and tan(x− y) =

tan(x)− tan(y)

1 + tan(x) tan(y)
.

3. ∀ x ∈ R\{π
2
+ kπ , k ∈ ZZ} , tan(2x) =

2 tan(x)

1− tan2(x)
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4.6 Inverse Trigonometric Functions

In this section, we concern ourselves with finding inverses of the (circular)
trigonometric functions.

4.6.1 Inverse Sine Function ( arcsin(x) = sin−1(x))

The function sin(x) is continuous and strictly increasing on [−π
2
, π
2
] , then

the function sin(x) represents a bijection from [−π
2
, π
2
] to [−1, 1].

Definition 4.6.1. We first consider f(x) = sin(x) in a similar manner,
although the interval of choice is [−π

2
, π
2
].

It should be no surprise that we call f−1(x) = arcsin(x) , which is read ”
arc-sin of x ”.

f−1 : [−1, 1] −→ [−π
2
, π
2
]

x 7−→ f−1(x) = arcsin(x).

The trigonometric function sin(x) is not one-to-one functions, hence in
order to create an inverse, we must restrict its domain. The restricted sine
function is given by

f−1(x) = y ⇐⇒ y = f(x).

We have

arcsin(x) = sin−1 x = y , y ∈ [−π

2
,
π

2
] ⇐⇒ sin(y) = x , x ∈ [−1, 1].

Properties 4.6.1. The function arcsin(x) has the following properties:

• sin(arcsin(x)) = x provided x ∈ [−1, 1].

• arcsin(sin(x)) = x provided x ∈ [−π

2
,
π

2
].

• The function arcsin(x) is continuous and strictly increasing on [−1, 1].
(According to the inverse function theorem).

• The function arcsin(x) is odd.
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Example 4.6.1. Find the exact values of the following :

1. arcsin(

√
2

2
) , 2. arcsin(

−1

2
).

1. The value of arcsin(
√
2
2
) is a real number y ∈ [−π

2
, π
2
] . with sin(y) =

√
2
2

The number we seek is y = π
4
. Hence , arcsin(

√
2
2
) = π

4
.

2. To find arcsin(−1
2
) , we seek the number y ∈ [−π

2
, π
2
] with sin(y) = −1

2
.

The answer is y = −π
6

so that arcsin(−1
2
) = −π

6
.

Proposition 4.6.2. The arcsine function is differentiable on ]− 1, 1[ and
verifies:

∀ x ∈]− 1, 1[ , (arcsin(x))′ =
1√

1− x2
.

4.6.2 Inverse Cosine Function ( arccos(x) = cos−1(x))

The function f(x) = cos(x) is continuous and strictly decreasing on [0, π] ,
so the function cos(x) makes a bijection from [0, π] into [−1, 1].

Definition 4.6.2. The inverse function of the restriction of cos(x) on [0, π]
is called the arccosine function and is denoted by arccos(x) or cos−1(x) :

arccos : [−1, 1] −→ [0, π]

x 7−→ arccos(x).

We use the notation f−1(x) = arccos(x) , read ” arc-cosine of x ”. For-
mally:

f−1 : [−1, 1] −→ [0, π]

x 7−→ f−1(x) = arccos(x).

We have

arccos(x) = cos−1 x = y , y ∈ [0, π] ⇐⇒ cos(y) = x , x ∈ [−1, 1].
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Properties 4.6.3. The function arccos(x) has the following properties:

• The function arccos(x) is continuous and strictly decreasing on
[−1, 1]. ( From the inverse function theorem)

• The function arccos(x) is neither even nor odd.

• ∀ x ∈ [0, π] ; arccos(cos(x)) = x.

• ∀ y ∈ [−1, 1] ; cos(arccos(y)) = y.

Example 4.6.2. Find the exact values of the following :

1. arccos(
1

2
) , 2. arcsin(

−
√
2

2
).

1. To find arccos(1
2
) , we need to find the real number y (or, equivalently,

an angle measuring y radians) which verifies y ∈ [0, π] and with cos(y) = 1
2

. We know y = π
3
meets these criteria, so arccos(1

2
) = π

3
.

2. The number y = arccos(−
√
2

2
) ∈ [0, π] with cos(y) = −

√
2

2
. Our

answer is y = 3π
4

.

Proposition 4.6.4. The arccosine function is differentiable on ]−1, 1[ and
verifies:

∀ x ∈]− 1, 1[ , (arccos(x))′ = − 1√
1− x2

.

4.6.3 Inverse Tangent Function ( arctan(x) = tan−1(x))

The function tan(x) =
sinx

cosx
is defined on D = {π

2
+ kπ: k ∈ ZZ} . It is

continuous and differentiable on its domain of dentition and for all x ∈ D
we have:

(tan(x))′ =
1

cos2 x
= 1 + tan2(x).

The function tan(x) is continuous and strictly increasing on [−π
2
, π
2
] ,

then the function tan(x) makes a bijection from [−π
2
, π
2
] into R.
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Definition 4.6.3. We call the arctangent function arctan(x) or tan−1(x)
the inverse of the tangent function on ]− π

2
, π
2
[ defend by

arctan : ]−∞,+∞[−→ ]− π
2
, π
2
[

x 7−→ arctan(x).

Proposition 4.6.5. The function arctan(x) has the following properties:

1. The function arctan(x) is continuous and strictly increasing on R,
with values in ]− π

2
, π
2
[.

2. The function arctan(x) is odd.

3.
∀ x ∈]− π

2
,
π

2
[ ; arctan(tan(x)) = x.

4.
∀ y ∈ R ; tan(arctan(y)) = y.

5.

∀ x ∈]− π

2
,
π

2
[ , ∀ y ∈ R : tan(x) = y ⇐⇒ x = arctan(y).

Example 4.6.3. Find the exact values of the following : arctan(
√
3).

We know arctan(
√
3) is the real number y ∈]− π

2
, π
2
[ with tan(y) =

√
3.

We find y = π
3
, so arctan(

√
3) = π

3
:

Proposition 4.6.6. The function arctan(x) is differentiable on R and
verifies:

∀ x ∈ R ; (arctan(x))′ =
1

1 + x2
.

Proposition 4.6.7. (Some properties)

▶ For any x ∈ [−1, 1] we have:

arccos(x) + arcsin(x) =
π

2
.
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▶ x ∈ [−1, 1] we have:

sin(arccos(x)) = cos(arcsin(x)) =
√
1− x2.

▶ For all x ∈ R∗ we have:

arctan(x) + arctan(
1

x
) =

π

2
.

Exercise 4.6.1. Show that for all x ∈ [−1; 1] , we have

sin(arccos(x)) = cos(arcsin(x)) =
√
1− x2.

Exercise 4.6.2. 1. Calculate : arcsin(sin π
3
), arccos cos(π

3
), arccos(sin π

3
).

2. Calculate : arccos(cos 4π
3
), arccos cos(7π

3
), arcsin(sin 2π

3
), arcsin(sin 7π

3
).

Exercise 4.6.3. 1. Show that

arctan a+ arctan b = arctan
a+ b

1− ab
, with ab < 1.

2. Calculate : arctan(
1

2
) + arctan(

1

3
).

Exercise 4.6.4. Let f : R −→ R be a continuous function defined by

f(x) =

{
arctan( 1

x2 ) , if x ̸= 0.
l , if x = 0.

1. Determine l .

2. Show that f is differentiable on R∗ and calculate f ′.

3. Show that f is differentiable at 0 and calculate f ′(0) (Apply MVT
between 0 and x).

4. Deduce that f is C∞ .
5. Calculate g′ where g is the function defined on R by
g(x) = arctan x2.

6. Calculate :

arctanx2+arctan(
1

x2
) , ∀ x ∈ R∗ and deduce arctanx+arctan(

1

x
), ∀ x ∈ R∗.

7. Show that g : [0,+∞[ −→ [0, π
2
[ is bijective and calculate g−1.

8. Calculate (g−1)′ in two ways.
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Chapter 5

Finite Expansions

5.1 Finite expansions at zero

Definition 5.1.1. Let f be a real valued function. We said that the func-
tion f is represented by a finite expansion at zero if there exist real numbers
a0, a1, ..., an and a real valued function ϵ such that

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n + xnϵ(x) , lim
x−→0

ϵ(x) = 0.

Then the function f is represented by the polynomial approximation of
degree n, denoted by Pn(x) , for x near to zero, which is called the main
part of finite expansions at zero, such that:

Pn(x) = a0 + a1x+ a2x
2 + ...+ anx

n.

Remark 5.1.1. Note that xnϵ(x) = O(x).

Example 5.1.1. Using the Euclidean division by increasing power order,
one has the finite expansion at zero of f(x) = 1

1−x
.

1

1− x
= 1 + x+ x2 + ...+ xn +

xn+1

1− x
= 1 + x+ x2 + ...+ xn + xn(

x

1− x
).

in this case ϵ(x) =
x

1− x
. We generally do not try to determine the

function ϵ(x).
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Properties 5.1.1. 1. If the function f can be expanded at zero, then this
expansion is unique.

2. If the function f can be expanded at zero, then lim
x−→0

f(x) exists and

equal to a0 . This criterion is generally used to demonstrate that a function
does not admits an expansion.

Example 5.1.2. The function f(x) = lnx does not have an expansion at
zero, because lim

x−→0+
f(x) = −∞ .

5.2 Algebraic combinations of finite expan-

sions

Definition 5.2.1. If f and g can both be expanded at zero and ? is any
constant, then each of the following functions is also can be expanded at zero:
The sum f + g , the difference f − g , the constant multiple λf , the
product f × g , the quotient f

g
, if g(x) ̸= 0 .

Consider the finite expansions at zero of f and g:

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n +O(x).

g(x) = b0 + b1x+ b2x
2 + ...+ bnx

n +O(x).

• The finite expansion at zero of the sum f + g is:

(f + g)(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + ...+ (an + bn)x

n +O(x).

• The finite expansion at zero of the f · g is obtained by the product and
keeping only the monomials of degree less than n in the product

(a0 + a1x+ a2x
2 + ...+ anx

n) + (b0 + b1x+ b2x
2 + ...+ bnx

n).

• The finite expansion at zero of the quotient f/g is obtained by the Euclidean
division of

(a0 + a1x+ a2x
2 + ...+ anx

n) + (b0 + b1x+ b2x
2 + ...+ bnx

n).

by increasing power order.
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Example 5.2.1. Find the finite expansion at zero of f(x) = sinh x of the
degree 4.

sinhx =
ex − e−x

2

=
1

2
[(1 +

x

1!
+

x2

2!
+

x3

3!
+

x4

4!
)− (1− x

1!
+

x2

2!
− x3

3!
+

x4

4!
)] +O(x4)

=
1

2
(2x+ 2

x3

3!
+O(x4).

= x+
x3

3!
+O(x4).

5.3 Composite of finite expansions

Definition 5.3.1. If g can be expanded at zero of degree n and if f can
be expanded at g(0) of degree n such that g(0) = 0 . Then the composite
function (f ◦ g) can be expanded at zero of degree n by replacing the finite
expansion of g in the finite expansion of f and by keeping only the monomials
of degree ≤ n.

Example 5.3.1. Prove that the finite expansion at zero of f(x) = exp(sin x)
is given by

f(x) = exp(sin x) = 1 + x+
x2

2
+O(x3).

5.4 Finite expansions at a point

Definition 5.4.1. We said that the function f : x −→ f(x) can be
represented by a finite expansion at point x0 if the function F : X −→
F (X) can be represented by finite expansion at zero X0 = 0 such that
F (X) = f(x0 +X) and

F (X) = a0 + a1X + a2X
2 + ...+ anX

n +Xnϵ(X) , lim
X−→0

O(X) = 0.
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f(x) = a0+a1(x−x0)+a2(x−x0)
2+...+an(x−x0)

n+O((x−x0)) , lim
x−→0

O((x−x0)
n) = 0.

Example 5.4.1. Find the finite expansion at a point x0 = 1
of f(x) = exp(x) of the degree 3 :

F (X) = f(x0 +X)

= exp(1 +X)

= exp(1)× expX.

= exp(1)× [1 +
X

1!
+

X2

2!
+

X3

3!
+O(X3).

= exp(1)× (1 +
(x− 1)

1!
+

(x− 1)2

2!
+

(x− 1)3

3!
+O((x− 1)3)..

5.5 Finite expansions at Infinity

Definition 5.5.1.
We said that the function f : x −→ f(x) can be represented by a finite

expansion at infinity if the function F : X −→ F (X) can be represented
by finite expansion at zero X0 = 0 such that F (X) = f( 1

x
) and

F (X) = a0 + a1X + a2X
2 + ...+ anX

n +Xnϵ(X) , lim
X−→0

O(X) = 0.

f(x) = a0 +
a1
x

+
a2
x2

+ ...+
an
xn

+O(
1

xn
).

Example 5.5.1. Find the finite expansion at infinity of f(x) = cos( 1
x
) :

Let X = 1
x
and thus:

cos( 1
x
) = cos(X) = 1− X2

2!
+

X4

4!
+ ...+

(−1)nX2n

2n!
+O(X2n)

= 1− 1

2!x2
+

1

4!x4
+ ...+

(−1)n

2n!x2n
+O(

1

x2n
).
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5.6 Using finite expansions to evaluate limits

The finite expansions provide a good way to understand the behavior of a
function near a specified point and so are useful for solving some indetermi-
nate forms. When taking a limit as x −→ 0 , we can often simplify the
statement by substituting in finite expansions that we know.
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Chapter 6

Linear Algebra

In this chapter we introduce the notion of a vector space, which is fundamen-
tal for the approximation methods that we will later develop, in particular in
the form of an orthogonal projection onto a subspace representing the best
possible approximation in that subspace. Any vector in an vector space can
be expressed in terms of a set of basis vectors, and we here introduce the
process of constructing an orthonormal basis from an arbitrary basis, which
provides the foundation for a range of matrix factorization methods we will
use to solve systems of linear equations and eigenvalue problems. We use the
Euclidian space Rn

as an illustrative example, but the concept of a vector
space is much more general than that, forming the basis for the theory of
function approximation and partial differential equations.

6.1 Internal Composition Laws and Their

Properties

Definition 6.1.1. ( Internal Composition Laws )

Let E be a set . An internal composition law ⋆ on E is a mapping from
E × E to E, associating every pair (x, y) in E × E with an element of E :

⋆ : E × E −→ E

(x, y) −→ x ⋆ y

Remark 6.1.1. 1. The internal composition law can be noted by :
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(⋆ △ , T , ⊥, . . . ) , or other symbols.
2. (E; ⋆) is often used to denote a set E equipped with an internal operation
⋆ .

Properties 6.1.1. • Associativity : we say that ⋆ is associative if and
only if :

∀ x, y, z ∈ E : x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z. (6.1.1)

Example 6.1.1. Let ⋆ be an internal composition law defined on R by :

x ⋆ y = x+ y − 1.

(x ⋆ y) ⋆ z = [(x+ y)− 1] ⋆ z

= [(x+ y)− 1] + z − 1

= x+ y + z − 2

and
x ⋆ (y ⋆ z) = x ⋆ [(y + z)− 1]

= x+ [(y + z)− 1]− 1

= x+ y + z − 2.

Then ⋆ is associative.

• Commutativity : we say that ⋆ is commutative if and only if :

∀ x, y ∈ E : x ⋆ y = y ⋆ x. (6.1.2)

Example 6.1.2. Let ⋆ be an internal composition law defined on R by :

x ⋆ y = x+ y − 1.

x ⋆ y = (x+ y)− 1

= (y + x)− 1

= y ⋆ x.

Then ⋆ is commutative. .
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• Neutral element: The law of internal composition ⋆ admits a neutral
element e on set E if and only if :

∃ e ∈ E,∀ x ∈ E : x ⋆ e = e ⋆ x = x. (6.1.3)

Example 6.1.3. Let ⋆ be an internal composition law defined on R by :

x ⋆ y = x+ y − 1.

x ⋆ e = x =⇒ (x+ e)− 1 = x

=⇒ e = 1.

Then e = 1 is a neutral element .

• Symmetric element: We assume that E has a neutral element e
for ⋆ . Let x and x′ be two elements of E. We say that x′ is symmetric to
x ( for the law ⋆ ) if:

∀ x ∈ E ,∃ x′ ∈ E, : x ⋆ x′ = x′ ⋆ x = e. (6.1.4)

Example 6.1.4. Let ⋆ be an internal composition law defined on R by :

x ⋆ y = x+ y − 1.

x ⋆ x′ = e =⇒ (x+ x′)− 1 = 1

=⇒ x′ = (2− x) ∈ R.

Then x′ = 2− x is a symmetric element.

• Distributivity :
Given two laws of internal composition ⋆ and T defined on E.

- We say that the law T is left distributive with respect to the law ⋆ if:

∀ x, y, z ∈ E : x T (y ⋆ z) = (x T y) ⋆ (x T z). (6.1.5)

We say that the law T is right distributive with respect to the law ⋆ if:

∀ x, y, z ∈ E : (y ⋆ z) T x = (y T x) ⋆ (z T x). (6.1.6)

The law T is said to be distributive with respect to the law ⋆ if it is both
left and right distributive with respect to ⋆.
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Example 6.1.5. Let ⋆ be an internal composition law defined on R by :

x ⋆ y = x+ y − 1.

and Let T be an internal composition law defined on R by :

xTy = x+ y − xy

Then the law T is said to be distributive with respect to the law ⋆. When
T is commutative, it is then demonstrated that T is left distributive with
respect to the law ⋆.

xT (y ⋆ z) = xT (y + z − 1)

= x+ (y + z − 1)− x(y + z − 1)

= 2x+ y + z − xy − xz

and
(x T y) ⋆ (x T z) = (x+ y − xy) ⋆ (x+ z − xz)

= (x+ y − xy) + (x+ z − xz)− 1

= 2x+ y + z − xy − xz.

Then the law T is distributive with respect to the law ⋆.

6.2 Algebraic Structures

Definition 6.2.1. (Group)

A group is a non-empty set equipped with an internal composition law
(G; ⋆) such that:

• ⋆ is associative .

• ⋆ has a neutral element e.

• every element in x is invertible (has an inverse) for ⋆ .
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Remark 6.2.1. If ⋆ is commutative, we say that (G; ⋆) is commutative or
abelian.

Example 6.2.1. 1. (ZZ;+), (IQ;+), (R; +), and (IC;+) are abelian groups;
2. (N; +), ( R;×) , are not groups.

Definition 6.2.2. (Subgroup)

Let (G; ⋆) be a group and let H be a non-empty subset of G . We say that
H is a subgroup of G if:

1. H is closed under ⋆ :

∀ x, y ∈ H : x ⋆ y ∈ H.

2. H is closed under taking inverses:

∀∀ x ∈ H : x′ ∈ H (x′ the inverse of x).

Definition 6.2.3. (Ring)
Let A be a set equipped with two binary operations , ⋆ and ⊥ .
(A ; ⋆ ;⊥ ) is called a ring if :

1. (A, ⋆) is a commutative group;

2. ⊥ is associative;

3. ⊥ is distributive over ⋆.

Remark 6.2.2.
1. If ⊥ is commutative, then (A ; ⋆ ;⊥ ) is called a commutative ring.

2. If ⊥ has a neutral element, then (A ; ⋆ ;⊥ ) is called a unitary
ring.

Example 6.2.2. (ZZ;+,×), (IQ;+,×), (R; +,×), and (IC;+,×) are com-
mutative rings;

Definition 6.2.4. (Field)
A field is a commutative ring in which every non-zero element is invertible
for the second operation.
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Remark 6.2.3. If the second operation is also commutative, the field
(K ; ⋆ ;⊥ ) is called a commutative field.

Example 6.2.3. (IQ;+,×), (R; +,×), and (IC;+,×) are fields , but (ZZ;+,×)
is not . (2 is not invertible).

Exercise 6.2.1. Let ⋆ the internal composition law defined in R by

∀x, y ∈ R : x ⋆ y = x+ y + x2y2.

1. Verify ⋆ are commutative laws.

2. The law ⋆ is it associative ?

3. Show that R have a neutral element for the law ⋆ then calculate this
neutral.

4. Solve the following equations : 1 ⋆ x = 1 , 2 ⋆ x = 7.

Exercise 6.2.2. We provide A = R× R of two laws defined by :

(x, y) + (x̀, ỳ) = (x+ x̀, y + ỳ) and (x, y)× (x̀, ỳ) = (xx̀, xỳ + x̀y).

1. Show that (A,+) is an commutative group.

2. (a) Show that the law × is commutative.

(b) Show that × is associative .

(c) Find the neutral element of A for the law ×.

(d) Show that (A,+,×) is a commutative ring.

6.3 Vector spaces

Underlying every vector space (to be defined shortly) is a scalar field K.
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Definition 6.3.1. ( Vector spaces )
A vector space is a nonempty set V , whose objects are called vectors, equipped
with two operations, called addition and scalar multiplication: For any two
vectors u, v in V and a scalar λ , there are unique vectors u + v and λu in
V such that the following properties are satisfied :

a. An internal operation (vector addition) and

+ : V × V −→ V

(x, y) −→ x + y.

b. An external scalar (scalar multiplication)

· : K × V −→ V

(λ, x) −→ λx

such that the following properties are satisfied: ∀ u, v ∈ V , ∀λ , γ ∈ K

1. u+ v = v + u ;

2. (u+ v) + w = u+ (v + w) ;

3. There is a vector 0 , called the zero vector, such that u+ 0 = u ;

4. For any vector u there is a vector −u such that u+ (−u) = 0;

5. λ(u+ v) = λu+ λv;

6. (λ+ γ)u = λu+ γu;

7. λ(γu) = (λγ)u;

8. 1u = u.

Example 6.3.1.
a. The Euclidean space Rn is a vector space under the ordinary addition

and scalar multiplication.
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b. The set Pn of all polynomials of degree less than or equal to n is a
vector space under the ordinary addition and scalar multiplication of polyno-
mials.

c. The set C[a; b] of all continuous functions on the closed interval
[a; b] is a vector space under the ordinary addition and scalar multiplication
of functions.

6.3.1 Subspaces of a vector space

Definition 6.3.2. ( Subspace )
A subspace of a vector space V is a nonempty subset F of V that has three
properties:

1. 0V ∈ F.

2. F is closed under vector addition. That is, ∀ u, v ∈ F : u+ v ∈ F .

3. F is closed under multiplication by scalars. That is,
∀ u ∈ F, ∀ λ ∈ K : λu ∈ F .

Lemma 6.3.1. A subset F of E is a vector subspace of E if :

1. (F,+) is a subgroup of (E,+).

2. ∀ ∈ F, ∀λ ∈ IK : λx ∈ F.

The following proposition presents a characterization of a vector subspace
of E.

Proposition 6.3.2. A subspace of a vector space V is a a nonempty subset
F of V if and only if:

∀ u, v ∈ F ; ∀ λ, γ ∈ K : λu+ γv ∈ F.

Example 6.3.2.
• Rn−1 is a subspace of Rn .

• 0V and V are vector subspace of V :
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• Show that F = {(0, y, z) ; y, z ∈ R} is a subspace of real vector space
R3 :

• 0R3 ∈ F , then F is a nonempty subset of R3 : .

• Let , u = (0, x1, y1), v = ((0, x2, y2) ∈ F and λ, γ ∈ R . Then :

λu+ γv = λ(0, x1, y1) + γ(0, x2, y2)

= (0, λx1, λy1) + (0, γx2, γy2)

= (0, λx1 + γx2, λy1 + γy2) ∈ F

Hence, F is a subspace of R3.

6.3.2 Operations on Vector Spaces

Definition 6.3.3.
• The addition of two subsets F and G of a vector space is defined by :

F +G = {u+ v : u ∈ F, v ∈ G}.

• The intersection ∩ of two subsets F and G of a vector space is defined
by :

F ∩G = {u; u ∈ F ∧ u ∈ G}.

• A vector space E is called the direct sum of F and G , denoted F
⊕

G
if F and G are subspaces of W with F ∩G = {0E} and F +G = E.

Proposition 6.3.3. Let IK be a field, E a IK−vector space, F and G two
subspaces of E; then :

1. F ∩G is a subspace of E .

2. F ⊔G is a subspace of E if and only if , F ⊂ G or G ⊂ F .

Remark 6.3.1. We generalize the property (1) to any family of vector sub-
spaces, i.e. If (Fi)i∈I,I⊂N , is a family of vector subspaces, then ∩i∈IFi is a
subspace.
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Theorem 6.3.4. Let IK be a field, E a vector space on IK , F and G two
subspaces of E: The set F +G defined by :

F +G = {u+ v : u ∈ F, v ∈ G} ⊂ E (6.3.1)

is a subspace of E called sum of the subspaces F and G. If in addition
F ∩G = {0E} , we say that the sum F +G is a direct sum and we write
F
⊕

G .

Example 6.3.3. Let E = R3 be the vector space on R . Consider the
following subspaces F and G :

F = {(x, y, z) ∈ R2 : x+ y + z = 0} and G = {(x, y) ∈ R2 : x = y = 0}.

We have : F +G = F
⊕

G . Indeed :

Let (x, y, z) ∈ F ∩G so (x, y, z) ∈ F i.e x+ y + z = 0
and (x, y, z) ∈ G i, e x = y = 0 , so x = y = z = 0 , therefore F∩G = {0R3}.

6.3.3 Linear combinations, generating families, lin-
early independent families, bases, dimension.

Definition 6.3.4. ( Linear combinations )
Let E be a vector space on IK . We say that the vector u is a linear combi-
nation of the vectors v1, v2, ..., vn of E if :

∃λ1, λ2, ..., λn ∈ IK : u = λ1v1 + λ2v2 + ...+ λnvn =
n∑

i=1

λivi.

The scalars λ1, λ2, ..., λnare called the coefficients of the linear combina-
tion.

Definition 6.3.5. ( Spanning sets )
Let E be a vector space overIK and H = {v1, v2, ..., vn} be a subset of E.
We say that H is a spanning set of E if every vector v of E can be written
as a liner combination of vectors in H . In such cases, we say that H spans
E.
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Definition 6.3.6. The span of H = {v1, v2, ..., vn} is the set of all linear
combinations of v1, v2, ... vn. is denoted by span(H):

spanH = span{v1, v2, ... vn} = {
n∑

i=1

λivi = λ1v1+λ2v2+...+λnvn : λ1, λ2, ..., λn ∈ IK.

The span of a set of vectors in E is a subspace of E.

Theorem 6.3.5. Let E be a vector space over R and H = {v1, v2, ... vn} be
a subset of E. Then span(H) is a subspace of E.

Further, span(H) is the smallest subspace of E that contains H . This
means, if L is a subspace of E and L contains H , then span(H) is contained
in L.

Definition 6.3.7. ( Generating families )
The family H = {v1, v2, ... vn} is a generating family of the vector space E if
every vector v of E is a linear combination of the vectors v1, v2, ..., vn. This
can also be written :

∀ v ∈ E, ∃λ1, λ2, ..., λn ∈ IK : v = λ1v1 + λ2v2 + ...+ λnvn =
n∑

i=1

λivi.

We also say that the family {v1, v2, ... vn} generates the vector space(E)
and we write E = {v1, v2, ... vn}

Example 6.3.4. 1. Let E = Rn[X] be the vector space of polynomials
of degree ≤ n. Then the polynomials {1, X,X2, ..., Xn} form a generating
family of E.

2. The set F = {(1, 1, 1); (2, 2, 0); (3, 0, 0)} is a system of generators of
R3.
Let u = (x, y, z) be a vector, we check the scalars α, β, γ ∈ R such that

u = (x, y, z) = α(1, 1, 1) + β(2, 2, 0) + γ(3, 0, 0)

=⇒


x = α + 2β + 3γ.
y = α + 2β.
z = α

then , α = z , β =
y − z

2
, γ =

x− y

3
.
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Definition 6.3.8. ( Linearly independent families )
A family H = {v1, v2, ... vn} of vectors of a vector space E is linearly in-
dependent if the only linear combination of these vectors equal to the zero
vector is the one whose coefficients are all zero. We also say that vectors
{v1, v2, ... vn} are linearly independent.
This can be expressed as : {v1, v2, ..., vn} is a linearly independent family is
equivalent to :

λ1, λ2, ..., λn ∈ IK, and λ1v1+λ2v2+...+λnvn = 0 =⇒ λ1 = λ2 = ... = λn = 0.

Definition 6.3.9. ( Linearly dependent families )
A non linearly independent family is called a linearly dependent family. We
also say that vectors {v1, v2, ... vn} are linearly dependents. This can be ex-
pressed as : {v1, v2, ..., vn} is a linearly dependent family is equivalent to
:

∃ λ1, λ2, ..., λn ∈ IK\{0}, : λ1v1 + λ2v2 + ...+ λnvn = 0.

Example 6.3.5. In the vector space R4 defined over the field R, consider
the following vectors :

v1 = (1, 0,−1, 1), v2 = (0, 1, 1, 0), v3 = (1, 0, 0, 1), v4 = (0, 0, 0, 1), v5 = (1, 1, 0, 1),

The set {v1, v2, v3, v4} is linearly independent (to be verified). The set {v1, v2, v5}
is linearly dependent (v5 = v1 + v2).

Theorem 6.3.6. Let E be a vector space over the field IK. A set F =
{v1, v2, ..., vn} of n vectors of E, (n > 2) is linearly dependent if and only
if at least one of the vectors of F is a linear combination of the other vectors
of F .

Remark 6.3.2. 1. Any family containing a linearly dependent family is
linearly dependent .

2. Any family included in a linearly independent family is linearly inde-
pendent .

3. {v} is linearly independent if and only if v ̸= 0E.

4. Any set containing the null vector is linearly dependent.
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Definition 6.3.10. ( Basis )

A basis of a vector space is linearly independent generating family. If
B = (xi)i∈I , I ⊂ N is a basis of E, then any x ∈ E is uniquely written as
a linear combination of elements of B :

x =
n∑

i=1

λixi.

The scalars (λi)i∈I ; are called the coordinates of x in the basis B.

Definition 6.3.11. Let E be a vector space and H = {v1, v2, ..., vn} be a
set of elements (vectors)in E . We say that H is a basis of E if :
1. H spans E . ( H is a generator of E).
2. H is linearly independent.

Example 6.3.6.

1. In R3 , the set {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) , forms a
basis of R3 , called canonical basis of R3 .

2. the set {v1 = (1, 0, 1), v2 = (1,−1, 1), v3 = (0, 1, 1), forms a basis of
R3 :

a. The family is linearly independent.

Let λ1, λ2, λ3 ∈ R such that : λ1v1 + λ2v2 + λ3v3 = 0R3 . Then

λ1(1, 0, 1) + λ2(1,−1, 1)+ = λ3(0, 1, 1) = (0, 0, 0)

=⇒


λ1 + λ2 = 0
λ2 + λ3 = 0.
λ1 + λ2 + λ3 = 0.

which leads λ1 = λ1 = λ1 = 0

b. The set is generating of R3. Let u = (x, y, z) ∈ R3 : We are looking
for λ1, λ2, λ3 ∈ R such that :
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u = (x, y, z) = λ1v1 + λ2v2+ = λ3v3

=⇒


λ1 + λ2 = x
λ2 + λ3 = y.
λ1 + λ2 + λ3 = z.

and we find :

λ1 = 2x+ y − z ; λ2 = x− y + z : λ3 = −x+ z.

So span {v1, v2, v3} = R3 . Then {v1, v2, v3} a basis of R3.

6.3.4 Finite dimensional vector spaces

Definition 6.3.12. If a vector space is spanned by a finite number of vec-
tors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional.

The number of vectors in a basis for a finite-dimensional vector space E
is called the dimension of E and denoted dim(E). By convention, we say
that {0E} is a finite-dimensional space.

Definition 6.3.13. A family {v1, v2, ..., vn} of vectors of E is said to be a
basis of E if and only if, we have :

1. {v1, v2, ..., vn} is a linearly independent family of E and

2 {v1, v2, ..., vn} is a generating family of E.

Theorem 6.3.7. ( Theorem of the extracted basis )
From any finite generating family of E, we can extract a basis of E. In
particular, a finite-dimensional space admits a basis.

Theorem 6.3.8. ( Incomplete basis theorem )
If E is finite-dimensional, then any linearly independent family of E can be
completed into a basis of E. To complete it, simply consider certain vectors
of a generating family of E.

Theorem 6.3.9. ( Dimension )
If E is finite-dimensional, then all bases of E have the same number of vectors
(dimension of E).
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Corollary 6.3.10. If E is a finite-dimensional vector space (dimE = n)
and if B = {v1, v2, ..., vn} is a family of n vectors of E, then the following
conditions are equivalent:

1. B is linearly independent.

2. B is a generating set of E.

3. B is a basis of E.

Definition 6.3.14. ( Rank of a finite family of vectors )
Let E be a IK-vector space and H = {v1, v2, ..., vn} a family of m vectors of
E. The rank of the family H noted rank(H) is the dimension of the vector
subspace F = V ect{v1, v2, ..., vn} generated by the vectors {v1, v2, ..., vn}:

rank(H) = dim(F ).

Properties 6.3.11. Let E be aIK-vector space and H = {v1, v2, ..., vn} a
family of vectors of E. So we have :

• If dim(F ) = n (finite) , then rank(G) = n .

• If dim(F ) = n (finite) , then rank(H ) = n.

• rank(H) = m if and only if H is free. ( linearly independent ).

Example 6.3.7.

Let H = {v1 = (2, 3), v2 = (4, 2), v3 = (−3, 4)} be a family of the vector
space R2. Determine the rank of H . It is clear that v2 and v3 are linearly
independent. On the other hand, by solving the linear system :

λ1v1 + λ2v2 + λ3v3 = 0R2 .

we get 2v1−v2−v3 = 0R2 . The family H is therefore dependent. We deduce
that V ect(v1, v2, v3) = V ect(v2, v3). So rank(H ) = 2 .
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6.3.5 Existence of additional subspaces in finite di-
mension:

The incomplete basis theorem says that in a finite dimensional vector space,
any free family can be completed into a basis of the space. We immediately
deduce the existence of supplementary ones .

Proposition 6.3.12. Let E be a finite dimensional vector space and F1 a
vector subspace of E. There exists a vector subspace F2 such that

E = F1

⊕
F2 and dim(E) = dim(F1) + dim(F2).

Theorem 6.3.13. (Grassmann formula). If F1 and F2 are vector subspaces
of E and F1 + F2 is of finite type,then :

dim(F1 + F2) = dim(F1) + dim(F2)− dim(F1 ∩ F1).

Theorem 6.3.14. (Characterization of supplementary). If E is of finite
type, then the following conditions are equivalent.

• E = F1

⊕
F2.

• F1 ∩ F1 = {0E} and dim(E) = dim(F1) + dim(F2).

• E = F1 + F2 and dim(E) = dim(F1) + dim(F2).

Exercise 6.3.1. Let R3 be the vector space on the field R,

G = {(1, 1, 0), (0, 0, 1), (1, 1, 1)}.
subspace of R3 and let the set F be defined as:

F = {(x, y, z) ∈ R3 : 2x+ y − z = 0}.

• Show that F is a vector subspace of R3 .

• Find a basis for each of : F ∩G , F +G , G , F (if any), and give
their dimensions.

• Is R3 = F
⊕

G ?
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Exercise 6.3.2. Let F and G two vector subspaces of R3 defined by :

F = {(x, y, z) ∈ R3 ; x−2y+z = 0} , G = {(x, y, z) ∈ R3 ; 2x−y+2z = 0}.

1. Give a basis for F , a basis for G, and deduce their respective dimen-
sions.

2. Give a basis for F ∩G , and give its dimension.

2. Do we have F
⊕

G = R3?

6.4 Linear Maps

In this chapter we use IK which represents etch erR or IC.

6.4.1 Generalities

Given two vector spaces E and F , both over the same field IK, a linear map
is a function from E to F that is compatible with scalar multiplication and
vector addition. More precisely, we have the following :

Definition 6.4.1. (Linear map)

A linear map f from a vector space E into a vector space F is a rule that
assigns to each vector x in E a unique vector f(x) in F , such that:

f : E −→ F

x 7−→ y = f(x)

1. ∀ x, y ∈ E : f(x+ y) = f(x) + f(y).

1. ∀x ∈ E , ∀λ ∈ IK : f(λx) = λf(x)

This definition is equivalent to :

∀ x, y ∈ E, ∀ λ, γ ∈ IK : f(λx+ γy) = λf(x) + γf(y)
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Example 6.4.1. The map :

f : R2 −→ R3

f(x, y) = (3x− y, 0, 2y)

is linear map:
1. Let X = (x, y) ; Y = (x′, y′) ∈ R2 :

f(X + Y ) = f(x+ x′, y + y′) = [3(x+ x′)− (y + y′), 0, 2(y + y′)].

= [(3x− y) + (3x′ − y′), 0 + 0, 3x+ 3y′].

= (3x− y, 0, 2y) + (3x′ − y′, 0, 2y′).

= f(X) + f(Y ).

2. Let X = (x, y) ∈ R2, λ ∈ R:

f(λX) = f [λ(x, y)] = f(λx, λy) = (3λx− λy, 0, 2λy)

= λ(3x− y, 0, 2y) = λf(x, y) = λf(X).

Properties 6.4.1. Here are some simple properties of linear maps

f : E −→ F

• f(0E) = 0F .

• f(−u) = −f(u) , u ∈ E.

6.4.2 Operations on linear maps

Definition 6.4.2. The set of linear mappings from E into F is denoted
L(E;F ).

Theorem 6.4.2. Let f , g be two linear maps from E into F and k ∈ IK.
Then f + g and kf are linear maps from E into F .

Proposition 6.4.3. L(E;F ) with addition and multiplication has a vector
space structure on R.

Theorem 6.4.4. (Composition) Let E , F and G be vector spaces over a
common field IK, and suppose f be a linear map from E to F and g a linear
map from F to G. Then g ◦ f is a linear map from E to G.
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6.4.3 Endomorphisms , Isomorphisms and automor-
phisms

Observe that the definition of a linear map is suited to reflect the structure
of vector spaces, since it preserves vector spaces two main operations, addi-
tion and scalar multiplication. In algebraic terms, a linear map is said to be
a homomorphism of vector spaces. An invertible homomorphism where the
inverse is also a homomorphism is called an isomorphism. If there exists an
isomorphism from E to F , then E and F are said to be isomorphic, and we
write E ∼= F . Isomorphic vector spaces are essentially ”the same” in terms
of their algebraic structure. It is an interesting fact that finite-dimensional
vector spaces of the same dimension over the same field are always isomor-
phic.

Definition 6.4.3. ( Endomorphisms )
Let E be a vector space overIK . An endomorphism of E is a linear map

from E to itself. We denote by L(E) the set of endomorphisms of E.

Remark 6.4.1. For endomorphisms, we use this notation : f ◦ f ◦ f = f 3.

Example 6.4.2. Why f has no meaning if f is the linear map from R2 to
R defined by f(x, y) = x ?

Definition 6.4.4. ( Isomorphisms and automorphisms )
Let f be a linear map from E to F two vector spaces over IK.

1. f is an isomorphism if and only if f is bijective.

2. f is an automorphism if and only if f is an endomorphism and is
bijective, so is both an endomorphism and an isomorphism.

Theorem 6.4.5. Let f be an isomorphism from E to F . Then f−1 is an
isomorphism from F to E.

Proposition 6.4.6. Let f be an automorphism of E (isomorphism from E
to E). Then f−1 is an automorphism of E. Let f and g be two automor-
phisms of E, then g ◦ f is an automorphism of E and we have (g ◦ f)−1 =
f−1 ◦ g−1.
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Definition 6.4.5. ( The kernel of a linear map )

The kernel (or null space) of such a f , denoted by ker(f) , is the set of
all u in E such that f(u) = 0F (the zero vector in F ):

ker(f) = {u ∈ E : f(u) = 0F} = f−1({0F}).

Example 6.4.3. 1. Let’s consider f :

f : R3 −→ R2

(x, y, z) 7−→ f(x, y, z) = (y , x+ y + z).

Find the kernel of f .
2. Let’s consider g :

g : R2 −→ R3

(x, y) 7−→ g(2x− y , x+ 2y , x+ y).

Find the kernel of g.

Proposition 6.4.7. If f : E −→ F is a linear map, then kerf is a
subspace of E.

Proposition 6.4.8. A linear map f : E −→ F is injective if and only if
kerf = {0E} :

f is injective ⇐⇒ kerf = {0E}.

6.4.4 Linear maps and dimension

Definition 6.4.6. ( The kernel of a linear map )

The image of f , denoted by Im(f) , is the set of all vectors in F of the
form f(x) for some x in E .

Im(f) = {f(x) : x ∈ E} = f(E).

Proposition 6.4.9. If f : E −→ F is a linear map, then Im(f) is a
subspace of F .
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Proposition 6.4.10. A linear map f : E −→ F is surjective if and only
if Im(f) = f(E) :

f is surjective ⇐⇒ Im(f) = f(E).

Example 6.4.4. 1. Let’s consider the map f defined as :

f : R3 −→ R2

(x, y, z) 7−→ f(x, y, z) = (x+ y , z).

f is injective ⇐⇒ ker(f) = {0R3}.

ker(f) = {X = (x, y, z) ∈ R3 : f(X) = 0R2}.

ker(f) = {(x, y, z) ∈ R3 : f(x, y, z) = (0, 0)}

= {(x, y, z) ∈ R3 : (x+ y , z) = (0, 0).

= {(x, y, z) ∈ R3 : x+ y = 0 and z = 0}.

= {(x, y, z) ∈ R3 : x = −y and z = 0}.

= {y(−1, 1, 0) ∈ R}.
ker(f) = span{(−1, 1, 0)}.

ker(f) is generated by the vector (−1, 1, 0) , then ker(f) ̸= {0R3}.
Hence f is not injective.

Im(f) = {f(X) : X ∈ R3} = R2.

Im(f) = {f(x, y, z) : (x, y, z) ∈ R3}

= {(x+ y , z) : (x, y, z) ∈ R3}

= {x(1, 0) + y(1, 0) + z(0, 1) : (x, y, z) ∈ R3}.

Im(f) = span{(1, 0), (0, 1)}.
Hence, Im(f) is generated by two vectors (1, 0), (1, 0) which are the canonical
basis of R2 . Then Im(f) = R2 and f is surjective.
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Theorem 6.4.11.
Let E and F be two vector spaces over IK and f : E −→ F a lin-

ear map. If V = (e1, e2, ..., ep) is a spanning set of E, which means
E = V ect(e1, e2, ..., ep) then V ′ = (f(e1), f(e2), ..., f(ep)) is a spanning
set of Im(f).

This theorem allows to find Im(f) using only a spanning set of E.

Proposition 6.4.12. Let f : E −→ F be a linear map, with V finite-
dimensional. Then:

dimE = dimker(f) + dimIm(f).

Definition 6.4.7. ( The rank of a linear map )
The rank of a linear map f is the dimension of its image, written rankf :

rankf = dim(Im(f)).

and we have :
rankf = dimE − dim(ker(f)).

Theorem 6.4.13. Let E and F be two IK vector spaces of finite dimension
and f a linear mapping of E into F then we have the following equivalences :

• f is injective ⇐⇒ rank(f) = dimE.

• f is surjective ⇐⇒ rank(f) = dimF.

• f is bijective ⇐⇒ dimE = rank(f) = dimF.

Theorem 6.4.14.
Let E and F be two finite dimensional vector spaces over IK with the

same dimension and f a linear map from E to F . The following sentences
are equivalent :

1. f is injective.

2. f is surjective.

3. f is bijective.
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Exercise 6.4.1. Let f be the map defined by :

f : R2 −→ R2

(x, y) 7−→ f(x, y) = (4x+ 6y , 2x− 3y).

1. Show that f is linear .

2. Show that f is a projection ie f ◦ f = f .

3. Determine Ker(f) et Im(f) .

4. Is f injective, surjective?

Exercise 6.4.2. Let f be a linear mapping from R2 into R5 , defined by
(x, y) of R2 :

f(x, y) = (x+ 2r,−2x+ 3y, x+ y, 3x+ 5y,−x+ 2y).

1. Show that f is linear .

2. Determine Ker(f) and its dimension.

3. Determine Im(f) and its dimension.

4. Is f injective, surjective?

Exercise 6.4.3. Let f be a linear mapping from R2 into R3 , defined by
(x, y) of R2 :

f(x, y) = (5x+ 3y,−2y + 3x,−3x).

1. Show that f is linear .

2. Determine Ker(f) and its dimension.

3. Determine Im(f) and its dimension.

4. Is f injective, surjective?
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