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Introduction

This book is a collection of exercises and problems in mathematics for
engineering students. It is intended for second-year Bachelor’s students in
the Science and Technology domain L2 and also for students from other
fields or preparatory schools. This material contains essential theorems
and exercises to illustrate them.

This handout emphasizes practical methods of computation (theorems,
propositions, etc.) without providing proofs to focus directly on the
main objectives. It also includes exercises with detailed solutions and
additional unsolved problems to assess the reader’s understanding. Readers
are encouraged to solve the exercises independently before consulting the
solutions.

The content of this handout is derived from the bibliography provided at
the end.

Structure

1. The first chapter revisits results about single and multiple integrals.
2. The second chapter introduces improper integrals.

3. The third chapter focuses on solving differential equations.

4

. The fourth chapter discusses infinite series, sequences, and series of
functions, including different types of convergence, power series, their
applications in solving differential equations, and Fourier series, a
crucial tool for engineers across fields.

5. The fifth chapter covers Fourier transforms and their applications in
solving differential equations.

6. The last chapter presents the Laplace transform and its applications.

I hope this document helps students mastering these areas of mathematics.






Chapter 1

Single and Multiple Integrals

1.1 Review of Riemann integrals and antiderivatives

The objective of these notes is to revisit the content of integration lessons.
This quick review is crucial for refreshing memory before proceeding
further.

1.1.1 Integrals of a Piecewise Continuous Function on a Segment

We begin by recalling a definition and the main properties of the Riemann
integral for a real-valued function of one variable. We limit the discussion
to functions that are continuous or piecewise continuous. Considering the
broader class of Riemann integrable functions adds refinement but is not
strictly necessary, especially when the Lebesgue integral is also available.
We start by recalling the definition and basic properties of piecewise
continuous functions.

Definition 1.1.1. Let [a,b] C R; a < b and f be a function defined on
la,b]. We say that f is piecewise continuous if there exist n € N* and
points xq, ..., T, € |a,b] such that:

a=xg< X1 <TH=>,

and for every j € [1,n] the restriction of f to the interval |z;_1,x;| is
continuous and admits finite limits at ;1 and x;.

The set of piecewise continuous functions is stable under addition,
multiplication, and scalar multiplication.  Furthermore, a piecewise
continuous function on a segment is bounded.

It is also recalled that a function continuous on a segment is uniformly
continuous (Heine’s theorem).

Regardless of the chosen definition, the idea of the Riemann integral is
to approximate a function by increasingly finer step functions (piecewise
constant functions).



1.1. REVIEW OF RIEMANN INTEGRALS AND ANTIDERIVATIVES

Definition 1.1.2. Let [a,b] be a segment of R. A pointed subdivision o of
la, b] is defined as:

e an integer n € N*,
e points xy, ..., Ty € |a,b] such that a =xg < xy--- < x, = b,
e and points & € [xo, x1], &1 € [T1,22], ... & € [Tno1, Tn).
Furthermore, the step size of this subdivision ¢ is said to be less than or
equal to 6 > 0 if
Viell,n], x;—xj_1 <0.

Given a function f from [a,b] to R, we define

foj — Zj1).

This corresponds to approx1mat1ng f by the function that takes the value
f(&) on |xj_y,z,;] for all j € [1,n].

Proposition 1.1.1. Let f be a piecewise continuous function on [a,b]
mapping to R. Then there exists a unique value I(f) such that:

For every e > 0, there exists § > 0 such that for any partition o of [a, b
with mesh size less than or equal to 0, the following holds:

15(f) = I(f) < e

where Sy (f) is the Riemann sum.
We denote this unique value as:
b
~ [ f@) as

Typically, a natural choice to obtain an increasingly fine subdivision of the
segment [a,b] s to use a uniform subdivision. Given n € N*, we define, for
all 7 € [1,n]

J
xj:a—l—ﬁ(b—a).

Natural choices for selecting &; in [z,_1, z;] are to take {; = x;_; or §; = ;.
Thus, for any piecewise continuous function f on [a, b, we have:

anl
n —Of( b—a>n—>+oo/f

J

6



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

1.1.2 Antiderivative of a continuous function

Let I =[a,b] CR; a<bandlet f: I — R be a continuous function.
Definition 1.1.3. A function F' : I — R is an antiderivative of f if:

1) F is differentiable on I.

2) F' = f Vx € a,b]

Theorem 1.1.1. Let f be continuous on |a,b]. For every antiderivative F

of f, we have:

| 1) de = 1P@)L = F(6) - Flo)

In this notation, x is a dummy variable: it can be replaced by any other
letter (avoiding one that is already used in the bounds), and we can thus
also write

/abf(fb‘)d:z::/:f(t)dt:/abf(u)du:/abf(T)dTm

Theorem 1.1.2. Any real, continuous function f on I has at least one
primative.

Notation 1.1.1. (INDEFINITE INTEGRAL)
Given a function f continuous on I and a primitive F' of f, we denote:

7



1.1. REVIEW OF RIEMANN INTEGRALS AND ANTIDERIVATIVES

1.1.3 A list of Common Antiderivatives

Function f | Particular Antiderivative F’ Interval
a ax R
xa—i—l
a -1 RJr
e a+1
1
— In |z| ] — 00,0[ ou ]0, +o0]
T
e’ e’ R
COS T sin x R
sin « —COoS T R
cosh x sinh z R
sinh z cosh x R
1 ) = 1,1]
e arcsin x -1,
V1—22
1
arctan x R
1+ 22

1.1.4 Some properties of integrals
Let f and g be continuous functions on [a, b]. We have:

1) Reversing the limits of integration:

/abf(a:) iz —/baf(x) da.

2) Additivity with respect to intervals:
b c b
[ tayde= [ paydos [ fa)dn ee
3) Scaling by a constant:

/ab)\-f(x)dx:)\/gbf(x)dx; A eR.

8



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

4) Linear combination:

b b b
/ [f(z) £ g(x)] dx = / f(z) dzx :l:/ g(x) dx.
5) Integral over a point:

/aaf(x) dx = 0.

1.1.5 General Integration Formulas

Let u be a differentiable function on |a, b].

Function f Particular Antiderivative F
u(r)u®(z), a # —1 u:;_(f)
u'()
e In |u(zx)|
u/(x)eu(x) eu(:z:)
u'(x) cos[u(z)] sinfu(x)]
u' (x) sinfu(x)] — cos|u(z)]
wiw) arcsin|u(x
— u(a)
u'()
T2 arctan|u(x)]

Example 1.1.1. Fvaluate the following indefinite integral:
/ (53:4 + e + 9sin 2z) dux

Solution. We have:

F(z) = /5x4d:p—|—/63xdx—|—9/sin2xda7

1
= 5/£C4d£lf—|—§/3€3xdl‘—l—g/QSiandCL’

1 9
= QZ5+§63$—§COSQ$+C; c €R.

Example 1.1.2. Calculate the following integral:

1 2
3
]:/ <3:L‘2—|—2x6x2—|— ’ ) dx
0 1‘|‘£U3

9




1.1. REVIEW OF RIEMANN INTEGRALS AND ANTIDERIVATIVES

Solution. We have:

1 2
3
I = / <3£E‘2—|—2$6x2+ ’ )dx
0 1+$3

1
= [;1;3 +e” +In(1 + x?’)} .

= e+ 1n2.

1.1.6 General Methods for Computing Integrals

This part outlines the main techniques for calculating definite or indefinite
integrals.

Integration by Parts

Let w and v be two continuous functions on [a, b]. We have:

b b
/ w' dz = [uv)” —/ u'v du.

Example 1.1.3. Compute the following integrals:
2 1 0
1)A:/ Inz dz, 2)B:/ xe’ dx, 3) C:/ rsinx dz.
1 0 0

Solution. Using the integration by parts formula:

2
1)A:/ Inz dx:
1

Let u(z) =Inz, sou'(x) = — and v'(x) =1, so v(x) = x. Then:
T
2
A = [zlnz]] —/ T da
1 X

— [zlnz— 2]} =2In2 — 1.

1
2) B:/ ze’ dx:
0
Let u(x) = x, sou'(x) =1 and v'(x) = €*, so v(x) = e*. Then:
1
B = [ze"); —/ e’ dx
0

= [ze® — €],
= 1.

3) C:/ rsinz dr:
0

10



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

Let u(x) = x, sov'(x) =1 and v'(z) = sinz, so v(x) = —cosx. Then:
C = [—zcosx]] +/ cosz dx
0

= [sinz — zcosz])

= T.

Change of Variables

Let f be a continuous function on [a, b], and u be a differentiable function.
If we substitute z = u(t), then:

/ f(z) dx = /11::)) [ u(®)]u'(t) dt.

Example 1.1.4. Compute the following integrals:

T In2
1)A:/ cos (V) du, 2) B= Vet —1dx.
0

0
Solution. Usmg the change of variables method:

1) A= / cos (Vz) dx:

Let Jo =t = x = t2 so dx = 2tdt with t € [0,7]. Then, we obtain:

/ cos(\/E) dx:2/ tcost dt.
0 0

Using integration by parts:
Let u(t) =t; sou'(t) =1 and v'(t) = cost, so v(t) =sint. Then:

A = 2[tsint]§—2/ sinz dx
0

= 2[tsint + cost];

= —4.
In2
2) B = ver —1dx:
0
d
Let et —1 =t =z =1In(t*+ 1), DR [0,1]. Then,
we obtain:
In2 1 t2
B = ver —1dx =2 dt
0 c ‘ /0 2+1

1 42 1 1
1—1 1
:2/t+—dt:/1dt—/ dt
o P41 0 o P+1

— 2[t — arctant];
— 2T
2

11



1.1. REVIEW OF RIEMANN INTEGRALS AND ANTIDERIVATIVES

Transformations of Expressions

To obtain the primitives of a continuous function f, we can transform the
expression of f(z).

Example 1.1.5. Calculate the following integrals:
i

2 —
1)A:/ dx 2)B:/2(:os2:1:dx.
1 0

2?2+

Solution. We can transform the form of f(x):

21
1)A:/ dx:
1

2+ x
We decompose f(x) into two simple fractions as follows:

1 1 1 1

2+r xr+1l) o+l

2 2
1 1 1
1 .'L'2+£C 1 X x‘f‘l

= [z —In(z+ 1))} = {1“ (ﬁl)]i
4

= In-.

3

7T
2) B= /2 cos? & dx:

0
Here, we use trigonometric identities to rewrite f(x). We have:

1 2
cos’ x = y, Vo € R.

T m
2 cos?x do = /2(1—|—COS2$) dx
0

wy
I
S—

NN o)~

1
Zgin?2
[x—|—28m x}

N N
o

12



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

1.2 Double and triple integrals

1.2.1 Double Integrals

Let f: D C R*> - R with f(x,y) being a continuous function, and D
being a domain bounded by simple curves in R?. Then, the double integral
exists:

//D f(z,y) dx dy.

Methods for Calculating Double Integrals

Proposition 1.2.1. Let f, fi and fy three continuous functions;
f:DCR* =R
(z,y) = f(x,y) = fi(z) - fo(y). Here D = [a,b] X [c,d]. Then:

//D flz,y) dedy = // fi(@) - foly) dedy
la,b)x [c.d]
= </ab fi(z) daz) (/cde(y) dy) |

Example 1.2.1. Compute the integral:

I:// 2z siny dx dy; D =[0,1] x [0, 7].
D

Solution. Since f(x,y) = 2x - siny, the integrals can be separated:

I = // 2z - siny dx dy
[0,1]x[0,7]
1 U
= </ 2xd:v> (/ sinydy)
0 0

= [xﬂé X [—cos vyl
= 2.

13



1.2. DOUBLE AND TRIPLE INTEGRALS

Proposition 1.2.2. If f is continuous on D = |a,b] X [c,d]. So:

//Df(x,y) drdy = //[a?b]x[c’d]f(%y) dz dy
- [ ([ e iv)as
= /j(/jf(x,y)dw)dy.

Example 1.2.2. Compute the integral:

1
B://l)(1+x+y)2dxdy; D =[0,1] x [0,2].

Solution. Split the integration into two steps:

2 1 1 2 1 1
B - de|dy= | |————| d
/0 Uo I+z+y)? x] Y /0 [ 1+x+y]o /

_ /0 <_2j—y+1j—y) dy = [In(y + 1) — In(y + 2)J;

y+1 2 3
= |In|—— =1In—.
y+2/], 2

Proposition 1.2.3. Let f(z,y) be a continuous function over a region D
described as:

D={(z,y) eR’/a<z<b and P(z)<y<VU(z)}.

Here ® and VU are continuous functions on |a,b] according to Figure 1.1.

l.
/ y = U(x)

T

D

;_//'y = ®(x)

]
0 a

N -—

Figure 1.1: The region D

= //D flx,y) dedy = /ab (/::)f(x,y) dy) dz.

14



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

Example 1.2.3. Evaluate the following integral:

Az// ve! dedy; D= {(z,y) e R*/2* <y <=z}.
D

Solution. We will find the bounds of integration, as follows:
(z,y) € D = 2* < y < x this implies that x* < z, thus x € [0,1].

D:{(x,y)€R2/0§x§1andeSny}

18 represented on Figure 1.2.

i

Figure 1.2: The region D

Now we can calculate the double integral A:

1 T 1 T
A = / (/ xe? dy) d:c:/ x{ey] dx
0 z2 0 a?
1 ) 1 L
:/x(e‘”—ex)da::/xexdx—/xex dx
0 0 0
1 1 1 ! 2
— [xex} —/ e’ dr — —/ 2xe” dx
0 0 2 0

1 1
— |ge® —ef — Ze*
-5,

3—e
5

15



1.2. DOUBLE AND TRIPLE INTEGRALS

Proposition 1.2.4. Let f(z,y) be a continuous function over a region D
described as:

D={(z,y) eER*/c<y<d and P(y) <z <TU(y)}.

Here ® et W are continuous functions on [c,d| according to Figure 1.3.

Figure 1.3: The region D

= [[ sy aray = | d ( / Z()y)f(fc,y) d:c> ay.

Example 1.2.4. Calculate the double integral:

dz dy 5
B = // x+y3;D:{(x,y)ER/x>1,y>1,x+y<3}.

Solution. We will find the bounds of integration. We can write the domain
of integration as follows:

D = {(x,y) ceR¥1 <y<2el<z< S—y} is represented on
Figure 1.4.

AN

0 1 3 T

Figure 1.4: The region D

16



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

o= [ wm o [ ],

1 /21 1 1 e
e
21 19 Ww+1) 219 y+1]

Method of Variable Substitution

Let f: D CR? >R
(x,y) — f(x,y) be a continuous function on a closed and
bounded domain. We define:

x = x(u,v),

y = y(u,v).
1) z(u,v) and y(u,v) have continuous partial derivatives.
Ox Ox
2) The Jacobian du Ov| 4,
9y %y
ou  Ov
Theorem 1.2.1. If z(u,v) and y(u,v) satisfy conditions 1) and 2), then:
/ fxydxdy—/ f (z(u,v),y(u,v)) | J | dudv.
D/

Here (z,y) € D and (u,v) € D'

Example 1.2.5. Calculate the following double integral using the change
of variables (polar coordinates):

:// Va2 +y? dxdy
D

and
D= {(z,y) e R?/2* +y* < 1}.

Solution. To compute this double integral, we use polar coordinates as
follows:

xr =1rcosb,

y = rsinf.

17



1.2. DOUBLE AND TRIPLE INTEGRALS

Here
8_:6 @ cos —rsinf
J = gr ge = = rcos’ @+ rsin’f = r.
8_y 8—‘Z sinf) rcos@
,

Since, we have:

// f(z,y) d:n'dy:/ f(rcosf,rsinf)r drdb.
D Iy

In this ezample: D' =1[0,1] x [0, 27| according to Figure 1.5.

/‘\ x = rcost
Eal g { y = rsinf
k‘/ ¥(r,8) € [0,1] x [0, 27]

Figure 1.5: The region D’

Therefore:

I = / / r? dr df
[0,1]%[0,27]
1 2T
([ ([ )
0 0
r3 ! -
= [g] X [9]3
0

27

3

18



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

1.2.2 Les intégrales triples

Let f: D C R® — R with f(z,y,2) being a continuous function, and D
being a domain bounded by simple curves in R3. Then, the triple integral

exists:
// f(z,y, z) dedydz.
D

Methods for Calculating Triple Integrals

Proposition 1.2.5. Let f, fi, fo and f3 are continuous functions,
f:D—=>R
(@, y) = f(z,y,2) = fi(z) f2(y) - f3(2) with D = [a1, bi] X [az, bs] X [as, bs].

J[[ #ww dsay /// (4) - fo(2) dodydz

[a1,b1]x[az,b2] % [as,bs]

~ (| f) ) ([ 1) az).
([ )<@ )( [ o)

Example 1.2.6. Compute this integral:

1= /// 22yz dx dy dz
D

D =0,1] x [1,2] x [0,2].

Solution. Separate the variables and solve each term as follows:

/// 22yz de dy dz

[0,1]%[1,2]x[0,2]

) (o) (1)
- 5, (o], [3], -

Proposition 1.2.6. Let f be a continuous function, let D be defined as:
{(ff,yyz) eR’fa <z <b & (x) <y < Vy(x), Pyz,y) <z < ‘1’2(5'3,9)}7

et

where ®1, Uy, Py and ¥y are continuous functions. Then:

Va(z) | Wa(z,y)

i//l)f(x,y,z)dxdydz:/ab / / f(x,y,2) dz| dy| dx.

Qi(z) |P2(7y)

19



1.2. DOUBLE AND TRIPLE INTEGRALS

Example 1.2.7. Compute the integral:

1
I:// dx dy dz
p(L+a+y+z)3

with
D = {(az,y) ERQ/JJZO, y>0,z>0andx+y+2< 1}.
Solution. The region D can be described using the inequalities

0<z<1l, 0<y<l—2, 0<2<1—a—u.

Write the triple integral:

l—z [ 1-z—y
! 1
I:/ / / dz | dy| dx
0 (I+zx+y+2)3
0 0

Compute the z—integral:

1—z—y l—z—y
[ s - o]
z = |—
0 I+z+y+2) 21+ =z +y+2)°],
1 1

8+2u+x+wT

Simplify:

1 1
/ [2(1+x+y)2 _§} dy| de
0

20



CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

1.3 Applications to area and volume computation

The area A of a domain D can be computed using double integrals:

1) With Cartesian coordinates:

A:// dz dy.

D

A://rdrdﬁ.
D

Example 1.3.1. Let D be the domain defined by:

2) With polar coordinates:

D={(z,y) eR?/—1<2<1 and 2*<y<4-—2°}.
Compute the area of D.

Solution. The area can be computed as:

1 pd—g? 1
area(D) = /1/2 dydx:/1(4—$3—x2) dx
1

= 4x—x——x—31
4 3] 4

22

3

Example 1.3.2. Let D be the disk centered at (0,0) with radius R:
D ={(z,y) e R*/2* +y* < R*}.

Compute the area of D.

Solution. Switch to polar coordinates:

2r R
area(D) :/ /rdrdﬁ
o Jo
R

i E /] o) (1)

0
- TR

21



1.3. APPLICATIONS TO AREA AND VOLUME COMPUTATION

Mass and Moment of Inertia

Let o(z,y) be the density of a material within a plane domain D:

M = //DJ(:U,y) dx dy.

e The moment of inertia about the x—axis is:

onz// y*o(z,y) dz dy.
D

e The moment of inertia about the y—axis is:

Iy, = // 22o(x,y) dxdy.
D

e The moment of inertia about the origin is:

I ://D(:U2—|—y2)a(x,y) dz dy.

e The mass is:

Volume Calculations

The volume V of the domain D C R3 is given by:

V:///D dzx dy dz.

Mass and Moment of Inertia

For 3D regions, the analogous formulas involve triple integrals.
Let o(x,y, z) be the density of a material within a plane domain D:

M = // o(x,y,z) drdyd:z.
D

e The moment of inertia about the x—axis is:

Loy = // (y* + 2%)o(x,y, 2) de dy dz.
D

e The mass is:

e The moment of inertia about the y—axis is:
I, = // (2% 4 2%)o(z,y, 2) dx dy dz.
D
e The moment of inertia about the origin is:

Iy = // (> + 1y + D)o (z,y, 2) do dy dz.
D
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CHAPTER 1. SINGLE AND MULTIPLE INTEGRALS

1.4 Supplementary exercises

Exercise 1.1. Compute the following indefinite integrals:

)/\/761511 2)/$2i;_x1+3dx, 3) /(e:”cosx—exsinx) dx,
4)/sin\/5dx, 5)/1

dx, 6) /ex(l/erln:z:) dx
Exercise 1.2. Evaluate the followzng definite mtegmls

n’z—1
1 el d 2/ dz, 3/
)/ " 4 iz ! / 1-|—\/_
7r/2
4)/ Vsinz + 1 dx, 5)/ lnx dx, 6')/ sin® z cos® z dux.

1
7)/ Vet +1dz, 8)/ ﬂdw 9)/ sinh - cosh® 2 du.
0 0

Exercise 1.3. Compute the following double integrals:

1
1) I, = D, =10,1 1].
) I //D1 CEEEE drdy where Dy =10,1] x [0,1]

2) 1, = //D2 T dxdy where Dy =1[0,1] x [0, 1].

1 T 1
3) I = . drdy wh D:[O,—} 0.~
) 1s //Dgycostrl rdywnere ’ 2 X[ 2]

4)[4:// x+3dxdy where D4:{(x,y)€]R2/x,yZO, x—l—ygl}.
p, €€

1
5) I = —— drdy where Dy = {(z,y) e R*/ 2 +¢*><1}.
) I //1)51+:c2+y2 xdy where Ds {(x ) Jrxt+y < }

6')[6:/ Ve drdy where Dg={(z,y) e R*/ 2° <y <uz}.

D

7)172// 22y dedy  with D7:{(x,y)€R2/y20, 332+y2—23;§()},
Dy

8)[8:// drdy where Ds={(z,y) eR*/0<y<uw 2°+y° <4}.
Dy
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Exercise 1.4. Calculate the following triple integrals:

1)
]1:/// cos(x +y — z) dedydz
D,
with - - -
Di=[0.5] < [0.5]x[o.5].
2)
1
I = — dxdyd
2 //D“/x—l—y—l—z vayazs
with
Dy =10,1] x [1,2] x [1,2].
3)
1
Is = dx dy d
3 ///DQ(l-I—x-l—y—l—z)?’ rayaz
with

Dg,:{(x,y,z) ceR¥/2,y,2>0, v+y+2< 1}.
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Chapter 2

Improper Integrals

In this chapter, we extend the concept of integrals to functions defined on:
1) Unbounded intervals.

2) Intervals where the function has infinite values at one or more
boundaries.

2.1 Integrals of Functions Defined on Unbounded Intervals

Definition 2.1.1. Let f be a continuous function on [a,b|C R. Then:

/abf(x) dleti:r)rg/atf(x) dx

This is called a tmproper integral. If F' is an antiderivative of f, we can

write:
b

f(z) de = [F(x))" = lim F(z) — F(a).

x—b
<
2.1.1 Convergence and Divergence
Let f be a continuous function on the interval [a, b[C R.

1) The integral [ f(x) dz converges if the limit exists and is finite.
2) The integral [ f(z) dx diverges if the limit does not exist or is infinite.

2.2 Integrals of Functions with Infinite Values at Boundaries

Definition 2.2.1. Let f be a continuous function on the interval [a, +00].
Hence, The integral is defined as:

7 fa) da = hm/f

a t——+00



2.2. INTEGRALS OF FUNCTIONS WITH INFINITE VALUES AT BOUNDARIES

This s called also a improper integral. We can write:

400
(z) dz = [F(z)],~ = lir_{l F(z) — F(a).
a T—+00
Similarly, integrals on other intervals, such as |a,b|, ]a,b[, | — c0,al] or

| — 00, +00], can be defined in an analogous manner.

2.2.1 Calcul pratique des intégrales généralisées

The aim of this chapter is to define the nature of the improper integral.
One of the methods is to determine whether it exists or not, as follows.

Using an Antiderivative

Let f be a continuous function on the interval ]a,b], and let F' be an
antiderivative of f. Then:

/ flz) de = [F(x)]" = F(b) — lim F(x).

T—ra
>

Example 2.2.1. Compute the following improper integrals

5 1 11 +00 1
1) A= —d B = —d = dzx.
) /0\/5 T, 2) /037 T, 3) C /0 2 %

Solution. We will use the previous chapter to find the antiderivatives:

1)A:/05%das:

Using the formula for powers of x; /:L‘O‘ de = =
o

a+1

a1
e

5 5 1
/ Ly / 2 dr = [2y3]
A = — dx = T x:{ x}
0 VT 0 0
- 2\/5—211115@:2\/5.
T—

5
1
Therefore, the integral / — dx converges.
0

NE
|
2)B:/ — dz:
0 xr

1 1
B:/ ld:z::{lnx} =Inl—-limhz = +oc0.
0

T 0 z—0
>

1
1
Thus, the integral / — dx diverges.
0o T
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CHAPTER 2. IMPROPER INTEGRALS

—+00 1
3) C= d
) /0 1+ 22 o

C = / 5 dr = [arctan :1:} = lim arctanz — arctan(0 = —.
o 1+ 0 T—>-+00 2
+00 1
Hence, the integral / dx converges.
0 1+ 1'2

Intégration par parties

Let v and v are continuous functions, then:

b b
/ w' dr = [uv)’ — / u'v du.
a a

Example 2.2.2. Compute the following improper integrals:

1 +00
1) A:/ Inzx dx, 2) B=/ ze * du.
0 0

Solution. We will use the method of integration by parts:

1)A:/ Inx de:
0

1
u(z) =lnx douu'(x) =— etv'(x) =1 douv(x) =x. Alors:

T
1 tx
A = [z] — | =d
[z In 2], /0513 T
- [xlnx—x]o_—l—glch})(xlna:—x)
= —1.

1
Therefore, the integral / Inx dx converges.
0

. /+oo

u(z) =z dovu'(x) =1 et (z)=e" dovv(zr)=—e". Alors:
+ i
B = [—xe_x]ooc—l—/ e " dx
0
_ [T mx] T s —x —x
= [—ze el xgrfx(xe +e ") +1
=1

+0o0o
Thus, the integral / xe * dx converges.
0
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2.2. INTEGRALS OF FUNCTIONS WITH INFINITE VALUES AT BOUNDARIES

Change of variables

Let f be a continuous function on ]a, b, and u be a differentiable function.
If we substitute x = u(t); then we obtain:

/abf(a:) dr = [u_l(b) Flu()] W' (t) dt.

1~ a)
Example 2.2.3. Evaluate the following improper integrals:

+00 1
A= —— dx.
/3 v+ 1 ¢

Solution. We will utilize the method of change of variables:

Let Vi +1=t= 12 =1>—1, sodr = 2tdt with t € [2,+occ[. Then:

+00 +00
/ ! d 2 ! dt
—dx = — dt.
3 T\ T + 1 9 t2 —1
We can decompose f(t) into two simple terms as follows:

2 1 1
- = — . Thus:
2 —1 t+1)(t—-1) t—1 t+1

e e 1 1
A:Q/ dt:/ — dt
5 t2—1 9 t—1 t+1

= [In(t—1)—In(t+1)],~ = [ln (Eﬂ N

t+1)],

—1 1
= lim In t— —In—-=1n3.
t—+o00 t+1 3

+00 1

3 :U\/:E—i—l

Hence, the integral dx converges.
2.2.2 Integration of Positive Functions
If f is negative on I, then — f is positive on I, and the convergence of the

b b
integral / f(x) dz reduces to that of the integral / —f(x) dx.

The follov?fing study will be limited exclusively to poasitive functions.

2.2.3 Riemann’s integral
Let f:[1,+oo[— R/

1
z+— f(r) = — be a continuous function; o € R.
T
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CHAPTER 2. IMPROPER INTEGRALS

First case. If o = 1:

-‘rool
L = / — dr = [Inz]™
1

X

= lim Inz —1Inl
rT—+00

= -+o00.
+00 1

Thus, the integral / — dx diverges.
1 X

Second case. If o # 1:

+00 1 +00 l—q 71t©
Ia:/ —dx:/ xo‘dlex ]
1 xr 1 1l -« 1

' xl—a 1
= lim —
r—=+0 ]l —a 1 —«
1
> 1
B o sl « :

too converges if a > 1,

Therefore, the integral / — dx
x®
! diverges if a < 1.

In the general case, there are two types of Riemann integrals; a > 0:

+00
First type: / — dx converges if a > 1.
. T
“1
Second type: / — dx converges if o < 1.
0o T

Test of Comparaison

Theorem 2.2.1. Let f and g be two continuous functions on the interval
la, +o0[, such that:

0< f(x) <g(x), Vzé€la,+o0.
Then:

+00 +0o
1) If / ) dx converges = f(x) dx converges.

a

2) ]f f( ) dx diverges :>/ ) dx diverges.
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2.2. INTEGRALS OF FUNCTIONS WITH INFINITE VALUES AT BOUNDARIES

Example 2.2.4. determine whether the following integrals converge or
diverge by using the test of Comparaison:
1 ev

—+00 ) +002 ;
1)A:/ e dz, 2)B:/ ST e, g c= | San
1 2 xz

o T

+00
Solution. 1) A = / e du:
1

We have: x> 1= 22> 1 = —12 < —z. Then: e~ <e ' Vr>1.
+00 +00 +oo

Since lhe integml/ e dx converges (/ e ¥dx = [_QﬂL = el>
1 1

+00
thus, our integral / e da converges also by the test of Comparaison.
1

T 9 L ¢ing

2+sinx 3

We know that: —1 <sinx < 1. So: ——— <= Vo > 2.
x x

+00

1

Since / — dx is convergent (Riemann’s integral 15 type a = 3 > 1),
) i

T2 +Lsinw
then the integral / cremr dx converges by the test of Comparaison.

2 x3

1
e

= — dz:
3) C Oxx

1
We have: 1 < e* <e. Then: — < c Yo > 0.
T T

1
1

Since the integral / — dx is divergent (Riemann’s integral 2™ type o = 1),
0o T

1z
therefore the integral — dx diverges by the test of Comparaison.
o T

Limit comparison test

Theorem 2.2.2. Let f and g be two continuous functions on the interval
la,b]. We say that:
b b
Thus, / f(x) dz and/ g(z) dx are either converge or diverge:
1) ]f/ ) dx is convergent i/ f(x) dx converges .

2) ]f/ ) dx is divergent :>/ f(x) dz diverges.
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CHAPTER 2. IMPROPER INTEGRALS

Example 2.2.5. determine whether the following integrals converge or
diverge by using the limit comparison test:

oo :c+3 smx
1) A= d 2) B=

r+3

Solution. 1) A — / T
. B+ ar+1

x+3
w34+ x+1 +oo

~~

(@) _

z)

fz) =

x 1
g(x) 3= 3 wzthx im g

~~

+00 1
/ — dx is convergent (It is a Riemann’s integral 15 type « = 2 > 1),
1 X

r+3

—— dx converges by the limit comparison test.
34+ +1

+o0
we deduce that /
1

2)B / smx

e The function x —

inx . .
is continuous and positive on |0, 2].

LE\/E

We have: sinx v when x — 0, hence:

f(a:):Sinx (:IZ)ZL:L with lim le.

oz 07 T r —0 g(z)

1
Since / 7 dx converges (Riemann’s integral 2™ type o = 1/2 < 1),
x

2 .
sin x
then the integral / dx converges also by the limit comparison test.

033\/5

2.2.4 Integration of Functions with Arbitrary Signs
Definition 2.2.2. Let [ be a continuous function on |a,b].

b
]f/ |f(x)| dx converges = / f(x) dz is said to be absolutely convergent.

= / f(x) dz is convergent.

Example 2.2.6. Investigate the convergence of this integral:

T cos y
x.
1 .’E\/E

Solution. We will study the integral with the absolute value:

We know that: —1 < cosx <1, so: |cosz| <1 Va >1. Then:

cosr| |cosz| 11
v/r| w/T T ow/r 23

31
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2.2. INTEGRALS OF FUNCTIONS WITH INFINITE VALUES AT BOUNDARIES

+00

1

Since / =37 dx is convergent (Riemann’s integral 15 type o = 3/2 > 1),
1 X

COS T
/T

T cosx |
= / dx is absolutely convergent.
1

e

T cosx
= dx converges.
1

e

400
thus the integral /
1

dx converges by the test of Comparaison.

Abel’s test

Theorem 2.2.3. Let f and g be two continuous functions on the interval
la,b]. Then

1) If f be monotonic with lim f(x) = 0.

r—b
<
and

2) There exists M > 0 such that for all t € [a,b]: <M.

/atg(a:) dx

b
Therefore/ f(x)g(x) dx converges.

Example 2.2.7. Study the convergence of this integral by using the Abel’s
test: oo
S
/ inx .
1 X

Solution. Indeed: The function f(x) = — is continuous and decreasing on
x
[1, +o0| and hI_P f(x) =0.
T—r+00
On the other hand, for all x € [1,+00][:

t
/ sinx dx
1

Thus, according to Abel’s test, the improper integral

T gin
dx
1 a

= ‘cost—cosl‘ < 2.

18 convergent.
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2.3 Supplementary exercises

Exercise 2.1. Compute the following improper integrals:

+00 +00 441 :
1)/ ! dzx, 2)/ e dx, 3)/ %\/de,
0 Wi

T lnx

+09 +00 2 1
e L e L v S T

Exercise 2.2. Determine if the following integrals is convergent or
divergent and if it’s convergent find its value:

400 x2 400 eCos T

+00 400 -
4)/ L 5)/2 —;;r\l/gdx, 6‘)/0 Cf;; dx

Exercise 2.3. Investigate if the following integrals is convergent or
divergent and if it’s convergent find its value:

™ T Inx in(1 + o)
1 —d 2 3 ——=d
) [ e )| R e [ E

too o0 arctanx 0 el/z
—d 5 —d 6 d
4{[ s dr )A 0 )[wﬁ v
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Chapter 3

Differential Equations

Differential equations are of great utility in various engineering fields. In
chemical engineering, they are essential for modeling reaction kinetics and
process dynamics, especially in scenarios such as mixing problems involving
multiple tanks and substances, which are critical for reactor design and
process optimization. In civil engineering, differential equation models are
indispensable for assessing the safety and longevity of structures under
various loading conditions, such as in the analysis of the seismic resistance
of multi-story buildings

3.1 Review of Ordinary Differential Equations

Definition 3.1.1. A differential equation is an equation that establishes
a relationship between the independent variable x, the unknown function
y =y(z), and some of its derivatives. It is expressed as:

F(LU,y,yl, e 7y(n)) = 9(513)

Remark 3.1.1. If the unknown function in the differential equation
depends on a single variable, the equation is called an ordinary differential

equation (ODE).

Definition 3.1.2. The order of a differential equation is defined as the
order of the highest derivative appearing in the equation.

Definition 3.1.3. The integral or solution of a differential equation is
any function that satisfies the equation.

3.1.1 First-Order Linear Differential Equations

Definition 3.1.4. A first-order linear differential equation can be
written in the form:

a(z)y’ +b(z)y = c(z),
where a, b and ¢ are continuous functions on a given interval with a # 0.
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3.1. REVIEW OF ORDINARY DIFFERENTIAL EQUATIONS

Homogeneous Equation (Without Second Member)

Consider the following differential equation:

a(z)y +b(x)y = 0. (3.1)

The solutions of (3.1) are y(x) = 0 and nonzero solutions satisfying
/
b

y() = _ba) with a(x) # 0.

ylz)  alz)

Since a and b are continuous functions, it follows that In |y(x)| = R(z)+ )\
b

where R is an antiderivative of —@.
a(x)

Thus, the solutions to (3.1) are given by:
y(z) = Aelt@).
If a condition x = x is fixed, the solution of (3.1) is unique:

y(xo) = Aefe)

In particular, if y vanishes at a point, then y is identically zero.

Non-Homogeneous Equation (With Second Member)

Consider the following differential equation:

a(z)y' +b(x)y = cx). (3.2)
The resolution method is divided into two steps:

1) Solve the homogeneous equation. The general solution is:

yg(:v)—AeXp</_b($) dx),a#() et AeR.

a(x)

2) Find a particular solution by considering A as a function of = (hence
the name method of variation of parameters):

() = M) exp < [ dx)
0= [40 ( /%dx) .
2

()
) is given by:

with

Thus, the solution to (

y(x) = yy(z) + yp().
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CHAPTER 3. DIFFERENTIAL EQUATIONS

Example 3.1.1. Solve the following differential equation:

Y + (tanz)y = cosx; Va € [O, E[

2
Solution. Consider the equation: y' + (tanx)y = cosz; x € [0,7/2].
e The functions a(x) = 1, b(x) = tanz and c(x) = cosx are

continuous on [0, 7/2[. Since a(x) # 0, then we have

b(z) tanz sin x

fx) =

a(z) 1 ~ cosa

The general solution of the homogeneous equation 1s:

Thus, ys(x) = Acosx; A € R.
Finding a particular solution, we write:

yp(z) = A(x) cos z.

AMz) = /c_x) (/f >dx:/cosa:-exp(/smxdaz) dx
a(x Cos ¥
1
/Cosx e~ nlecosz) g — /cosx-exp {ln( )] dx
COS T

B /cos;r:

B COS T
— y,(r) = xcosx. Finally:
— the solutwns are: y(z) = yg(x) + yp(x) = (x + X)cosz; A eR.

3.1.2 Second-Order Linear Differential Equations with Constant Coefficients

Homogeneous Differential Equations with Constant Coefficients

Definition 3.1.5. A second-order linear homogeneous differential
equation with constant coefficients is any equation of the form:

ay +by +cy = 0 (3.3)
where a,b and ¢ are real constants, and a # 0.

We search for a solution of the form:

rr

y(z) =e
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3.1. REVIEW OF ORDINARY DIFFERENTIAL EQUATIONS

The development of the differential equation with this function y leads to
the following characteristic equation:

ar’> +br +c¢=0.

Depending on the sign of the discriminant (A = b?—4ac),then the solutions
of (3.3) are:

e A > (: Distinct Real Roots r; and 79

y(x) = 1€ + coe””.

e A < 0: Complex Roots ry = a+16 and ry = a — 13
y(x) = 1™ + e = e [Acos(fx) + Bsin(fz)].
e A = 0: Repeated Root r
y(r) = e (c1x + 9).

Here, ¢; and ¢y are arbitrary constants determined by initial or boundary
conditions.

Differential Equations with Constant Coefficients and a Non-Homogeneous
Term

Here we aim to determine the solution of differential equations of the form:
ay +by +cy = f(x). (3.4)

where a,b and c are real constants and a # 0.

The resolution method is divided into two steps:

1) We first solve the homogeneous equation: we obtain the general
solution, denoted by y,.

2) We then look for a particular solution of the non-homogeneous equation,
denoted by y,,.

The solution of the equation (3.4) is then:

y(z) = yy(x) + yp(x).

Below, we present the form of the particular solutions for several specific
cases of the function f(z). In the entire table P,, @, and Z, denote
polynomials, all of degree n. Additionally k, a and (8 are real numbers,
and (E,) is the characteristic equation associated with (3.4).
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CHAPTER 3. DIFFERENTIAL EQUATIONS

Form of the non-homogeneous term f(z) | Form of the particular solution y,
P,(x) with ¢ £ 0 Qn(x)
P,(z) withc=0et b#0 xQn ()
P,(z) withe=0b=10 22Q, ()
P,(x)e™ with k not a root of (E,) Qu(x)er
P, (z)ek® with k a simple root of (E,) Q) (z)ek?
P, (z)ek* with k a double root of (E,) 22Q,, (z)er”

P, (x)e™ cos(Bx), a + iff not a root of (E.) | e* [Qn(x)cos(Bx) + Z,(x) sin(Bx)]

P,(x)e*"sin(fx), o + if not a root of (E,) | € [Qn(x) cos(Bz) + Z,(x) sin(Sx)]

P,(x)e*" cos(fx), a4+ if a double root | xe® [Q,(z) cos(Bz) + Z,(x) sin(Sz)]

P,(x)e*"sin(fx), o +if a double root | xe® [Q,(x) cos(fz) + Z,(x) sin(Sz)]

Example 3.1.2. Solve the following differential equation:
y" — 5y + 6y = e*".
Solution. First, calculate the general solution of the homogeneous
equation: y" — 5y + 6y = 0.
The characteristic equation is r* — 5r +6 = (r — 2)(r — 3) = 0.

—> r1 = 2 and ro = 3. The general solution of the previous homogeneous
equation 1S:

Yg(x) = c1e? + e ¢1, 01 € R,

The right-hand side is of the form Ae*, so we seek a particular solution of
the form axe*® because ri = k =2 and ro # k. Therefore: y,(z) = axe*.

y, solution <= a(4x + 4)e* — 5a(1 + 27)e** + 6aze™ = *
<~ a=—1.

= y,(z) = —xe**. We deduce that the solution are:
y(ZE) = yg(w) + yp(x) = Cle2x + 026396 — 1'6296; Cc1,C € R.
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3.2. PARTIAL DIFFERENTIAL EQUATIONS

3.2 Partial differential equations

In the first section, we dealt with solving differential equations where the
unknown function depends on a single variable, which we referred to as an
ordinary differential equation (O.D.E). In this section, we will extend our
study to cases where the unknown function depends on multiple variables.
In such cases, we are tasked with solving partial differential equations
(P.D.E). We will focus on the study and solution of first- and second-order
equations.

3.2.1 Generalities

Let be u a function depending on n independent variables x1,z9, - , 2.

Definition 3.2.1. A P.D.E. (partial differential equation) is any relation
1nvolving an unknown function u, the vartables x1,xs, - - - , x, and its partial
derivatives. The general form is given by:

ou 0"u o0"u ( )
— T, — ag’...)aj)u
oz ozt a - oapr ) IV "

F (3717"' y Ly Uy

where 1 < k <n and m; +mo—+---+my =n.

Definition 3.2.2. The order of a partial differential equation (P.D.E.) is
the order of the highest partial derivative it contains.

Definition 3.2.3. A P.D.E. is said to be linear if it is linear with respect
to u and all its partial derivatives.

Definition 3.2.4. A P.D.E. is said to be homogeneous if

g($17”' ,xn,u) = 0.

3.2.2 First-Order P.D.E.

Definition 3.2.5. A first-order partial differential equation (P.D.E.) is
any equation of the form:

Zai(ajl,--~ ,xn,u)% = g(z1, -, Ty, u). (3.5)

. Oz;

=1
{ai}tiz1,. n: referred to as the coefficients, and g may explicitly depend on
the function wu.

In this study, we will focus on first-order P.D.E.s with 2 or 3 independent
variables.
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CHAPTER 3. DIFFERENTIAL EQUATIONS

Method of Characteristics

Consider the following problem:

F (z,u(x),Vu(z)) =0
where F € CH (O xR xR"), 2 € Q CR (i.e. &= (71,22,73)) and Vu(z)
is the gradient of u, defined as:

Vu — ou Ou Ou
- 8%1’8.%2,8.%3 .

First, we consider the case where the P.D.E. depends on two independent
variables. Let us examine the following P.D.E.:

ou ou
a(xayau)%+b(xayau)a_y - C(x,y,u). (36)

At every point in the space (x,y, u), there exists a direction whose direction
cosines are proportional to a, b and c. This field of directions defines
a family of curves, such that the tangent to each curve aligns with the
direction of the field at the point of contact. These curves are determined
by solving the following system of ordinary differential equations (O.D.E.s):

d d d
oY - % (3.7)
a(x,y,u)  b(z,y,u) c(x,y,u)

Let ds denote the common value of these ratios; equation (3.7) then

becomes:

)
d
7 =ala.y.)
d
9 d—z = b(x,y,u)
du
L % = C(x7y7u)'

Thus, the integral surface formed by the characteristics of equation (3.7)
is the desired solution, and we write:

O(c1,00) =0 ou ¢ = P(ey). (3.8)
Hence the name of the method.

Example 3.2.1. Solve the following P.D.E.:

,0u 5 Ou
Ty 8_x+x ya—y
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Solution. We associate with equation (3.8) the following system:

dx dy du

w? a2ty (24
On one hand, we have:

de d
T 2y éydy—xd:céy — 2% = .
Ty o Y
On the other hand
dy dx du du
2 Y o GT o 2
Ty Ve T T @ @t
xd d d
vy yde _ du
ry xy u
d
W)Zﬂég:q
Ty u Ty
Thus, the solution of (3.9) is:
S d(y? —2?) = u=ayd(y* —2?). (3.10)
LY

3.2.3 Second-Order P.D.E.

Definition 3.2.6. A second-order partial differential equation (P.D.E.) is
any equation of the form:

ou ou 0%u u  O*u 0% ) _ 0

Y 0y’ T Oxy, 0220 7 0x2 Ox0xy’ T Oxy10y,

or

ZZaij(x17..- , Tp, U ax 81'] +Zb T, , Ty, )a—xz = h(xl,"' ’,I'n"U,)-

i=1 j=1
{aij}ij=1,. n and {b;}i=1,. n: are called coefficients, and h may explicitly
depend on the function wu.

We will limit our study to second-order linear and quasilinear equations
with two independent variables, that is, equations of the form:

02 0*u 0 ou
Mawaﬁ—kuwwa@§+< )62+wa5-
ou
+q(z,y) 5 + g9(x, y)u = f(z,y), (3.11)

y
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or

alx u@% @wLba: u%@ 82u+cx u@% %
7y7 7a$7 ay axQ 7y7 7851:" ay axay 7y7 7a$7 ay ay2

ou Ou
- R<x7y7uva_xaa_y)'

(3.12)

Classification of Second-Order P.D.E.s

The type of the partial differential equations (3.11) and (3.12) depends on
their discriminant A = b* — 4ac.

Definition 3.2.7. The equation is of the hyperbolic type if and only if
A>0.

Example 3.2.2. Consider the following partial differential equation:

82u+82u+482u _ 0
ox?  0y? oxdy

defined on Q = R2.
A =01 —4dac =12 > 0 far all z,y of Q. So, this is an equation of the
hyperbolic type.

Definition 3.2.8. The equation is of the parabolic type if and only if A = 0.

Example 3.2.3. Consider this partial differential equation:

82u+82u+2 Pu 0
ox?  0y? oxdy

defined on Q) = R2.
A =b>—4ac=0 far all x,y of Q. So, this is an equation of the parabolic
type.

Definition 3.2.9. The equation s of the elliptic type if and only if the
discriminant A < 0.

Example 3.2.4. Let’s Consider the following partial differential equation:

defined on €2 = R} x R%.
A = b —dac = —4ay < 0 far all x,y of Q. So, this is an equation of the
elliptic type.
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Main Equations of Physics

Laplace’s Equation It is the equation of the form:
0u N 0%u
ox?  Oy?

Equation (3.13) is of the elliptic type.

= 0. (3.13)

Heat Equation (Diffusion Equation) It is the equation of the form:

0%*u 1 @

prei (3:14)

0
Equation (3.14) is of the parabolic type. The term 8—7; is called the

diffusion term.

Tricomi’s Equation It is the equation of the form:
0u 0u

3.2.4 Standard Form of Second-Order P.D.E.s (Method of Characteristics)

In this subsection, we explore the standard form of second-order partial
differential equations (P.D.E.s) and the method of characteristics used to
solve them

Theorem 3.2.1. The characteristic curves (3.11) are the solutions of the
equation:

a(x,y) (Z—i) + b(a:,y);l—z +c(xz,y) = 0 (3.16)

with a(x,y) # 0.
If a(x,y) = 0 and c(x,y) # 0. Then the characteristic curves (3.11) are
the solutions of the following equation:

d

c(x,y) (Z—i) + b(m,y)% +a(x,y) = 0 (3.17)

In the case where a(z,y) = 0 and c(x,y) = 0, the characteristic curves
(3.11) are straight lines with the equations:

r=k et y=ks
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Theorem 3.2.2. If (3.11) is of the hyperbolic type, we take as a change of
variables the characteristic curves (p1(z,y) = k1 and o1(x,y) = ko ) for:

x1 = p1(z,y)
o = @2('277 y)?
The equation (3.11) becomes:
0?u ou Ou
= G —,— . 3.18
8x15:c2 (x1,$2,U, 8.%17 8x2) ( )
Moreover, if we take
y1 = @1z, y) + 2(z, y)
y2 = 1(z,y) — 2(z, y),
then (3.11) will be written as:
0*u  O%*u ou Ou
ge_9% _ g gu 3.19
Oy; Oy (yl’ TS 0@/2) (319

Theorem 3.2.3. If (3.11) is of the parabolic type, we take as a change of
variables the characteristic curves x1 = @1(x,y) and xo any independent
function with @1, the equation (3.11) becomes:

0%u

ou Ou
8_$% = G(SUl,ﬂTQ,U )

— 2

Theorem 3.2.4. If (3.11) is of the elliptic type, we take as a change of
variables the following characteristic curves:

(m(z,y) + i1 (x,y) = M € C,mp(z,y) + oz, y) = Ay € C) for
T = nl(xvy) + Z¢1(55'7y)

Ty = M2(x,y) + itha(z,y),

The term involving the mized derivative in equation (3.11) will vanish.
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Example 3.2.5. Consider the following Cauchy problem:

)
O*u 0%

{ ul@.0) = o) (3.21)

| 2(2.0) = pa(o).

where a is a constant. Find the solution to (3.21) using the method of
characteristics.

0u , 0%u
Solution. 92 = a’ @ It is the equation of the wibrating string, the
discriminant is A = 4a®> > 0, thus, it is an equation of the hyperbolic
type. The characteristic curves (3.21) are the solutions of the equation:

2
(5) - -

(dx — adt)(dz + adt) = 0.

This leads to:

Thus * — at = ¢ and x + at = co. We take as a change of variables
z(x,t) = x — at and y(r,t) = x + at, we find

Ou 2 0*u . 0*u
o2 Ox? 020y
The expression (3.22) implies:

— 0. (3.22)

u(z,y) = Wi(2) + Ua(y),
From which it follows:
u(z,t) = Vi(x — at) + Vyo(z + at),

According to the initial conditions, we have:

u(z,0) = Wi(x)+ Vo(x) = ¢1(2) (3.23)
and

ou

5 —(2,0) = —a¥i(z)+ a¥)(z) = po(x). (3.24)
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Integrating (3.24), we obtain:

_‘111(.%) + \IIQ(CC) = %/Ox QOQ(T) dr. (325)
Adding (3.23) and (3.25), we find:

Vo) = gorle)+ 5 [ ar) dr

The subtraction between (3.23) and (3.25) gives:

1 1

W) = gal) =g [ el dr

Thus, the solution of (3.21) is:

u(z,t) = oz —ab) + iz + ab) + - [/Oﬁat p2(7) dT — /Ox—af pa2(T) dT]

2 2a
x —at)+ ¢o1(x + at 1 [frta
_ ol ) . 2l ) +%/ po(T) dr. (3.26)
r—at

3.3 Special Functions

In this section, we will present the definitions and properties of some special
functions that play an important role in various areas of mathematics, such
as asymptotic series, number theory, and fractional calculus theory.

3.3.1 The Gamma Function

One of the fundamental functions in fractional calculus is the Gamma
function I'(x). This function generalizes the factorial notion n! and allows
n to take non-integer values.

Definition 3.3.1. (The Gamma Function). The function I : (0, +00) —
R, defined by

I(z) = / t* et dt, (3.27)
0
is called Euler’s Gamma function (or Euler’s integral of the second kind).
Gamma function defined by (3.27) has the following:
(7) T'(x + 1) = 2'(x) for x > 0.
(i) '(n+ 1) =n! forn € N.
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The Gamma function also satisfies the following reflection formula:
T

I'(z)'(1 — = 0<z <l 3.28
@-0) = oo 0<a (3.25)
Taking x = 1/2 we obtain from (3.28) a useful particular value of the
Gamma function: |
r(5) =V

3.3.2 The Beta function

In many cases, it is more convenient to use the Beta function instead of a
certain combination of the values of the Gamma function.

Definition 3.3.2. (Beta function). For every x > 0, y > 0, the Beta
function s defined by

1
Blz,y) — / 11—t . (3.29)
0
This function is related to the Gamma function by the following identity:
['(z)I'(y)
B(x,y) = =——=; x>0, y>0.

It should also be mentioned that the Beta function is symmetric, meaning
that:
B(z,y) = B(y,z); Vx>0, Vy>0.

Example 3.3.1. Let the following improper integral defined by:

+00
I'(n+1) = / a'e”" du; Vn € N.
0

1) Prove that this integral is convergent.

2) Deduce a relation between I'(n +2) and I'(n + 1).
3) Calculate T'(1) and T'(2).

4) Deduce the value of I'(n+ 1) for all n € N.

400
Solution. 1) the convergence of/ x"e " dx; n € N,
0

e The function x — f(x) = z"e™™ is continuous and positive on
0,400 Vn € N. Thus, we have a problem at +oo. We can write the
integral in the form:

—+00 xo +00
/ e " dx = / z"e " dx —|—/ z"e " dx.
0 0 o
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Instead of studying the entire integral, it is sufficient to study the two
integrals.

o
1-a)/ e " dx.
0

7o

Since f is continuous on [0, x|, hence / e dx exists (it is a simple
0

integral) ¥n € N.

400
1-b) e " dx.
Zo

We know that lim 2""2e™® =0, Vn € N. Thus, from zy, we have
T—>+00

1
2"et < 1= f(x) < .
x
such that x > xo with n € N.

400
1
/I Edaz converges (Riemann’s integral 13 type o = 2 > 1), it follows

0

+0o0
that / x"e”* dx converges by the test of comparaison. Therefore:

Lo

+oo
/ z"e” " dx converges Vn € N (The sum of the two converge integrals ).
0

2) The relation between I'(n + 2) and I'(n + 1):
+00

We have: T'(n + 2) = / " Me ™ dx. We set: u(x) = 2", it follows
0

that u'(z) = (n+ 1)a" and V'(z) = e™*, then v(x) = —e™*. The functions

u and v being of class C*, We can perform integration by parts:

400 400 400
I'n+2) = / g"e ™ dr = [— :U”Jrle_x}o + (n + 1)/ e dx
0 0

= — lim "¢ +(n+1DI(n+1)

r—400

= n+1)l'(n+1)=Tn+2)=n+1)I'n+1).

3) Calculation of T'(1) and T'(2):
400 400 +o0
['(1) = / 2™ dr = e’ dr = {—e_“} =— lim e “+1=1.

0 r—>+00
With the previous relation or through integration by parts, we obtain:

['(2) = /0+00 ze " dr=1=T(0).

4) Deduce the value of I'(n + 1) for all n € N:
We know that: T'(n+1) =nl'(n) =n(n—1)I'(n—1) =n(n—1) x---x2x1
— ['(n+1) =nl.
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Example 3.3.2. Let the Beta function be defined by

1
B(z,y) = /Oﬂl(l—t)y1 dt.

1
1) Compute T (§> using the Beta function.
+00 )
2) Deduce the value of/ e " dx.

1
Solution. 1) Calculation of T <§>

We know that:
-0 )

By definition

11 !
B(-,-) — /75—1/2(1—zt)—1/2 dt. (3.30)
272 0

Using the substitution t = 2% in (3.30), we will find:

(L1 2/1 dzx 2[ , T 2 (arcsin 1 00)
-, = = = arcsin xr = arcsin L — arcsin = T.
2’ 2 0 \ 1 — ,I‘2 0

Thus

400
2) The value of/ e du.
We observe that -

+00 +00 ) 400 )
/ 1207t gt = 2/ e’ dx :/ e’ dx.
0 0 —00

Therefore

too
/ e dr = /7.

o
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3.4 Supplementary Exercises

Exercise 3.1. Solve the following first-order differential equations:
1) (z+ 1)y +2y=(z+1)? z>0.
2) (2> + 1)y + oy = 1.
el’
3) (e"+ 1)y —y= .
) (e + 1y —y =5
4) v +y —2y=2r+1

Exercise 3.2. Solve the following second-order differential equations:
1)y +y — 2y =2x+1.

2) y// _ 53/ 4 6y — e?z‘

3y +2 +y=2>+2z+1.

Exercise 3.3. Let gy and g be two functions of a real variable, of class C?
on R, Define the function u on R} x R by:

e = (%) van (%)

o Justify that u is of class C?, then prove that

0*u 0%u 0%u
2 2 —

Exercise 3.4. Let ¢ # 0. Find the C*>—class solutions of the following
partial differential equation:

X

0 _ P

“ 02T a2
using a change of variables of the form o = x + at and 3 = x + bt.

Exercise 3.5. Consider the following improper integrals:

+00 ) +00 4
I:/ e v dx and J:/ e v dx.
0 0

1) Justify the convergence of I and J.
2) Express I and J, using the Gamma function T.

Exercise 3.6. Verify that for all x > 0 and y > 0, we have:
x
1) Bx+1,y) = ——B(z,y).
) B( y) = - Ty (z,y)

2) B(1,y) = é
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Chapter 4

Series

4.1 Infinite series

The goal of this section is to understand the meaning of such an infinite
sum and to develop methods to calculate it. Since there are infinitely
many terms to add in an infinite series, we cannot just keep adding to see
what,comes out. Instead we look at whatwe get by summing the first n
terms of the sequence and stopping. The sum of the first n termsis an
ordinary finite sum and can be calculated by normal addition. It is called
the nth partial sum. As n gets larger, we expect the partial sums to get
closer and closer to a limiting value in the same sense that the terms of a
sequence approach a limit.

Definition 4.1.1. Let (u,), a sequence of numbers. It is denoted by:

n
= E Ug .
k=0

Sy 1s called the partial sum of order n.

Definition 4.1.2. Given a sequence of numbers (u,),. It is called an
infinite series with n'"—term w,,:

400
Zun:u0+ul+.... +un+un+l+

n=0

Notation 4.1.1. Here are some commonly used notations:

+00
g U, E U, OT E u,: it is the infinite series.
n=0

n>0
(Sn),: is the sequence of partial sums of the series.
Uy is the n'"—term of the infinite series Zun
+o00
S': the sum of the infinite series Z u, if it is converges.
n=0
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4.1.1 Convergent Series

Let Zun is an infinite series, we say that the series converges and that
its sum is S. In this case, we also write

+00
Zu” = Uy F U+ o e Uy Uy -
n=0
= Ilim §5,=5.
n—>-4oo
+00
1) If (S,), converges = Zun converges.
n=0
400
2) If (S,),, diverges = Zun diverges.
n=0

Example 4.1.1. Find the sum of the series:

1) ;m 2) nzlln <1+%>, 3) %(—1)”.

Solution. We look for a pattern in the sequence of partial sums that
maght lead to a formula for S,. The key observation is the partial fraction
decomposition:

400 1
1) nz::l n(n+1) :

1 a b (a+bn+a
un:—:——|— =

nn+1) n n+1  nn+1)

_— —a=1and b= —1.
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1-a) The partial sum S,:

Sn:u1+u2+"" ...._|_fu/n_1_|_un

_ (1_%)+<%_é)+ o

1-b) the sum S of the series:

S = Ilim S,= lim (1— L >:1—0:1.

n—>—+00 n—>+00 n-+1

Hence, the series converges, and its sum is 1:
+00 1
St
“—~ n(n+1)

2) fln (1+%>:

1
u, = In (1 + —) ;n > 1. We can write the term w,, in the following form:
n

1 1
un:ln<1+—):1n<n+ )zln(n+1)—lnn Vn > 1.
n n

2-a) The partial sum Sy,:

Sp = urtus+ - - Uy U,
= (2—In1)+ (N3 —1n2)+ « - -+ « o oe e
----------- + [Inn —In(n —1)] + [In(n + 1) — Inn|
= In(n+1)—Inl=In(n+1).

2-b) the sum S of the series:

S= lim S,= lim In(n+1)=+4c0.

n—-+00 n—-+00
Since the sequence of partial sums of the series does not converge, we say
that the series diverges.
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+00
931

n=0
So=1,8=1-1=0,8=1-1+1=1, ---

The partial sums alternate between 1 and 0, so the sequence (S,) does not
converges to a limit, therefore the series is divergent and has no sum.

Geometric Series

We will study the geometric series, which is defined as follows:

400
Z ¢", qeR".
n=0

First case. If ¢ = 1:

STL = u0+u1_|_ e e e e e e e +un—1+un
— 1—|—1+ e e e e e e e e e +1—|—1:n—|—1
Since lim S,= lim n+1=+o0.
n—-4oo n—-4+o0o

Then: Z 1" diverges.

Second case. If ¢ # 1:
2-a) The partial sum S,
We know that:

Sn — u0+u1+ e e e e e e +un
= 14q+ - - -« - _|_q”_
Hence:
Surt = 14g+ - - "+ g
= S, + q”“. (4.1)

On one hand, on the other hand we have:

= 14qg+ -« - 44"
= 14gq-S, (4.2)
Thus, according to (4.1) and (4.2), we conclude that:
1 — n+1
Sn(1—q) =1—q”“=>5n:1—q Vg # 1.
—q
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2-b) the sum S of the series:
We calculate the limit of S, and obtain the following:

r
— if 0<¢g<1,
S = lim §,=¢ 1—4

+oo if  ¢g>1.

oo converges if 0<g¢g <1,
=) 4"
n=0 diverges if ¢ > 1.

Proposition 4.1.1. Let Zun and qun two nfinite series and A € R,.
Then, we have:

1) Z up, and Z()\ - uy) either both converge or both diverge.
2) Ifz u, converges and Z Up CONVErges; So Z(un—i—vn) converges also.
3) If Z u, converges and Z v, diverges; then Z(un + v,) diverges.

4) If Zun diverges and Zvn diverges; then, we cannot conclude
anything about the series Z(un + vy,).

Divergence Test

Remark 4.1.1. Let Zun an infinite series.
If lim w, #0= Z u, diverges.

n—->—+00

Example 4.1.2. Applying the Divergence Test:

3n—+1 X en
1)22n+5’ 2);?

Solution. Here, we calculate the limit of the n'"—term:

+o00
In+1
1
) nz:% 2n+5
3n+1 3 S
We have ngrgoo Up = ngrg—loo 2Z i F=5 #0 = Z u, diverges.

n=0

2) Z%

+00
n
. . € .
We have lim wu,= lim — =+400# 0= g u, diverges.
n—-4oo n—-4+oco N 1
n=
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Remark 4.1.2. u, — 0 but the Series Diverges.

+00
The series E — 15 called the harmonic series, It is a divergent series.
n

n=1
For the proof, see: Example 4.1.5.

4.1.2 Series with Positive Terms

In the study of the convergence of a series, it is not always possible to
calculate its sum. However, we can determine its behavior using other
techniques. For this, we need additional tools (the tests).

The Integral Test

Theorem 4.1.1. We consider the function defined by:
f [N, +oo[— RT continuous, positive and decreasing function. We set:

u, = f(n), Vn >N (Na positive integer).

+OO +00
Then the series Z u, and the integral (x) dx both converge or both
n=1 1
diverge.
+00 +00
1) If f(z) dx converges = Z Uy, CONVETYES.
N n=N
+00 +00
2) If f(x) dz diverges = Z u, diverges.
N n=N

Example 4.1.3. Show that the harmonic series:
+0o0o

r
g — 18 divergent.
n

n=1
Solution. We may apply the Integral Test:

We have f(x) = —; x € [1,4+00[. This function is continuous, positive and
x
+00
1
decreasing. Since / — dz diverges (Riemann’s integral 15 type a = 1),
x

1
+00

1
then the series Z — diverges also.
n

n=1
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The Riemann series

A Riemann series is any series of the form:

+00
1
—; a€eR.
nO{
n=1
We notice that:
(
0 si a>0,
400 si a < 0.
\
+o00
Thus Z — diverges if « < 0. For a > 0, we can apply the Integral Test.
n
n=1

First case. If a = 1:
It is the harmonic series which is divergent.

Second case. If o # 1:

1
We set f(x) = —; = € [1,+oo[. This function is continuous, positive
x

and decreasing and we have also:

+oo converges if a > 1, R ] converges if a > 1,
/ — dx & —
1 «

diverges if o <1. n=1 diverges if o < 1.

> converges if a > 1,
=2
n=1

diverges if a < 1.

The Comparison Test

+o0o +o0o
Theorem 4.1.2. Let Z u, and Z vy, two sertes with positive terms. We
n=0 n=0

assume that:

0<wu,<wv, VYn>N (Na positive integer).

“+00 +00
].) ]f Z Uy CONVETGES = Z Up CONVETGES.

+00 +00
2) If Z u, diverges = Z v, diverges.

n=0 n=0
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Example 4.1.4. Which of the following series converge, and which
diverge? Give reasons for your answers.

)Yy 2)2\/7 3)Zln".

Solution. We can apply the Comparison Test:

1)2

We konw that: n > 2 =n">2". Then:
1 1 1\"
— < —= = Vn > 2.
Fiz=(3) w2

+00 n
1
E (5) converges (it is a geometric series with ratio 0 < ¢ =1/2 < 1),

n=2
400 1

hence the series E — converges according to the Comparison Test.
n=2

%) Zm
We have: n* > n(n—1) = n > y/n(n —1). So:

1 1
— < Vn>2
n n(n—1)
400
Since Z— is divergent (it is the harmonic series), therefore the series
n
n=2

diverges by the Comparison Test.

Z\/T
3) Zlnn'

Inn 1
We know that: Inn <mn. Then: — < —3 == Vn > 2.
n n n
+o0o 1
Since g — converges (it is a Riemann series with o = 2 > 1), thus this
n=2 n
X Inn
series E —5~ converges according to the Comparison Test.
n

n=2
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The Limit Comparison Test

+00 +00
Theorem 4.1.3. Let Zun and Zvn two series with strictly positive
n=0 n=0
terms. We say that:
Uy, ~ U, & lim %:1.
n—++a>vn
+0o +o0o
Then the series ZU" and Zvn both converge or both diverge:
n=0 n=0
+o0o “+00
1) If Z v, converges = Z U, CONVETrges.
n=0 n=0

+00 +00
2) If Z v, diverges = Z u, diverges.
n=0 n=0

Example 4.1.5. Study the convergence of the following series:
2" +n+3 i 1
1 2 In(1+—].
S ) (1455
Solution We may apply the Limit Comparison Test:

)Z 2" +n+3

3"—|—n2—|—5
2"+ n+3 2" 2\" Uy,

Uy = ————— ~ VUy=—=|= with lim — = 1.
3+ n2+5 +o 3" 3 n—+00 vy,

“+00 n
2
E (§> converges (a geometric series with ratio 0 < ¢ = 2/3 < 1), we
n=0

2"+ n+3
3"+ n?+5

Q)Z:ln(lJr%):

We know that In(1 + x) S when x — 0, then:

deduce that Z

converges by the Limit Comparison Test.

1 1 , u
u, = In (1 + —3> ~ Uy = — because lim — = 1.
n +o00 n n—>+00 Uy,
400
: I : : :
Since E —; is convergent (a Riemann series with « = 3 > 1), we conclude
n
n=1

+00
1
that E In (1 + —3) converges according to the Limit Comparison Test.
n

n=1
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The Root Test

+0o0
Theorem 4.1.4. Let Zun be a series with positive terms, we suppose
n=0
that:
ng@rm Su, =1;  (finite or infinite) .
Then:
+00
1) Ifil<1= Zun converges.
n=0
+0oo
2) Ifl>1= Zun diverges.
n=0

3) Ifl =1 = the test is inconclusive .

Example 4.1.6. Investigate the convergence of the following series:
+00 n

1)7;(221@” 2)§<1+%>n, 3)§?<1+%>

Solution. We shall apply the Root Test:

+00 n
3n + 2
1 E :
) —~ <5n + 7>
n
n+2\n 3n+2 , . 3n+2 3
Uy = = — 1 Vu, = 1 = - <1
" <5n + 7> 5n + 7 oo ¥ T B By +7 5
+00 n
3 2
Thus: ng_o <5Z 1 7) converges by the Root Test.
400 9 n
2y (1 n ﬁ)
n=1
2 n ) ) 2 n 2
Yu,=14+—|] = lim u,= Ilm 1+—] =€ > 1.
n n—-4oo n——4oo n

2

400 n
2
Hence: g <1 + —> diverges according to the Root Test.
n

n=1
+00 n
1
3) g (14—5) : The Divergence Test
n=1

n —+00
1 1
li .= i 1+—) =l 40— 14+ =) di .
i = i (1) =4 Z( +y) s
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The Ratio Test
+o00
Theorem 4.1.5. Let Zun be a series with strictly positive terms, we

n=0
assume that:

lim I; (finite or infinite) .
n—>-4oo Un,
400
1) Ifil<1= Zun converges.
n=0
oo
2) Ifl>1= Zun diverges.

n=0

3) Ifl =1 = the test is inconclusive .

Example 4.1.7. Study the convergence of the following series:
1)+i°2” 2)+Z°°n! 3)+§1x6><---><(5n+1)

— n!’ — nn’ - 4n . n) '
Solution. We can apply the Ratio Test:

400 on

We know that > 22 g
e know that : up = = . So:
T D) nln+1)
n 2™ .2 !
lim L = lim —— % x " = lim —0<1.
n—+oo Uy, n—toon!l-(n+1) 2" n—toon+1
+00 An
Therefore: Z — converges by the Ratio Test.
— n!
+00 n
2) )
n=1 n
(n+1)! nl(n+1) n!
We have: w1 = = = . Then:
T )T (nk )+ 1) (n+1)n
| n n
Im 2L i 2 D him n
n—s+oo Uy, n—+oo (n4+ 1) n!  n—too \n+1

1 _n
—  lim (1+—> =e !l <.
n—-> 400 n
+00

n!
Thus: E — converges according to the Ratio Test.
n
n=1
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+00
Ix6x---x(bn+1)

n=0
Ix6x---x(n+6) 1x6x---x((n+1)x(5n+6) s
Uptl = = . So:
- A (4 1) 447 nl-(n+1)
n 1x--x%x(b 1) x (5 6 4" . n!
lim Unil _ lim (b +1) (n+)x e
n—+0o Uy, n—>+400 4-4”-n!-(n—|—1) 1><"><(5n+1)
— im on + 6
 ntoodn + 4
5
= —> 1
4
+00
IxX6x---Xx(d 1
Hence: Z (r+1) diverges by the Ratio Test.
o 4n . n!
4.1.3 Series with some negative terms
+o0
Definition 4.1.3. The series Zun converges absolutely if the
n=0
+00
corresponding series of absolute values Z |un,| converges.
n=0

Theorem 4.1.6. any infinite series absolutely converges is converges.

Example 4.1.8. Investigate the absolutely convergence of the following
series:

1)+ZOO(—1)” 2)+§Cosn
n=1 77,2—|—17 n=0 3

Solution. we will study the convergence of the series Z || 2

400 _1)n
1) ;722 +)1"

The term wu,, s not positive, immediately, we have:

(=)™ 1 - :
= = . Here, we can use the Limit Comparison Test:
[ n?+1| n?+1 b
1 1 Up,

up| = ——— ~ v, = — because lim [n = 1.

n-+1 n? n—+o0 U,

+00 1
Since Z 3 is convergent (it is a Riemann series with a =2 > 1),

n=1
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(=D"

n? +

+0o0o
we deduce that Z converges by the Limit Comparison Test.
n=1

400
—1)"
= Z 722 +)1 15 absolutely convergent.
=1

+o00o
= Z (_1 . converges.
n?+1

n=1

n=0
The term wu,, 1s not always positive, then we have:

. Here, we can apply the Comparison Test:

cosn‘ _ | cosnl

[un| = ‘ 3n 3n

| cosn| Siz (1) Vn € N.

+00 n

Z (%) is convergent (a geometric series with ratio 0 < ¢ = 1/3 < 1).

n=0

cosn
3TL

400
We conclude that Z ’ ‘ converges according to the Comparison Test.
n=1

+00

+00
cosn | cosn
= g an eis absolutely convergent = g 3 converges.

4.1.4 The Alternating Series

+0o0
Definition 4.1.4. A series Zun s said to be alternating series if:

n=0

U, = (=1)"by; b, >0 Vn.

Theorem 4.1.7. (Leibniz’s Theorem)
(

lim b, =0
Too n—-> 400 +00

Zun is alternating series. If: < and — Zun converges.

n=0 n=0

(b )
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Example 4.1.9. Study the convergence of the following series:

1y CL 9y C

+00
—1)" 1
Solution. 1) E (=1 . Here: b, =—>0 Vn>1.
n
n=1

n
(
lim b,=0
n—>--—+o0o
+o0 n
g <_1) g
and — Z - converges by Leibniz’s Theorem.
n=1
EROEY
2)+§(_1)n Here: b >0 Vn>?2
. Here: b, = — n > 2.
— Inn ‘ Inn
p
lim b, =0
n—-—+00 too .
< and — Z (=1 converges according to the Theorem of
—~ Inn
RO
Leibniz.
400
Definition 4.1.5. A series Z uy, 18 said to be converges conditionally
n=0
+00
if it is converges and Z |uy| diverges.
n=0

Example 4.1.10. the following infinite series:
Y 53 T
—~ n ’ “~ lnn '

are converge conditionally.

4.2 Sequences and Series of Functions

4.2.1 Sequences of Functions

Definition 4.2.1. Let E C R and n € N.
fon:E—R

x> fu(z) a function.
(fn),: is called a sequence of functions defined on E.
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The types of convergence

Definition 4.2.2. (Pointwise Convergence): Let (f,), a sequence of
functions defined on E.

We say that (f,,), converges pointwise on E if Vo € E the sequence (fy(z)),,
converges to a finite limit, which we denote by f(x).

lim f,(z) = f(x), Vee ECR

n—-4oo
We write:
fn—f; Veek.

Example 4.2.1. Study the pointwise convergence of the following
sequences of functions:

1
1) fu(x) = ;n>1withe eR  2) fu(r) =2";n € Nwithx € RT

n+x
_ nw . + _ —nT . ;
3)fn(x)—nx+1,nENa:E]R 4) fo(x) =ne ™ n e N with x € R.
Solution. We will calculate the limit of f,(x):
1) fule) = —
W(x) = :
n-+x

lim f,(x) =0, VzxeR.

n—-—+oo

Thus, f, — f; f(z) =0 Vx € R,

0 f 0<z<1

lim fo(z)=9 1 if a2=1

\+oo of x> 1.

Hence, (fy), diverges on RT.

nx
3) folx) = :
) ful2) nx + 1
. 0 if =0
D ) =
1 of x> 0.

0 if =20
Therefore, f, — f; f(x) =

1 if >0
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4) fu(z) =ne ™

(
+oo if x <0

im fo(z) =9 400 if 2=0

n—--4oo

0 i x>0.

\

Thus, the sequence (f,), diverges on R*.

Definition 4.2.3. (The domain of Convergence): Let (f,,), a sequence
of functions defined on E. We call the domain of convergence D the set of
“x” where the sequence of functions converges pointwise.

Example 4.2.2. We will conclude the domain of convergence for the
sequences of functions mentioned above:

1
1)fn(x):n+x; n>1withxreR=D=R.

2) fo(x) =2";, neNwithe e R" = D =10,1].

3) fu(x) =ne™™; ne N withe € R = D =|0,+o0].
4) folx)=nx+1; neNwithx € R= D = {0}.

Definition 4.2.4. (The uniform convergence): Let (f,), a sequence
of functions; f, C—]>D f;Vr e FE.

(fn), converges uniformly tof < lim sup|f,(z) — f(z)] = 0.
n—

10 eR
We denote:
fa=2f;, Vexek.

Example 4.2.3. Investigate the pointwise convergence and the uniform
convergence of the following sequences of functions:

1
1) fo(x) = n+x;n2 1 with z € [0, 2],

1
2) fo(x)=2"; neN withx € [O, 5] ,
3) fu(x) =xze ™ n>1 with x € RT.
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Solution. We will first study the pointwise convergence and then the
uniform convergence:

1 = :
) fula) = ——
1-a) The pointwise convergence:

lim f,(z)=0, VzeR.

Then: f, — f; f(x) =0 Vx €10,2].
1-b) The uniform convergence:

1 1
o) = £ = |~ 0| =
We have: 1
g@%=n+x; z € [0,2].

We know that g is continuous and differentiable on [0, 2]:

/ _ 1 /ZL‘
g(r)= @:Eyﬁﬂ)<0ég\-

T 0 2

g'(z) -
g \\\\\

The study of the monotonicity of the function g on [0,2] give us:
1

sup g(z) = sup |fu(x) — f(z)| = —. We deduce that:
n

z€(0,2] z€[0,2]
I [fulz) = f(2)] lim -
m n - — m -
n—lH—oo 96861[101?2] v v n—lH—oo n
= 0

= L=z f Vrel?2].

2-a) The pointwise convergence:

0 of  x=0

n—--+oo

1

Thus: f, — f; f(x) =0 Vzx € {0, %] .

2-b) The uniform convergence:
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\fulz) = f(z)| = |2" — 0| = 2".

We set:
1

g(x) =" x € [0, 5] :

1
We know that g is continuous and differentiable on [O, 5] :

Jd@)=nz"t=g@@)>0=9 7.

x 0 1/2

g9'(z) +
g /

1
The investigation of the monotonicity of the function g on [O, 5] give us:

1
sup g(z) = sup |fu(x) — f(x)| = 5. We conclude that:

2€[0,1/2] 2€[0,1/2] 2
1
lim sup |fu(x)— f(x)] = lim —
n—>-+o0o 2€[0,1/2] ‘ ( ) ( )| n—s—+oo 2N

=0
= f.=f VYrelo,1/2].

3) fulx) = ze "
3-a) The pointwise convergence:

. 0 if =0
D ) =

0 of x> 0.

Hence: f, — f; f(x) =0 Vx € R,
3-b) The uniform convergence:
|fu(z) — f(z)] = |ze™™ — 0| = ze ™.
We set:
g(x) = xe™™; r€RT.

We know that g is continuous and differentiable on RY:

g (x)=e™ —nre™™ = (1 — nx)e .

1
J(x)=0<=1-nr=0<=zx=—;n>1.
n
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T
x 0 — +00
n
q'(x) + 0 -
g 1
0— ne  —

The study of the monotonicity of the function g on RT give us:

1
sup g(z) = sup |fu(z) — f(x)] = —. We deduce that:
zeR* reRT ne
1
l () — = lim —
Jmsup [fo(@) = fl@)] = lim o

— 0
= fo=f VreR'

Theorem 4.2.1. Let (f,), be a sequence of functions defined on E.

If fozf=f.—f VYoekE.
The converse is false.

Proof. We suppose that (f,,), converges uniformly to f on E. Then, we
have:

fo=f o= lim sup[fi(z) — f(z)] =0

X xek
= lm [fy(z) = f(2)] =0, Voek
> lm_fu(r) = f(2), VeeE

= fn—f;, Vxek.
O

Theorem 4.2.2. (Continuity and uniform convergence): Let (f,),
be a sequence of continuous functions defined on E.

If f.=f=f is continuous on F.

Remark 4.2.1. If (f,), are continuous and f is not continuous.
Therefore: (fy), does not converges uniformly to f.

Example 4.2.4. Study the pointwise convergence and the wuniform
convergence of this sequence of functions:

1
fn(x)zl—l—nx; n>1 and x € RT,
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Solution. We will first study the pointwise convergence:

1 st x=0

1) lim fu(z) =

n—-—40o0o

0 st x> 0.

1 st x=0
Thus, f, — f; f(z) =

0 st x> 0.

2) Since the (fn)n are continuous VYn € N* and f is not continuous at 0.
Hence (f,)n does not converges uniformly to f on RT.

Theorem 4.2.3. (Integration and uniform convergence): We set
E = [a,b] and (f,), are continuous defined on E. If f, = f; Vx € E.
Then:

n

g [ a= [ e a= [ e

Example 4.2.5. Calculate the following expression using two methods:

! x

n—+oo [o 14+ n°x

Solution. We can calculate the previous expression using two methods:

directly and by uniform convergence.
Method 01 (Direct):

1 1 2
1 2
| it = g | s de
o 1+ n2z? 2n? J, 14 n?ax?

1 5 o1 In(1+ n?)
- 2n2[1n(1+nx )}0: 2n?
1 2
In(1
— dm [ T de= m 2T
n—+oo J 1+ n2x2 n—s—+00 2n?
Method 02 (The uniform convergence):
x
Let fn(x) = m; n > 1 and x € RT.

a) The pointwise convergence:

0 if =0
lim f,(x) = — f, — f; f(x) =0V € R".

n—>—+00
0 of x> 0.
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b) The uniform convergence:

T T
nlz) = Jle)] = ‘m— |—m
We set:
_ X . R+
9() = TER

We know that g is continuous and differentiable on RY:

1+ n2x? — 2n2y? 1 — n2g?

g(w) = (14+n222)2 (1 +n22?)?

/ 2,.2 1
J(x)=0<=1—-n2"=0<=zr=+—;n>1,
n

g \/0/\

The investigation of the monotonicity of the function g on RT gives the
following result:

sup g(x) = sup |fu(z) — f(z)| = i We conclude that:

reRT z€RT 2n
] fule) = f@)] = lim o
Jimsup |f(e) = f@)] = lm oo

= 0
= fu=f VreR'

Then, we can interchange the limit and the integral as follows:

1 1 1
ngrgoo/o fulx) dx = /0 ngriloo fo(z) do = /0 0dx =0.
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4.2.2 Series of Functions

Definition 4.2.5. Let (f,,), a sequence of functions. It is denoted by:

n

Su(z) = folo)+ Ale)+ - -+ fu(2)

= > filw).
k=0

Sp: s called the partial sum of order n.

+00
Definition 4.2.6. A series of functions an with x € E is a series
n=0
of the form:
+00
Sheo= fothit ot fan
n=0

It may converges for certain values of x and diverges for others. Let D C E
be the set of x in E for which the series converges. Then:

+00
Siho= fothit ettt
n=0
= lim §5,=5 VxeD.
n—--+0o0

D: The domain of convergence.

Notation 4.2.1. Here are some commonly used notations:

400
Z fn, Z fn or Z fn: it 1s a series of functions.
n=0

n>0

(Sn),: is the sequence of functions of partial sums of the series Z fn-
fo: is the n'"—term of the series of functions Z fn-

+0oo

S: the function sum of the series of functions an if it 1s pointwise
n=0

converges.

The types of convergence

Definition 4.2.7. (Pointwise Convergence):

+00

Z fn converges pointwise < (S,), converges pointwise to S; Vx € D

n=0

s S, — S, VreD.
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Example 4.2.6. Study the pointwise convergence of the following series
of functions:

+00 0
1
1 ", x eR, 2 —,; z € R,
+00 7\ 12 +00 2
3);<1+E> -z €R, 4)%5;5561@.

Solution. We fiz x and study the series Z fn(z) :
+oo
1) Z "
n=0
It is a geometric series with ratio ¢ = x:
converges if |x| <1,

+00
> = D=]—1,1].
n=0 diverges if |x| > 1.

+00 1
n=1
It is a Riemann series with; a = x:
>y converges if x> 1,
— = D =|1, +o0|.
,n/fE
n=1 diverges if x < 1.

\”/un:(l%—f) — lim u, = lim <1+£) =e".
n

n—-4oo n—-—+oo n

First case. Ifl < 1:
+0oo

Sil<l<=e'<l<—=r<0<= Z fn(x) converges by the Root Test.
n=1

Second case. Ifl > 1:
400

Ifl>1<—1z>0<+= Z fn(z) diverges by the Root Test.

n=1

Third case. If | = 1:
l=1l=¢"=1=a2=0= f,(0)=1" = 1.
Then it diverges because lim 1 =1 # 0.

n—-—+oo

+00 on? | converges if x <0,
— > (1+9) = D =]~ 00,0
n=1 diverges if x> 0.

(0]
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+00 72n
4) Zo P
First case. If v =0:
+00

+0o0
Z fn(0) = Z 0 = 0. Therefore the series converges for x = 0.

n=0 n=0
Second case. If v # 0:

x2n—|—2 x2n . 1'2

We can apply the Ratio Test. We have: u, 1 = RSN = 1)
n ' nlin

2n 2

L Upgt " n! 2
lim

= 1 = 1 =0<1.
n—+o0o Uy, n—1>n4}oo n!-(n+1) % x2n n—lglkoo n—+1
+00 xQn
Thus, Z — converges; Vr € R = D = R.
— n!
Definition 4.2.8. (The uniform convergence):
+00
Z fn converges uniformly < (S,), converges uniformly to S
n=0
& 5, =28, VeeD.
400
Remark 4.2.2. Let Z fn be a series of functions defined on D.
n=0

+00 +00
If Z fn converges uniformly = Z fn converges pointwise on D.

n=0 ] n=0
The converse is false.

Example 4.2.7. Investigate the uniform convergence of the following
series of functions:

+00 oo
1 (="
1 ;v eRT, 2 ;v eRT,
);(n+x)(n+x+1) ! );TH-:EQ !

Solution. The goal is to prove the uniform convergence of S, to S:
+00 1
1 :
/ nz:; (n+2x)(n+2x+1)

1

Soit f(x) = :
® Soit Ju(a) (n+az)(n+x+1)
fn in the following form:

n > 1. We can write the term

1 __a b _(a+bn+(a+b)r+a
(n+x)n+z+1) n+tz n+z+l  (nt+a)(nta+1)

fa(z) =
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a+b=0
— == a=1etb=—1.

a=1
1 1

Thus, we can easily see that: r) = — .
7 Y ful2) n+x n+x+1’

1-a) The partial sum S,,:

Su(x) = filx) + folz)+ - - - - () + fulo)

B 1 1 n 1 1 N
a 1+ 2+=x 24+x 34z

1 1 1 1
........... _|_ —_ + _
n+rxr—1 n-+zx n+xr n+x+1

1 1
142 n4+x+1

1-b) the function sum S of the series:

1 1 1
S = 1l Sp(x)= 1 — = :
(@) nHHEOO (@) n—lgkloo <1+m n+x+1> 1+x
1
Hence, S, — S; S(z) = —— Vz € R™.
1+
1-c) The uniform convergence:
Su(x) — S(@)] = | : : :
(@) —S(x)| = — — =
l+2 n4+zxz+1 1+x n+x+1
We set: |
= — c R*.
gx) = x

We know that g is continuous and differentiable on R¥:

ﬂ@:—m+x+nf$ﬂ@<0$g\-
T 0 +0o0
g'(r) -

g T

7
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The study of the monotonicity of the function g on RT give us:

1
sup g(x) = sup |Sp(x) — S(x)| = . We conclude that:
reRT reRT n+1
1
Ii Sn S = 1 =0
A sup [Sa(e) = Ste)l = lim o=

= S5, =295 VreR".
Then, f L converges uniformly on RT.
(n+x)(n+z+1)

1
)Zn—kiﬂ

In the general case, to prove the uniform convergence of a series of
functions that satisfies the conditions of the Leibniz’s Theorem, it is

necessary to use a more significant result, which is:
1S, = S| <bpy1; YeeD and VYn €N,

2-a) The pointwise convergence:

(=1)"

We have : f,(x) = T = b,(z) = o >0 Vn>1.
lim b,(z)=0 +/ RN G BY0
Smce n—>-+00 — ( ) -
~n+tu
(bn)n v/ B
2-b) The uniform convergence:
+00 n
Since Z ( )2 satisfies the conditions of Leibniz’s Theorem,
~n+tu

converges pointwise on RT.

therefore:

1S, (2) — S(2)| < bpyi(z); Y eRT and Vn>1. So:

1
_ R — <
[Sp(x) — S(z)] < 1 ;;Rngn(:v) S(z)] < sup =
1
<
= ;;Rglsn(x) S(z)] 1

4

n—-+o0o zeR+

lim sup |5,(z) — S(z)| <
S(x)| =

U

hm sup |Sp(x) —

00 peR+
= Sn =S VreR".
+00 (_ n '
Thus, Z S converges uniformly on R7.

n=1
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Definition 4.2.9. (Normal convergence):

+00
Let Z fn be a series of functions defined on D.
n=0
+00 +00
If Zsup | fu(x)| converges < an converges normally, Yx € D.
n=0 z€D n=0
+00
Practical method: Let Z fn be a series of functions defined on D. If
n=0

there exists an infinite series with positive term a,, convergent and verifies:

|fn(x)| <a,; VYreD and Vn e N.

+00
Then, the series Z fn converges normally on D.

n=0
a,: does not depend of .

+00
Remark 4.2.3. Let Z fn be a series of functions defined on D.
n=0
If Z fn converges normally = Z fn converges uniformly on D.
n=0 n=0
The converse is false.

Example 4.2.8. Study the normal convergence of the following series of

functions:
Xz <X sin(nx)
: + .
n=1 n=0

Solution. 1) Z

Let fn(x) = ﬁ, n>1andz € RT.

1-a) the limit of the n'"—term:

1+ n4x2

. 0 if x=0

0 if x> 0.

1-b) Calculating sup |f,(x)|:
xeR*
T

1+ ntg2 |:1—|—n4x2'

o)l = |52
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We set:
T

T 1+ nta?

We know that g is continuous and differentiable on RY:

g(x) r € RY.

, 1+ ntz? — 2nta? 1 — nta?

(1 +n4x2)2 (1 + n4x2)2'

1
g’(:L‘):0<:>1—n4:1:2:O<:>aJ=i—2;'nZ1-
n

The investigation of the monotonicity of the function g on R™ give us:

1
sup g(x) = su r)| = —.
xERgg( ) xERg ‘fn( )l 2n?
+00 1
Since Z 3 is convergent (it is a Riemann series: a =2 > 1), we deduce
n=1
+00 T
that ; T converges normally on RT.
X sin(naz)
n=0 )
Let f,(x) = Sm(;w) ;neNandz eR.
We know that: |sin(nx)| < 1. Then:
i 1
sinnz)l Ly eR and WneN.
2n 2n

+00 n
1
g <§> converges (it is a geometric series with ratio 0 < ¢ =1/2 < 1)

n=0

400 .
sin(nz
thus, the series Zsup 2(n ) converges by the Comparison Test.
—o T€R
JEE sin(nz)
We conclude that Z converges normally on R.
2n
n=0
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Definition 4.2.10. (Absolute Convergence):
+00

The series of functions an converges absolutely if the corresponding

n=0
“+00

series of absolute values g | fu| converges pointwise.

n=0

Example 4.2.9. Investigate the absolute convergence of the following
series of functions:

<X (=1)" N <X cos(nz)
n=1 n=0

+x’ 3

Solution. We study the corresponding series of absolute values Z | ful -

+o0 _1)"

(—1)" 1 .
(@) = | -~ We will get:
()] nyn+zx| nyn+zx c e
B 1 __ 1 . |fh(x)‘__
| fu(z)| = NG ~ Uy = T because nLHEOO o 1.

1
Z —— s convergent (it is a Riemann series: o = 3/2 > 1), we deduce

converges pointwise by the Limit Comparison Test.

(="

+00
= Z ——~— conwverges absolutely on RT.
n=1

nyn+x

+o00
—1)
= Z (=1 converges pointwise on RT,

nyn+x

n=1
2) i.f cos(nx)
n=0 3"
[ ful)| = % _ |3<_n>\

We will obtain:

\Cos(nx)\ 1 1\"
LI S I B Y )
30 m 3 n €N

400 n
1
g <§> converges (it is a geometric series with ratio 0 < ¢=1/3 <1).
n=0
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cos(nx)

a0 converges pointwise by the Comparison Test.

+00
Then, Z

n O

converges absolutely on R.

-3 )
3
Z 3( converges pointwise on R.
=0
+00

Remark 4.2.4. Let Z fn be a series of functions defined on D.
n=0

If Z fn converges normally = Z fn converges absolutely on D.

n=0 ] n=0
The converse is false.

Properties of the sum of a series of functions related to the uniform
convergence

Theorem 4.2.4. (The Continuity):
400

Let Z fn be a series of continuous functions defined on E, If this series

n=0
converges uniformly, then its sum S is continuous on E:

> fo=lim S,=5 Vrek
— n—-+00

Theorem 4.2.5. (The integration):

Simalarly, one often wants to exchange integrals and limit processes. For

the Riemann integral, this can be done if uniform convergence is assumed.

+00
Let Z fn be a series of continuous functions defined on E = |a,b]. If this

n=0
+00

series E fn converges uniformly on E, we have:
n=0

/bffn dx— /fn dﬂr—/S()dm, Vo e E.

Remark 4.2.5. To obtain the previous properties, it is sufficient to prove:

1) The normal convergence.

+o00
2) The uniform convergence of the series Z fn-
n=0
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Example 4.2.10. We consider the following series of functions:

o sin nx
Z ; Vo € R.

2
n
n=1

1) Study the normal convergence of this series on R.

2) Show that the sum of the series, denoted by S is a continuous function.
3) Show that:

—+00

i 2
/0 S(z) daszzm.

n=1
Solution. We first prove the normal convergence:

1) Z sin(gm) ._

n

Let fn(x) = M; n € N* with v € R.
n

We know that: |sin(nz)| < 1. Then:

1

<—; VreR and VneN.
n

sin(nx)

n2
+00 1
Since g — is convergent (it is a Riemann series: o =2 > 1), we deduce
n

n=1

<X sin(n)

that E 5— converges normally on R.
n

n=1
2) The continuity of the function sum S:
The (fn)n are continuous for all n € N*, and they converge uniformly on
R, Therefore, the function sum S is continuous on R;

+oo .

Z sm;zx =S(x) VxeR.
n

n=1

3) The integral of S:
The convergence being uniform on [0, w| and the (f,,), are continuous, then:

™ T too . 400 T .
sin nx sin nx
S(z) de = / g dr = g / dx. we calculate:
/O 0 p=1 n? n=1"0 n?

T si 1 T 1 m
/ i ;m dr = — sin(nx) dv = — [— cos nx}
0 n= Jo n

= % [— cos(nm) + 1]
= = (D)
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Depending on whether n is even or odd 1 — (—1)" is either zero or equals
2, We will split the sum into two parts, indeed:

400 ar S0 N B +o0 (1 . (_Dn) B +oo (1 o (_1)2p> +00 (1 — (—1)2p+1)
;/0 gl = D =) (2p)? +ng (2 +1)°

n=1 p=1
< 2
- 2; (2p+ 1%
Then, we set: n =p+ 1, hence:
™ <2 < 2
[, storae - Dy rEa T S creh

4.3 Power series and Fourier series
4.3.1 Power series

Definition 4.3.1. A real power series is a series of the form

+00

g a,x".

n=0

ay: called the coefficient of the series and x is a real variable.

+00
Definition 4.3.2. [et Z apx” A real power series; x € R.
n=0
+00
D=<(zre R/Zanx” converges } is called the domain of convergence
n=0

of the previous power series.

The Radius of Convergence R

400
Theorem 4.3.1. Let Zanaj” be the power series. There exists a

n=0
unique positive real number, finite or infinite R that satisfies the following

properties:
(

Si x| < R, the series converges

\ Si |z| > R, the series diverges

Si |x| = R, nothing can be concluded.
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400

For the third case, we need to study the convergence of the series Z apx"

n=0
forx =+4+R and x = —R.

Definition 4.3.3. (Determination of the radius of convergence):
+00

Let Z a,x" be the power series.
n=0
(
lim Gntl) _ [
n—+00 an
If < or — R = %

lim +/|a,| =1

\ n—>-—40oo

(0.9]
Theorem 4.3.2. Let R be the radius of convergence onanx”, then:
n=0

1) If R=0= D = {0},

2) IfR=+400= D =R.

Example 4.3.1. determine the radius of convergence R for the following

power series:

+00 n +o0
1)22n, 2)2 nil', S)Zn!-x
4)2 _nn.x”) 5)211’171 6)211’171 o
n=1

Solution The goal is to calculate the radius of convergence R:

1)2—:

1 awn o1 B
E - nirg-loo Qp, N ngr?—oo on+l § = fi=2
+o00 "
2) ).
|
n=0 (n T 1)
li fnt1 lim (n+1)! = lim =0=— R=+4x
n—+0oo | Ay n—-—4o00 (n + 2) (n —+ 1)' n—s-+400 1, 2
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+00
3) Z n!.z"
n=0
! 1
fm [ = g PP D i (1) = oo — R—0.
n—-+o0o | Gy n—>-+0o n' n—-+00
+o0
L.
HY Sl
n=1
1 . An+1 . n
— = lim = lim =1— R=1
R n—+o0 | QA n——+oo N + 1
<X Inn
n=2
n 1 1 ’
lm |2 - gy RO )x( n > —1=R=1
n—+oo | n—+oo  Inn n+1
lnn
6) Z
n 1 1
T (SN O e VY AR =
n—+oo | @, n—+oco  Inn n+1
Properties of power series
400
Proposition 4.3.1. Let Zanx” be a power series with a radius of
n=0
convergence R > 0 and let:
f:]—R,+R[— R
x— f(x Zanx Therefore:
1) f is continuous on | — R, +R|.
+00 +00 anrl
2) The series na,z" ' and a,—— ( obtained by differentiatin

and integrating the series Zan:c”) have the same radius R as the

n=0
+00
. n
Series E and .
n=0
+00 n+1

+00 .
3) fl(x) = Znana:”*l and / f@t) dt = Za”7f+ T Vo €] — R, +R|.
n=1 0

n=1
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Example 4.3.2. Calculate the sum of the following power series on their
domains of convergence:

+00 “+00 “+00 $n+1
I 2> n! 9>
n=0 n=1 n=0

Solution. We will calculate the function sum S on the domain of
convergence:

1) Zx”

It is a geometric series with ratio ¢ = x that converges Vx €] — 1, +1].

400 1
Zx”:—; Vx| < 1.
11—z
n=0
400
Q)ch”_l
n=1 o
We k that: "= Ve €| —1,+1|. Thus:
e know a;x _xx] ,+1[. Thus
d (<= d < 1
L) () - T her- T
+0oo ol

3)2

n—|—1:

n+1

x +00 +0o0 T +00
€T
t" dt = — dt t" dt = = —In(1 — .
[Xra= [ ipasd [rasd s = omi -

+00
Proposition 4.3.2. Let Zanx” be a power series with a radius of
n=0
convergence R > 0 and let: f :] — R,+R|— R the function defined by:
+00
f(x) = Zanajn. Then:
n=0

R (D)
f(x) = Z / (O):U"; Vo €] — R, +R|.
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Power series expansion

Definition 4.3.4. A function f has a power series expansion if there exists
R > 0 such that:

+00
f(z) = Zanx”; Vx €] — R, +R|.
n=0
Example 4.3.3. Expand the following functions into power series:
1
1 — — — o
) f) = 1 2) 0)= 5. 3 f)=c"
4) f(x) =sinx, 5) f(x) = cosz, 6) f(x) = coshz.
Solution. 1) f(z) !
. T) = :
1+
Lety €] — R, +R[. We know that:
1 <
m—;y, if Jyl < R.
1 1 +o0
y=—2x )
= = — n — 1
112 1 (—a) ;( ot =<
+0o0
— f(x) = Z(—l)" " if x|l <1
n=0
2) J(w) = 5—
T) = .
2 -3z
I yz%}f Be\" e 3]
2-3z 2|, _ 3] = 242\72 T
2
400
3"z , 2
=@ =2 <l
n=0
3) f(x) =e":

We can apply here the Proposition 4.5.2. We obtain the following:
Since: M (x) = e* = f")(0) = 1. Hence:

n.

ha "

r __ s

e —E x Vo € R.
n=0

3) sinx et cosx:
We will use this Euler’s formula:

e = cosx+isinzr; VreR.
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Then:
+00 /. +o00o
T (Zx)n . " n
) N ; TL' N n=0 Eaj
+0o0o 2p +00 2p+1
_ Z ! 220 1 ! 2p+1
@)t = Cpr )
+00 400
_ (_1)px2p +Z-Z (=17 91
= (@p)! — (2p+1)!
+00 n +00
_ (1) iy (=1)"  onn
— (2n)! —~ (2n+1)! '
Thus
( 400
(_1)n 2n
cosx = Z x
|
“— (2n)!
9 and
+00
. (_1)n 2n+1
sinz = — .
\ nz:% (2n + 1)!

4) sinhx and cosh x:
We can expand these functions using the exponential function:

I Y o DL I~ 1+ (=1)"
coshz = §<Zﬁ$ —|—Z n! T :§ZTx

n=0 n=0 n=0
R R e G T I G DA
~ 9 Z 29)! v +Z 9 1)! v
= @) = @p+1)
+00 2P +00 2
~ 2 (2p) =2
- [ B ) LT W e e e D
I O e O P et e e
2\ (@) ~ (2p+1)
+ 220t +00 22+l
- pa 2p+ 1! & (2n+1)!
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Series Solutions of Differential Equations

Power series solutions of differential equations express the solution as an
infinite sum, typically around a point. The coefficients of the series are
determined by substituting the series into the differential equation and
solving for them. For this purpose, we need some background knowledge.

Remark 4.3.1. Let x €] — R, +R|.

+o00 +o00
[fZanx” = Z b,x" — a, = b,; Vn € N.
n=0

n=0
+00

In particular, z'fZanx” =0=a,=0;,VneN.

n=0

400
Example 4.3.4. (Change of index): Let y(z) = Zan:z:” and

n=0

r €] — R, +R|.

1) Find y andy’, and express them in terms of ".

2) Express the following expression in terms of x".

"

Alz) = (1 —2%y .

Solution. We use the properties of power series:
1) Finding y and vy :

+00 oo
y (x) = Zn%x"_l and y (x) = Zn(n — Da,z" 2.
n=1 n=2

2) The expression of y and vy’ in terms of x":

—+00 —+00

400
’ n—1 k=n—1 n
y (z) = E na,z" "= E (k + 1)ag2® = E (n+ 1api - 2",
n=1

k=0 n=0

et

+00

(@) = Dol Do 2SSk 2k Dagor’

n=2 k=0
+oo

— Z(n +2)(n+ Dayo - 2"

n=0
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2) The expression of A in terms of x":

(1—a2dy ' (z) = Zn(n—lanx Zn n—1a,-z"

+00 +00

= Z(n +2)(n+ 1Dayie-2z" — Zn(n — Day - z"
n=0 n=2
+o00 +o0

= Z(n +2)(n+ 1Dayio- 2" — Zn(n — Day, - 2"
n=0 n=0
+o00

= ) [(n+2)(n+ D)anss —n(n — a,] 2"
n=0

Example 4.3.5. Find the power series solution of the equation:

y —y=0; y(0)=1. (4.3)
400
Solution. Let us set y(x) = Z ana", then: y'( Znanx

n=
By substituting into equation (4.3), we obtain:

“+00 —+00
y(@) —yl@) = Y naa" = a”
n=1 n=0

+o0o +00
B SRS S
n=0 n=0
+o0o
= Y [0+ D — aJa" =0
n=0
= (n+1ay1 —a,=0; VneN
%)
= Api1 = : VneN
(i1 n+1 "
Si 0)=1= 1 = ! = ! = ! H
ince = ay = a = — ay = — ag = ence
,1y 0 1 1 2 5 3 9 % 3
n = — Vn € N. This implies that:
n!
£ n
y(x)zzgm:e; Vr e R

the solution of the equation (4.3).

Example 4.3.6. Determine the power series solution of the equation:
(1—2)y —y=0; y(0)=1. (4.4)

91



4.3. POWER SERIES AND FOURIER SERIES

+00

+00
Solution. We have y(x) = Z anz”, so: y (x) = Znana:"_l.
n=1

n=0

By substituting into equation (4.4), we get:

/

+o00 +00 +00
(1—-2)y(z) —ylzr) = Z na,x" ' — Z na,x" — Z apx"”
n=1 n=1 n=0

+00 +o00 +o00
= Z(n + Dapyq - 2" — Znanx” — Z apx"
n=0 n=0 n=0
400
= Z [(n+ Dayss — (n+1)ay] 2" =0
n=0

= (n+ a1 —(n+1)a,=0; VneN
= api1 =0y, VN EN

Furthermore, we have: y(0) =1 = ay =1 = a, = 1; Vn € N. This

implies that:

+00
n 1
() =) a" = — V| <1
n=0

the solution of the equation (4.4).

Example 4.3.7. Find the power series solution of the equation:

y +axy —y=0; y(0)=0 and y (0) = 1. (4.5)

+00

+00
Solution. Let us set y(x) = Z anz”, then: y () = Znanaz”_l and
n=1

n=0

400
y (x) = Z n(n—1)a,z" 2. By substituting into equation (4.5), we obtain:
n=2

y +ry —y

We have: y(0) = 0 = ay

=

=

400 +00 +00
Z(n +2)(n+ 1)apso - 2" + Z na,x" — Z apx"
n=0 n=0 n=0
+00
Z [(n+2)(n+ 1Dapi2+ (n —1)a,] 2" =0
n=0
(n+2)(n+ apy2+ (n —1)a, =0; VYneN
1—n
n+2 = Cap; VY N
An+9 "t 2 a n e

0 and y (0) = 1 = a; = 1. Therefore:

as=az=---=a, =0; VYn > 2. This implies that:
y(x) =x; x € R the solution of the equation (4.5).
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4.3.2 Fourier series

Definition 4.3.5. A real trigonometric series is called any series of
functions of the form:

ago

5+ Z[an cos(nz) + by, sin(nx)], (4.6)

with x € R and ay, a,, b, € R, Vn € N*.

Definition 4.3.6. (Periodic function):

A function f is said to be periodic if there exists a number T such that:
flx)=f(z+T); VxeR.

Definition 4.3.7. We say that f is T-pertodic if T is the smallest > 0
that satisfies:
flx+T)=f(x); VxeR.

Example 4.3.8. fi(x) = cosx and fo(x) = sinz are 2w-periodic functions
because: cos(x + 2m) = cosx and sin(x + 27) = sinz.
Remark 4.3.2. Suppose that the series (4.6) converges, and let us set:
+0o0
a :
flz) = 50 + Z[an cos(nz) + b, sin(nx)] = f(z + 27) = f(x).

n=1
Then f is 2m-periodic function.

Proposition 4.3.3. If the infinite series Zan and an are absolutely
convergent, then the series (4.6) is normally convergent.

Calculation of the coefficients of the series (4.6)
We assume that the series (4.6) is uniformly convergent. Therefore:

flz) = % + Z[an cos(nz) + by, sin(nx)].

n=1
Here f is a continuous anf 27-periodic function. Then, we can write the
coefficients as follows:

1 2w
ag = — f(x) dx
T Jo
1 2m 1 2m
a, = — () cos(nz) de and b, = — (x)sin(nz) de Vn > 1.
™ Jo ™ Jo

Remark 4.3.3. If f is T-periodic and continuous on [0,T], so:

/OTf(x) dr = /:+T f(x) dx Va eR,
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Proof.
La+Tf(x) dr = /aof(x) dm+/0Tf(a:) dx+/Ta+Tf($) dx

= /aof(x)der/on(x) dx+/0af(y) dy

= /OTf(x) dx.

In the second line, we made the substitution y =z — T []

Thus, the Fourier coefficients can be written as:

o421
ag = l/ f(x) dx

™

1 a+-2m 1 a+-2m
ap = —/ f(z) cos(nz)dr and b, = —/ f(z)sin(nx) dx Vn > 1.

T T
In particular:

1 [t
- d
ap = — /_7r f(x) dx
1 [t 1 [t
a, = — f(x)cos(nz) de and b, =— f(x)sin(nz) dz Vn > 1.
T ) n T ) x

Definition 4.3.8. (Fourier Series): The Fourier Series associated
with f which is 2m-periodic function s the following trigonometric series:

+00
) .
5t g:l [ay, cos(nz) + by, sin(nw))
1 [t
with ag = — f(x) dx
T —T
1 +m 1 +m
ap = —/ f(x)cos(nz) de and b, = — f(z)sin(nz) dz Vn > 1.
T J-n -7
Properties

For a function f which is 2L-periodic defined on the interval [—L, L], the
Fourier Series associated with f is given as follows:

400
% + nz:; a,, COS (_nza:) + b, sin (_nm:)
1 +L

L
with ag = — f(z) dz
LJ-p

1 +L 1 +L
a, = —/ f(x) cos(nz) de and b, = 7 f(x)sin(nz) dz Vn > 1.
L —L
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Theorem 4.3.3. Let f be a 2m-periodic function satisfying the following
conditions:

1) There exists M > 0 such that: |f(z)| < M Vz € R.

2) f is monotone piecewise on the interval [a, b] meaning that we can divide
[a, b] into subintervals such that the function f is monotone on each
subinterval.

Thus, the Fourier series associated with f is convergent, and we have this
identities:

+00
S(x) = % + Z[an cos(nx) + by, sin(nz)]
n=0
f(xo) if fis continuous at xg
| flae+0)+ flzo—0)

5 of s discontinuous at  xy.

The notations f(xy+0) and f(xo—0) represent the right-hand and left-hand
limits of f at xq, respectively:

flxg4+0)= lim f(z) and f(xg—0)= lim f(x).

T—To T—T0
> <

Moreover, if the convergence is uniform then f s continuous Vx € R.
Hence:

S(x) = f(x) = % + Z[an cos(nx) + by, sin(nz)].

n=1

This equality is true for all x € R.

Remark 4.3.4. We will study some particular cases. First, let us recall a
few properties:
f =k, +k] = R a continuous function. Therefore:

1) If f is even, then:

+k +k

) f(x) de =2 0 f(zx) dx.

2) If f is odd, then:
+k
/ f(x) dx = 0.

k
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Application: If f is expandable in a Fourier series, then:
First case. If f is even:

_ %7]0(33) do = %if(a:) da

/f cos(nx) _ 2 /f(:p) cos(nx) de and b, =0 Vn>1.

0
Second case. If f is odd:

ap=a,=0Vn>1

+m
1 2
and b, = — [ f(x)sin(nz) de = — [ f(x)sin(nz) dz Vn > 1.
77/7( WO/

Parseval’s Identity

Theorem 4.3.4. Let f a function that is expandable in a Fourier series
and has a period of 2m (or any other period), then we have:

+00

+7 2
=@ e =R (a4 ).

™ n=1

1) If f is even, then f? is also even, so:

2d ‘ 0‘2 — 2
‘f )" dx = +Z‘an|

2) If f is odd, then f? is even, then:

9 T +oo
— o) dx = b,|?.
@R a=31

Example 4.3.9. Consider the 2m-periodic function f which is defined by:

f(x)=lz| with —w<z<+m.

1) Sketch the graph of f(x) over the interval [—3m, 3r],.
2) Calculate the Fourier coefficients of f.

3) Obtain a Fourier series expansion of this function f.
4) Deduce the sums of the following infinite series:

+00 1

400 1
VA= Gy 0) B =2 Gav

n=
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Solution. 1) The graph of f:

Figure 4.1: Graph of the function f(x).

2) The Fourier coefficients of f:
We have: f: [—m,m] — R a 27-periodic function defined by f(z) = |z|.

1) |f(x)| <7, so f is bounded.

2) fi_soq 1S decreasing and continuous, and f. 1S increasing and
continuous.

Since f satisfies the conditions of Theorem 4.5.3, it can be expanded in a
Fourier series. Moreover, f is an even function, so b, = 0; Vn > 1.

1 [t 2 [T
ayg = — f(x)dx:—/xdxzﬂ.
™ 0

v (0

1 [t 1 [t
a, = — f(x)cos(nx) de = —/ |x| cos(nx) dz
™ ™ —

_ ;[/i(—x) cos(nz) dx + /O Wxﬂcos(na:) daz]

_ % /+7r x cos(nz) do = % <[$Sin§1nx)] a % /W o dw)
- 30[““”@]“ -y

nm n n2m

We notice that the coefficients with even indices are zero. Therefore:

)
0 if n=2p
Ap = {
1 f n=2p+1
7 S——1 g = :
| A1) g
3) The Fourier series expansion of f.
400
We know that: S(x) = % + Z[an cos(nx) + by, sin(nz)].

n=1
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4.3. POWER SERIES AND FOURIER SERIES

According to Figure 4.1, f is continuous on R, thus: S(z) = f(z).

cos(2n + 1
f@»:@p:---}j 2n+1 . VzeR (4.7)

4) Calculation of sums:

4-1) By substituting x by 0 into equation 4.7, we obtain:
+00 400 )

T 4 1 1 s
0=—-—— —_— = —_— =
2 W;(27’L—|—1)2 ;Z:O (2n+1)2 8

4-2) We can apply Parseml s identity for an even function. We have:
2 +m ) ‘ 0|2
‘ dx E W2 H
7T/0 |f(z)] 5 + la,|*. Hence:
+00

2 [, o2 2 16 1 1 7r4
S Y PR o S SN N
W/O T 2+7r2n§(2n+1)4 ;(2n+1)4 96

Example 4.3.10. Consider the 2m-periodic function f which is defined by:

—1 if  —m<x<0

+1 if 0 <z < +m.

1) Sketch the graph of f(x) over the interval [—5m, 5ml,.
2) Find the Fourier coefficients of f.

3) Get a Fourier series expansion of this function f.
4) Conclude the sums of the following infinite series:

+00

" b)B—Z—l )C—fi
U I e R S

Solution. 1) The graph of f:

5n -dm 3m 2m -7 0 = on  3m  4m  5m

o—o0 o——o0 o—l\-l o———o0 o0—o0 o0—

Figure 4.2: Graph of the function f(x).
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2) The Fourier coefficients of f:
Since f 1s an odd function, then a, = 0; Vn € N.

1 +m 1 0 +m
b, = — f(x)sin(nz) de = — {/ (—1)sin(nz) dx —|—/ Isin(nz d:c]
- 0

™ J_x T s
A 2 ~ 21— "]
7T/o sin(nz) dx mr[ cos(nx)]
We notice that the coefficients with even indices are zero. Therefore:
(
0 if  n=2p
b, = <
1 f 2p+1
_ if n=
\ T(2p+ 1) P

3) The Fourier series expansion of f.

Sa) = 4 f sin(2n + 1)z _ f(z) if v#km; kel 48)
T 2n +1 0 r b ke '
= 7 r = KkT; S

Figure 4.3: Graph of the function S(z).

4) Calculation of sums:
4-1) By substituting x by w/2 into equation (4.8), we get:
4 X sin(2n + 1)7/2 2 (=1)" T
(7/2) = J(7/2) wnz; o+ 1 Z(2n+1) 1

4-2) We will apply Parseval’s identity for an odd functzon We have:
+00 92

L ETR ] B -
B (2n+1) ~ (2n+1)2 8

4-3) We can Sepamte the series into two sums: one for the even indices

cmd one for the odd indices.
+o0 1 2 1 +00 1 +00 2

7r 1 7r
Zrﬂ ng_|_ Z(gp)2:§ Zzp_ Z 2 g

n=1 p=1 p= nl

99
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4.4 Supplementary exercises

Exercise 4.1. Find the sum of the series:
+o0

= 1 n(2n + 1) on + 1
V2 2)21[ o) )Zn2n+

400
n—1 1
4) Z n' 5 5) Zarctanm

n=1 n=1

Exercise 4.2. Study the convergence of the following series:

1) fml, 2) ;f;cos(mr), 3) f (1 - g)n,

4)25n+3 5)Zl+;2osnj 6)211’171

n=1

Exercise 4.3. Investigate the convergence of the following series:

1)§lln<1+l>, Q)Zfol 3)§smin,
Sl AR SESTS

Exercise 4.4. Study the convergence of the following series:

2n X pV2 n'lnn
DS 9Y . 9Y
(

n=1
<X (2n)! 1 ><3>< x (2n—1)
)Y o 5)2571; 6)2 TR

1)2725_1)1, 2)2 1)"1(0.1)" 3)2 2n,

—+00 +oo
(=) arctan n —
S [ | )
4) ;:1 NS 5) n§:1( ) RONTERE 6) ;:3 nlnn

Exercise 4.6. Study the pointwise convergence and the uniform
convergence of the following sequences of functions:

nx
I)fn( ):m,n>1&7’Ldﬁlf€R+

2) fo(x) = (1 —z);n €N and z € [0,1],
3) fu(z)=e"":n>1andz > 1.
4) fno(x) =nx IQ;nZ 1 and x € RT.
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Exercise 4.7. Investigate the pointwise convergence and the wuniform
convergence of the following series of functions:

)Z ;rER 2)5375;137;;9:61&#

COS 7’L7T

3)2 52,x€R+ 4)22n+ 2z R

Exercise 4.8. We consider the following series of functions:

+

Zsm . VreR
— n—|—2

1) Study the normal convergence of this series on R.
2) Show that the sum of the series, denoted by S is a continuous function.
3) Compute the following integral:

/OWS(x) dx

Exercise 4.9. determine the radius of convergence R and the domain de
convergence D for the following power series:

+00 a:” +00 n —+00

)Y o 2)y =

n=0 n=0

400
DL D Sh P ) 3 o)
n=1

n=2 n=1

+o0 . +00 T
arcsin(1/n) (G nl
7)5 — T 8)5 T L .9)5 i

Exercise 4.10. Let f be a function defined on | — 1,+1[ by:

arcsin x

V1—a?

1) Justify that f is expandable in a power series.

2) Show that f is a solution to the following differential equation:

fx) =

(1—2%)y —ay=0.

3) Determine the power series expansion of the function f on the interval
| —1,+1][.
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Exercise 4.11. Consider the 2m-periodic function f which is defined by:

flx)y=2 e —7m<x<+m.
1) Sketch the graph of f(x) over the interval [—3m, 3r],.
2) Calculate the Fourier coefficients of f.

3) Obtain a Fourier series expansion of this function f.
4) Deduce the sums of the following infinite series:

<1 X (=1)mt! <1
o) A=) —, b)B=) —5—, c)C=) —
n=1 n=1 n=1

Exercise 4.12. Let f be a function 2-periodic defined by:

if 0<zx<1

if  1<z<2.

1) Sketch the graph of f(x) over the interval [—2,4],.
2) Find the Fourier coefficients of f.

3) Obtain a Fourier series expansion of this function f.
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Chapter 5

Fourier Transform

The Fourier Transform is an extension of the Fourier Series expansion for
periodic functions to non-periodic functions.

The Fourier Transform associates a function f (with values in R or C) with
another function denoted by F(f)(s); where s is an independent variable
of t, called the dual variable.

5.1 Definitions and properties

We denote by L'(R) the set of functions f : R — R that are integrable

400
and for which / | f(t)| dt converges.

Definition 5.1.1. Let f € L*(R). The Fourier transform of f denoted by
F(f) is defined as follows:
F(f):R—=>C

1 +00 ‘
s— F(f)(s) = \/—Q_W/—oo f(t)e " dt.
Theorem 5.1.1. Let f € L'(R).
1) If f is even, then F(f)(s) = \/%/OJFOO f(t) cos(st) dt.

2 [T
V21 Jo

Example 5.1.1. Calculate the Fourier transform of f, which is defined
by:

2) If f is odd, then F(f)(s) =

f(t)sin(st) dt.

fR—=R

L <12
Ers f(E) =
0 if |t > 1/2.
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5.1. DEFINITIONS AND PROPERTIES

Solution. Here f, is even according to Figure 5.1.

£(1)

-1/2 0 142

Figure 5.1: The Box function

F(f)(s) = \/%/0 Oof(t)cos(st) dt

9 1/2
= — cos(st) dt
V2T /0

2 rsin(st)71/2

27 |: S :|0 9 # 0
2 sin(s/2).8

\/% s ) # O.

1/2
]fs:OJ-"(f)(O):\/%/O 1dt:\/%.

Example 5.1.2. Let f(t) =e .t € R et a > 0.
The same question.

Solution. We wuse integration by parts twice to find the value of the
following integral.

F(f)(s) = ¢i27r /O () cos(st) dt
2 i —at

@/0 e " cos(st) dt
Nk
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CHAPTER 5. FOURIER TRANSFORM

Theorem 5.1.2. Let f € LYR). Then the Fourier transform F(f)
satisfies the following properties:
1) F(f) is continuous on R, meaning that lim F(f)(s) = F(f)(so)

S—So

2) F(f) is bounded on R, meaning that there exists M > 0 such that for
all s € R, |F(f)(s)| < M.

5.1.1 Properties of the Fourier Transform

1) Flaf +Bg)(s) = aF(f)(s) + BF(g)(s)-
2) If f is continuous and if % € L(R), then we have:

F(f')(s) = isF(f)(s).

5.2 Inverse Fourier Transform

Definition 5.2.1. Let f € LY(R).The inverse Fourier transform of f is
defined as the function denoted by F~1, which is given by:

400 -
(F ) m/ f(s)ei* ds.

Theorem 5.2.1. Let f € LY(R) be a continuous function, and suppose
that F(f) = f € LY(R). Therefore: F1F(f) = f and FFYf) = f.

Thus:
+oo

— \/—2_77 i (]—"f)(s)em ds.

Example 5.2.1. Let the function f be defined by: f(t) = e -t eR.
1) Calculate: (Ff)(s).

2) Calculate this expression:

f(t)

o2 1

V2r Jooe \V2m 1+ 82

3) Calculate the following improper integral:

2 [T

2 / cos(st) s

T 0 1 —|— 82
du; t > 0 and deduce the value of the following

400
/ cos(z) "
0

1+ 22

)eiSt ds.

cos(u)

400
4) Calculate /0 R

integral:

+u
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5.3. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Solution. 1) According to example 5.1.2, we conclude that:

2 1
FNE = =
2) We know that:
1 +00 9 1 '
E/_ <ﬁ1 n 82)6’“ ds = FLF(f)(t) = f(t) = e .

3) We have:

1 400 ist 2 400 t
eIt = —/ C _ds= —/ cos(st) ds. (5.1)
- 0

) o 1482 T 1+ s?
4) We can make the substitution st = wu in equation (5.1), then:

+00
/ cos(u) du = 1e_t; t > 0. Hence:
0

224+ u2 2
/+°° cos(e) dz = —.
0 1+5L’2 26

5.3 Applications to differential equations

Example 5.3.1. Consider the function f defined by:

+o00 eft

flx) = L3

D=

1) Show that f is defined for all x € R.

2) Show that f is differentiable and prove that f satisfies a first-order

differential equation, which we will solve. Deduce the expression for f(x).

—+00
We recall that / e du = g
0

—t 6—15

Solution. We denote g(t,z) = e—tem with |g(t,x)| < —. o prove the

S

existence and differentiability of f, we will use the following theorem.

Theorem 5.3.1. Let g: I x J — R, C be a function such that:
1) For all x € J, g(t,z) is continuous and admits an improper integral
over the interval I.

0
2) g(t,x) admits a partial derivative 8—g(t, T).
T

0
3) For allt €1, a—g(t,a:) is continuous on J.
T

4) There exists a function h : I — R that is continuous and admits an
improper integral, such that for allt € I and x € J:
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Then, the function f(x) = / (t,z)dt is differentiable on J, and its

derivative is given by f'(x / (t,z)
Ox

In this case, we have

e—t

g(t, x) = %em

Let’s check the conditions of the previous theorem.
1) We first observe that g(-, ) is well-defined for all x € R. Indeed

This function is integrable on ]0,4+o00[, because near 0 it is equivalent to
1

%7

which is integrable (Riemann integral), and near +oo, it satisfies:

e—t

Vi
Then, g(t,x) is continuous on |0, 4+00[ and admits an improper integral.
g

2) 27
) %

0
3) ‘%(t,x)’ < — = h(t); h verifies the conditions of the Theorem 5.3.1.

1
<5

t,x) = ie~'\/te™® exists and is continuous Vx € J.

Consequence:
400

f(x) = / g(t,z)dt is differentiable on J and
0

+00

+00 . ‘
f/(l’) = / ie*t\/fem" dt =1 \/ge(mq)t
0

0
: +oo —t
I.B.P [/ € th dt

20 —1)Jy Vi

() -+
T 2ix— 1)f(x) C2(x2 + 1)
Thus, we obtain the following differential equation:
—T +1
TS A f(x) (5.2)

Therefore, the solution to equation (5.2), is the function:

f(z).
y/ +

fl@) =M1 4 22)Yexp [% arctan x]
+o0o
with A = /7, by using the following identity: / e du = ?
0
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5.4 Supplementary exercises

Exercise 5.1. Determine the Fourier transform of the following functions:

1) fi(t) equals to 1 on [—1,1] and O elsewhere.
2) fa(t) equals 1 on [T, T] and O elsewhere (T > 0).

sint
4) fu(t) = 5
5) folt) = —
T e
Exercise 5.2. Solve the following equations:
+00 1
0 f(t)cos(st) dt = e (5.3)
+00
y(t) —|—/ y(t —u)e M dy = e q>0. (5.4)

Exercise 5.3. Let the function f which is defined by:

e if 1 <0

0 if  t>0.

Consider the following differential equation:

y (1) + 2y (8) + y(t) = f(t). (5.5)
1) Calculate the Fourier transform of f.

2) Find the function g such that

1

(F9)s) = (s+i)(s—1)%

3) Determine the solution of the equation (5.5), wusing the Fourier
transform, such that y,y € L*(R).
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Chapter 6

Laplace Transform

6.1 Definitions and properties

Definition 6.1.1. The Laplace transform of a function f is given by the
following expression:

400
L(ft)=F(s)= f(t)e = dt. (6.1)
0
Where the symbol £(f(¢)) means the Laplace transform of f(t).
We also use the notation F'(s) to represent the Laplace transform.
In this course, we assume that the functions are zero for ¢ < 0.

Example 6.1.1. Find the Laplace transform of the following functions:
1) f(t)=1;t>0.

+00 e_st +00 1
L) = [ etar= [_ ] _ L (Re(s) > 0).
0 —S 0 S

2) f(t)=e";t>0.

. +00 st e—(s—a)t 00 1 .
(f(t))—/o e’e t—[ —(s—a)]O = (Re(s) > a).

The same calculation holds for a complexe and Re(s) > Re(a).

3) f(t)=e*';t>0etweR.

L(f(t) = /O+OO e“le s dt = !

4) f(t)=t:t=>0.
+00 te—st too o oo

L — —st dt = |— - —st d

(f®)) /0 te™* dt [ ] + /0 e dt

(Re(s) > 0).

S — 1w

L£(1) == (Re(s) > 0).

By performing integration by parts twice as above, we find that:
400
2
£(#) = / 2ot di =2 (Re(s) > 0).
0

83
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In the general case, we have:

n +oonfst TL'
L‘(t):/o Pt =T (Re(s) > 0)

6.1.1 Properties of the Laplace Transform
Let f and g be functions such that £(f(t)) and £(g(t)) exist. Then, we

have the following properties:

E(af(t) + bg(t)) = aﬁ(f(t)) + bﬁ(g(t)).

a and b are two arbitrary constants.

Example 6.1.2. Find the Laplace transform of the following functions:
1) fi(t) = cos(wt); w € R, 2) fao(t) = sin(wt); w € R,
3) f3(t) = cosh(wt); w € R, 4) fa(t) = sinh(wt); w € R.

Solution. 1) fi(t) = cos(wt); t > 0 with w € R.

[

E(f(t>> = <%[6iwt + @—iaJt]> — %/:, (eiwt) i %E(e—iwt)

1 1 1 s
= - = R > 0).
2<s—iw+s+iw> $? 4+ w? (Fe(s) > 0)

w

By the same method, we find: L(sin(wt)) = T2 (Re(s) > 0).
3) f3(t) = cosh(wt); t > 0 with w € R.
1 wt —wt 1 wt 1 —wt
L(ft) = L §[€ +e ) = 5[,(6 ) + 55(6 )
1 1 1 s
- §<s—w+s—|—w>232—w2 (Fe(s) > w).
By the same method, we find: L£(sinh(wt)) = = “ 5 (Re(s) > w).
—w

Theorem 6.1.1. Let f, f and f* are continuous functions and supposing
that L(f(t)) = F(s) exists. Thus:

/

L(f (1)) =sF(s) = f(0) and L(f'(t)) =s"F(s) — sf(0) — f(0).
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6.2 Inverse Laplace Transform

Definition 6.2.1. If we know the Laplace transform F(s) of a certain
continuous function f, we can always determine the expression of the
function by using partial fraction decomposition and applying the linearity
property of the Laplace transform.

E(f(t)) = F(s) = E_l(F(s)) = f(1).
Example 6.2.1. We have:

1) E_l(s_%) = Gt,' t Z 0.
2

o 1) =cost; t > 0.

Theorem 6.2.1. If F(s) = L(f(t)); Re(s) > 0. Then:
F(s—a)=L(e"f(t)); Re(s) > a such that a € R.

1
Example 6.2.2. Since E(t) = —

1 =
= a)2" Re(s) > a.

|
We also know that: L(t") = %; Re(s) > 0. Therefore:
STL

Re(s) > 0. So:
L(te™) =

n!
(s —a)t! ’

1 n ,at
zl(r____):te-tzommneN

s —a)"tt n!’

L(t"e™) = Re(s) > a. Finally:

6.3 Applications to differential equations

The Theorem 6.1.1 opens the possibility of using the Laplace transform to
solve ordinary differential equations.

Example 6.3.1. Give the solution to this differential equation:

y+y=1 y(0)=y(0) =0, (6.2)
Solution. L(y"') + L(y) = L£(1) = s*L(y) — sy(0) —y (0) + L(y) = é
1 1 5

Then: L(y) = ———=— — 5.
en: L(y) s(s?+1) s s2+1
By applying the inverse Laplace transform, we obtain:

y(t)zﬁ_l(l— i > =1—cost; t > 0.

s  s2+1
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Example 6.3.2. Find the solution to this differential equation:

y =2 +y=¢e". y0)=0 and y (0) = 1. (6.3)
Solution. L(y") —2L(y) + L(y) = L(e*). Therefore:
s2L(y) — sy(0) —y'(0) — 2sL(y) — 2y(0) + L(y) = S—LZ Hence:

s—1 1 1
L(y>_(3—2)(32—23—1—1)_3—2_3—1'

By applying the inverse Laplace transform, we get:

1 1
y(t)zﬁ_l( 5~ 1) = —¢l t>0.
s — s —

6.4 Supplementary exercises

Exercise 6.1. Consider the following differential equation:
y +2y +y=te; y0)=1 et y(0)=0. (6.4)

1) Determine the Laplace transform of the solution to the differential
equation (6.4).

2) Deduce, by applying the inverse Laplace transform, the explicit solution
of (6.4).
Exercise 6.2. Consider the following differential equation:
y —4dy=3e""—1% y(0)=0 et y(0)=0. (6.5)

1) Calculate the Laplace transform of the solution to the differential
equation (6.5).

2) Conclude, by applying the inverse Laplace transform, the explicit
solution of (6.5).
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