République Algérienne Démocratique Populaire Ministère de l'Enseignement Supérieur et de Recherche Scientifique Université Ibn Khaldoun – Tiaret

Faculté des Sciences Appliquées

Département de Génie Mécanique

Machines Thermiques

Cours et Applications Corrigées

Auteur : AKERMI Nasreddine : Dép. Génie mécanique Expertisé par :

- **Pr. SENOUCI Mohammed :** Professeur à l'Ecole Supérieure en Génie Electrique et Energétique ESGEE Oran
- Dr. CHAIB. Khaled : Maitre de conférences classe 'A' à l'Université Ibn Khaldoun -Tiaret

Avant-propos

Le présent polycopié est un support de cours avec applications corrigées dédié à l'ensemble des étudiants de génie mécanique en particulier aux étudiants qui suivent la formation de Master spécialisés en énergétique, et peut être utile pour les autres disciplines tel que l'hydraulique génie maritime.

Le support élaboré respecte le programme universitaire adopté pour la formation de Master en énergétique dans son contenu ainsi que dans son architecture pédagogique (Canevas de Master1 énergétique).

L'objectif principal de ce polycopié est la diffusion d'un moyen pédagogique relevant des informations utiles et simplifiées de la thermodynamique appliquées aux différentes installations thermiques en particulier :

- ✓ les cycles récepteurs
- ✓ Le fonctionnement des compresseurs et les installations frigorifiques.
- ✓ Les moteurs à combustion interne MCI.
- ✓ Les cycles moteurs : bilan énergétique et rendement des turbines à gaz et à vapeur

Le présent manuscrit est organisé comme suit :

- Premier chapitre présente un rappel thermodynamique explicitant les grandeurs et les fonctions thermodynamiques passant par les principes fondamentaux et les théories des gaz parfaits et réels.
- Deuxième chapitre est consacré aux machines à cycles récepteurs relevant des applications de la thermodynamique. L'étude prend en soin les différentes formulations énergétiques et hypothèse liées aux propriétés des compresseurs et aux installations frigorifiques.
- Troisième chapitre : Une vision simplifiée sur les moteurs à allumage commandé et ses différents types ainsi que le fonctionnement des cycles énergétiques existants.
- Le quatrième chapitre porte sur des notions fondamentales des turbines à gaz ainsi que leurs cycles thermodynamiques.
- Le cinquième chapitre décrit une étude énergétique détaillée des turbines à vapeur et des formulations théoriques qui servent à la détermination des rendements thermiques.
- Des exercices avec leurs solutions permettant aux étudiants d'enrichir leurs compétences et les aider à se rapprocher des applications industrielles des différentes installations étudiées durant la formation.

Sommaire

Avant-propos

Nomenclatures

Chapitre I. Rappel de thermodynamique technique [Page 1/Page 18]

I.1. Notions de variables d'états, équations d'états des gaz parfaits	. 1
I.1.1. Description macroscopique d'un système thermodynamique	. 1
I.1.2. Systèmes thermodynamiques	. 1
I.1.2.1. Systèmes isolés	. 2
I.1.2.2. Systèmes ouverts	. 2
I.1.2.3. Systèmes fermés	. 2
I.1.3. Variables d'états	. 2
I.1.3.1. Variables extensives	. 3
I.1.3.2. Variables intensives	. 3
I.1.4. Terminologie thermodynamique	. 3
I.1.4.1. Travail W	. 3
I.1.4.2. Quantité de chaleur Q	. 3
I.1.4.3. Chaleurs latentes	4
I.1.5. Fonctions d'états	. 4
I.1.6. Convention des signes	. 4
I.1.7. Equations d'états des Gaz parfaits	. 5
I.1.8. Equations d'états des Gaz de Van Der Waals	. 5
I.1.8.1. L'équation de Van Der Waals	. 5
I.1.8.2. Covolume	6
I.1.9. Transformations thermodynamiques	6
I.1.9.1. Transformation réversible et irréversible	6
I.1.9.2. Transformation isochore	7
I.1.9.3. Transformation isobare	7
I.1.9.4. Transformation isotherme	8
I.1.9.5. Transformation adiabatique	. 8
I.1.9.6. Transformation polytropique	. 8
I.1.10. Rendement de Cycle thermodynamique	. 8
I.2. Premier principe de la thermodynamique	. 9
I.2.1. Enoncé	9
I.2.2. Notion d'énergie interne	10
I.2.3. Système ouvert et notion d'enthalpie	10
I.3. Second principe de la thermodynamique	10
I.3.1. Enoncé	10
I.3.2. Notion d'entropie	11
I.3.3. Energie libre et enthalpie libre	11
I.4. Applications et Corrigés 12-2	18
I.4.1. Applications 12-2	13
I.4.2. Corrigés	18

Chapitre II.	Machines à cycles récepteurs	[Page 19/Page 41]
--------------	------------------------------	-------------------

II.1. Compresseurs	19
II.1.1. Généralités	19
II.1.1.1. Définition	19
II.1.1.2. Principe de fonctionnement	. 19
II.1.2. Compresseurs alternatifs	19
II.1.2.1. Types de compresseurs alternatifs	19
a. Compresseurs hermétiques	19
b. Compresseurs ouverts	20
c. Compresseurs semi-hermétiques	21
II.1.2.2. Compression mono-étagée	21
II.1.2.3. Compression multi-étagée	22
II.1.2.4. Rendement des compresseurs	22
II.2. Machines frigorifiques	23
II.2.1. Installations frigorifiques	23
II.2.2. Fluides frigorigènes	24
II.2.2.1. Types des fluides frigorigènes	24
II.2.2.2. Impact environnemental	25
II.2.3. Performance d'une installation frigorifique	26
II.2.4. Cycles de réfrigération	26
II.2.4.1. Cycles frigorifiques avec compression vapeur	27
II.2.4.1.1. Cycle de base (cycle de Carnot)	27
II.2.4.1.2. Cycles frigorifiques à compression mono-étagée	. 28
II.2.4.1.3. Cycles frigorifiques à compression bi-étagée	29
II.2.5. Puissance frigorifique	32
II.2.5.1. Puissance thermique de l'évaporateur	32
II.2.5.2. Puissance thermique de compresseur	32
II.2.6. Choix et dimensionnement d'une installation frigorifique	33
II.2.6.1. Choix de l'évaporateur	33
II.2.6.2. Choix de compresseur	33
II.2.6.3. Choix de détendeur	. 33
II.2.6.4. Choix de condenseur	33
II.3. Pompes à chaleur	.34
II.3.1. Principe de fonctionnement	34
II.4. Applications et Corrigés	-41
II.4.1. Applications	-37
II.4.2. Corrigés	-41

Chapitre III. Cycles Idéaux des Moteurs à combustion interne [Page 42/Page 53]

III.1. Généralités sur Moteurs à combustion interne	
III.1.1. Description	
III.2. Cycle à allumage commandé	
III.2.1. Principe de fonctionnement	
III.2.1.1. Cycles à quatre temps	
III.2.1.2. Cycles à deux temps	
III.2.1.3. Taux de compression	
	•••••

III.2.1.4. Rendement thermodynamique	45
III.3. Cycle Diesel	46
III.3.1.1 Rendement thermodynamique	
III.4. Cycle Otto (Beau de Rochas)	
III.4.1. Rendement thermodynamique	
III.5. Cycle mixte	
III.5.1. Rendement thermodynamique	
III.6. Applications et Corrigés	48-53
III.6.1. Applications	48-50
III.6.2. Corrigés	50-53
Chapitre IV. Turbine à gaz et turboréacteur [Page 54/68 Page]	

IV.1. Généralités
IV.1.1. Turbomachines
IV.1.1.1. Turboréacteur
IV.1.1.2. Turbine à gaz
a. Description et principe de fonctionnement55
b. Composantes de la turbine à gaz 56
IV.2. Cycle de base
IV.2.1. Cycle de Joule-Brayton idéal 57
IV.2.1.1. Rendement thermodynamique
IV.2.2. Cycle de Joule-Brayton réel58
IV.2.2.1 Rendement thermodynamique
IV.3. Autres cycles
IV.3.1. Cycle de Joule-Brayton avec récupération59
IV.3.1.1. Rendement thermodynamique
IV.3.2. Cycle d'Ericsson (compression et détente isotherme)
IV.3.2.1. Rendement thermodynamique
IV.3.3. Cycle à compression et détente multi-étagées
IV.3.3.1. Rendement thermodynamique
IV.3.4. Cycle combiné ou cogénération
IV.3.4.1. Génération combinée d'électricité
IV.3.4.2. Echanges de chaleur dans le générateur de vapeur GVR
IV.4. Applications et Corrigés
IV.4.1. Applications
IV.4.2. Corrigés

Chapitre V. Turbine à vapeur [Page 69/Page 85]

V.1. Rappel : Changement de phase d'un corps pur (liquide-vapeur)	69
V.1.1. Zone d'existence des différentes phases	69
V.1.2. Equilibre d'un corps pur sous deux phases	69
V.1.2.1. Condition et courbe d'équilibre	69
V.1.2.2. Formule de Clapeyron	70
V.1.3. Titre en vapeur (teneur en vapeur)	71
V.2. Généralités	71
V.2.1. Principe de fonctionnement de la turbine à vapeur (TAV)	71
V.2.1. Les principaux composants des turbines à vapeur	72

V.3. Cycles de Rankine sans surchauffe	73
V.3.1. Rendement thermique	
V.4. Cycle de Rankine avec surchauffe (Hirn)	75
V.4.1. Rendement thermique	
V.5. Cycles à soutirage	76
V.5.1.Rendement thermique	77
V.4. Applications et corrigés	
V.4.1. Applications	
V.4.2. Corrigés	80-83

Bibliographie

Annexes

Nomenclatures

Т	Température	[°C]
θ	Température	[K]
$Q_{irr\acute{e}v}$	Chaleur irréversible	[J]
$Q_{r\acute{e}v}$	Chaleur réversible	[J]
d	Densité volumique	[-]
δW	Travail élémentaire	[J]
P _{ext}	Pression de milieu extérieur	[Pascal]
δV	Volume élémentaire	[m³]
P _{sys}	Pression du système	[Pascal]
δW_{irrev}	Travail élémentaire irréversible	[J]
W _{irrev}	Travail irréversible	[J]
V_f	Volume final	[m³]
V _i	Volume initial	[m³]
δQ	Chaleur élémentaire	[J]
C_V	Capacité calorifique molaire à volume constant	[J/mole/K]
C_p	Capacité calorifique molaire à pression constante	[J/mole/K]
h,μ	Coefficients calorimétriques	[J/mole/pascal]
α	Coefficients calorimétriques	[J/mole/m³]
n	Nombre de moles	[moles]
т	Masse	[Kg]
$L_{f,L_{S,L_{V,K}}}$	Chaleurs latentes	[J/Kg]
$d_i f$, $d_e f$	Fonctions d'états des milieux intérieurs et extérieurs	/

R	Constante universelle des gaz parfaits	[J/mole/K]
r	Constante des gaz parfaits	[J/mole/Kg]
b	Coefficient de correction (gaz réel)	[m³/mole]
а	Coefficient de correction (gaz réel)	[pascal/mole²/m ⁶]
Na	Nombre d'Avogadro	[molécules/mole]
γ	Constante adiabatique	[-]
3	Rendement énergétique	[-]
U	Energie interne	[J/kg]
К	Energie cinétique	[J/kg]
Ε	Energie potentielle	[J/kg]
Н	Enthalpie	[J/kg]
S	entropie	[J/kg]
F	Energie libre	[J/kg]
G	Enthalpie libre	[J/kg]
ρ	Masse volumique	[Kg/m³]
g	Accélération gravitationnelles	[m/s²]
Ζ	Altitude	[<i>m</i>]
ηi	Rendement isentropique	[-]
СОР	Coefficient de performance (efficacité)	[-]
COP _C	Coefficient de performance calorifique	[-]
COP _F	Coefficient de performance frigorifique	[-]
W_H , W_B	Travail de compresseur haute et basse pression	[J]
\emptyset_H, \emptyset_B	Débit massique à haute et à basse pression	[kg/s]
Pe	Puissance effective	[KW]
P_{mT}	Puissance mécanique de la turbine	[KW]
P_{mC}	Puissance mécanique du compresseur	[KW]

P_{fm+aux}	Puissance perdue : frottement mécanique et auxiliaires	[KW]
η_C	Rendement du compresseur	[-]

CHAPITRE I Rappel de thermodynamique

I.1 Notions de variables d'états, équations d'états des gaz parfaits

I.1.1. Description macroscopique d'un système thermodynamique :

Un système thermodynamique est caractérisé par des grandeurs physiques accessibles à l'échelle macroscopique par exemple :

- V:volume
- N : nombre de molécules contenues dans le système
- **P**: pression
- T: température

La densité volumique de particules est définie empiriquement par la relation d = N/V pour un système thermodynamique homogène.

La masse m aussi peut être une caractéristique du système en fonction de sa densité volumique.

I.1.2. Systèmes thermodynamiques

La thermodynamique a pour objet principal l'étude des phénomènes mécaniques (travail, pression,...) couplés aux phénomènes thermiques (chaleur, température,...), l'étude des phénomènes couplés est effectuée d'une façon macroscopique. Cette science a vu la lumière au XIXème afin de bien comprendre le fonctionnement des machines thermiques produites au cours de la révolution industrielle. Les principes conventionnels de la thermodynamique ont été utiles et applicables, et qui a dépassé par la suite l'étude des machines, pour franchir tous les domaines de la physique dans lesquels la chaleur joue un rôle (électromagnétisme, optique,...), ainsi que d'autres disciplines scientifiques (chimie, biologie,...).

On appellera système le contenu d'un certain volume de l'espace. Les frontières de ce volume peuvent être réelles (ex : gaz contenu à l'intérieur d'un récipient fermé) ou imaginaires.

Fig.I.1. Systèmes thermodynamiques

Un système thermodynamique est constitué d'un très grand nombre de particules (atomes, molécules, ions,...), généralement de l'ordre du nombre d'Avogadro (Na=6,02.1023). Un tel système peut alors être décrit à l'échelle macroscopique par des grandeurs statistiques (volume, pression, température, concentrations,...), qui sont des valeurs moyennes rendant compte du comportement des diverses particules constituant le système. Ces grandeurs statistiques statistiques sont appelées variables d'état.

Remarque : Un système est dit thermodynamique lorsque la température est un de ses facteurs déterminants.

I.1.2.1. Systèmes fermés :

Un système fermé est tel qu'il n'échange pas de matière avec le milieu extérieur (en d'autres termes, la totalité de sa frontière est imperméable).

Fig. I.2. Systèmes fermés

I.1.2.2. Systèmes ouverts :

Un système est dit ouvert si les échanges de matière avec le milieu extérieur sont autorisés (il suffit pour cela qu'au moins une partie de la frontière soit perméable).

Fig. I.3. Systèmes ouverts

I.1.2.3. Systèmes isolés

Un système est dit isolé, lorsqu'il n y a ni échange de chaleur ni échange de travail avec le milieu extérieur. (Exemple : Calorimètre – thermos).

Fig. I.4. Systèmes isolés

I.1.3. Variables d'états

Les variables d'état sont généralement des grandeurs statistiques caractérisant le système thermodynamique, et permettant de décrire ce système à l'échelle macroscopique. Si ces grandeurs sont déterminables systématiquement dans tout instant donné, pour décrire l'historique d'évolution de ce système du système, ces grandeurs peuvent être considérées comme des variables d'état. On cite par exemple : le volume, le nombre de moles, la pression, la température.

I.1.3.1. Variables extensives

Grandeurs proportionnelles à la quantité de matière, autrement dit dépendantes de la géométrie et définies sur l'ensemble du système. Le nombre de moles, le travail, et le volume par exemple sont des variables extensives.

I.1.3.2. Variables intensives

Grandeurs indépendantes de la quantité de matière, autrement dit indépendantes de la géométrie et définies en chaque point du système. La pression et la température sont des variables intensives. Par conséquent, on définit une phase (liquide, solide, gaz) lorsque, dans tout ou partie d'un système les grandeurs intensives sont constantes.

I.1.4. Terminologie thermodynamique

I.1.4.1. Température

La température est une grandeur physique macroscopique intensive qui permet de rendre compte de l'état thermique d'un corps. La valeur mesurée de cette grandeur sert à indiquer le niveau l'agitation thermique des particules du système ou de Corp. si la température du système est élevée, les particules reçoivent plus d'agitation.

Les échelles de température : On en utilise principalement deux :

- L'échelle Kelvin dite échelle absolue puisque la température T = 0 K est la plus petite température qui existe (elle correspond à une agitation nulle des molécules du corps).

- L'échelle Celsius est définit par la relation : θ = T - 273.15, est l'échelle absolue par

convention. La température s'exprime alors en °C ou en degré Kelvin K.

I.1.4.2. Travail

Le calcul du travail w échangé entre le système et le milieu extérieur s'effectue par la relation suivante :

$$\delta W = -P_{ext} \delta V \tag{I.1}$$

Avec : δ W est le travail élémentaire et P_{ext} est la pression du milieu extérieur :

$$P_{ext} = -P_{sys} = P \to \delta W = P dV \tag{1.2}$$

Si la transformation est réversible à chaque instant on a :

$$\delta W_{irrev} = -P_{ext}dV \rightarrow W_{irrev} = -\int_{i}^{f} P_{ext}dV = -P_{ext}(V_{f} - V_{i}) = -P_{ext}\Delta V$$
(I.3)

I.1.4.3. Quantité de chaleur Q

Dans le cas d'une transformation irréversible, la quantité de chaleur Q_{irrev} se calcul directement du premier principe de la thermodynamique. Dans le cas contraire, la quantité de chaleur échangée avec le milieu extérieur est définie par :

$$\delta Q = C_V dT + l dV \tag{1.4}$$

L'expression de la chaleur échangée avec le milieu extérieur en fonction des variables T et P avec capacité calorifique molaire a pression constante

$$\delta Q = C_P dT + h dP \tag{1.5}$$

En fonction de P et V :

$$\delta Q = \mu dP + \alpha dV \tag{1.6}$$

I.1.4.4. Chaleurs latentes

La chaleur latente est la chaleur nécessaire pour qu'une quantité de matière puisse changer son état physique à une température constante. Elle est proportionnelle à la quantité de matière (masse ou nombre de moles) et la valeur de la chaleur latente liée à ce changement d'état physique.

$$Q = nL = mL \tag{1.7}$$

Naturellement, pour chaque type de matière, trois types de chaleurs latentes existantes dépendent des changements d'état physiques (L_s , L_v et L_f).

 L_s , L_v ou L_f : sont des chaleurs massiques ou molaires associées respectivement au changement des phases : sublimation, vaporisation ou fusion.

Fig.1.5. Changement de phases

I.1.5. Fonctions d'état

Les fonctions d'état sont des grandeurs extensives qui ne dépendent que des variables d'état. Leurs valeurs ne dépendent donc pas des transformations antérieures. De même, la variation de ces fonctions d'état lors d'une transformation est indépendante du chemin suivi. **Exemples :** l'énergie interne U, l'enthalpie H, l'entropie S, l'énergie libre F, l'enthalpie libre G sont toutes des fonctions d'état.

$$df = d_i f + d_e f \tag{I.8}$$

I.1.6. Convention des signes

Par convention, lorsque le système reçoit, la quantité est comptée positivement, en opposé, la quantité cédée est négative :

Q > 0 : le système reçoit de la chaleur (processus endothermique).

Q < 0 : le système cède de la chaleur au milieu extérieur (processus exothermique).

W > 0 : le système reçoit un travail (système récepteur).

W < 0 : le système fournit un travail (système moteur).

Fig. I.6. Convention de signes

I.1.7. Equations d'états des gaz parfaits

L'étude expérimentale des gaz a conduit à définir le modèle du gaz parfait, très utilisé en thermodynamique. Pourvu que l'on opère à pression suffisamment faible, on observe expérimentalement les trois lois énoncées ci-dessous.

I.1.7.1. Loi de Boyle et Mariotte

A température constante, la pression p d'une masse donnée m de gaz est inversement proportionnelle à son volume V. ($T = cte : P_1 V_1 = P_2 V_2$)

Ce qui revient à dire que le produit de la pression *p* d'un gaz par son volume *V* ne dépend que de la température. Elle a été énoncée en 1662 par Robert Boyle et Edme Mariotte.

I.1.7.2. Loi de Gay-Lussac

A pression constante *p*, le volume *V* occupé par une masse donnée *m* de gaz est proportionnel à sa température. Cette loi a été énoncée en 1800 par Louis Joseph Gay-Lussac. (P = cte : $V_2/V_1 = T_2/T_1$).

I.1.7.3. Loi d'Avogadro et Ampère

Des volumes égaux de gaz de nature différente, pris dans les mêmes conditions de température et de pression, renferment le même nombre de moles. Cette loi a été émise comme hypothèse en 1811 par Amedeo Avogadro, et énoncée en 1814 par André-Marie Ampère. ($V = cte : P_2/P_1 = T_2/T_1$).

• Définition d'un gaz parfait

Par définition, un gaz parfait est un gaz qui suit exactement les lois de Boyle et Mariotte, de Gay-Lussac, et d'Avogadro et Ampère.

• Loi des gaz parfaits

On appelle gaz parfait les gaz qui obéissent à l'équation d'état :

$$PV = nRT \tag{1.9}$$

Où **R = 8.314 J.mol⁻¹.K**⁻¹ est la constante universelle des gaz parfaits. Pour un gaz parfait, la loi de Mayer devient :

$$C_P - C_V = R \tag{1.10}$$

I.1.8. Equations d'états des Gaz de Van Der Waals

I.1.8.1. L'équation de Van Der Waals

L'équation d'état des gaz parfaits décrit un gaz dont les molécules sont ponctuelles et non interagissantes. Cette équation décrit correctement les gaz monoatomiques et relativement bien les gaz polyatomiques à basse densité, l'écart par rapport à l'expérience devient important. Une meilleure approximation est obtenue vis-à-vis des gaz réels avec l'équation de Van Der Waals qui tient compte du volume des molécules et introduit un terme d'interaction simple en introduisant des coefficients empiriques a et b.

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT \tag{I.11}$$

On voit dans l'équation d'état de Van Der Waals qu'une correction effectuée sur la pression et sur le volume à l'aide de deux coefficients a et b.

I.1.8.2. Covolume

Les molécules sont considérées comme des sphères impénétrables de rayon r. l'équation d'état de Van Der Waals est établie telle que le volume disponible est celui de l'enceinte moins celui de molécules d'où V - nb, le coefficient b est appelé covolume il est lié au rayon des molécules

$$b = \frac{4\pi}{3V^2} N_a r^3 \tag{I.12}$$

Ou N_a est le nombre d'Avogadro vaut 6.022. 10²³ molécules par mole.

r est de l'ordre de 1nm ce qui est cohérent avec la taille réelle des molécules.

I.1.9. Transformations thermodynamiques

On appelle transformation, la succession temporelle d'états qu'un système parcourt entre un état d'équilibre initial et un état d'équilibre final.

La transformation est dite infinie si elle joint deux états d'équilibre infiniment proches et peut être considérée finie si elle joint deux états d'équilibre séparés par une distance finie.

Lors d'une transformation, l'état du système considéré évolue car des échanges ont lieu, dans ce système s'il est composite et/ou entre ce système et le milieu extérieur. Les grandeurs échangées sont extensives.

Fig. 1.7. Transformations des systèmes thermodynamiques

I.1.9.1. Transformation réversible et irréversible

Un système subit une transformation réversible si les deux conditions suivantes sont remplies : la transformation que subit le système est quasi-statique le système est en permanence en équilibre avec le milieu extérieur. Si l'une des deux conditions n'est pas remplie, la transformation que subit le système considéré est qualifiée d'irréversible. Tout comme pour les transformations quasi-statiques, il est crucial de bien spécifier le système qui subit une transformation avant de déclarer cette dernière réversible.

Fig. I.8. Transformation réversible et irréversible

I.1.9.2. Transformation isochore (voir Tables en annexes)

Soit un gaz supposé parfait et enfermé dans une enceinte rigide non déformable (dV =0).

Fig. I.9. Transformation isochore

L'équation d'état d'un gaz parfait PV = nRT

Etat initial $P_1V_1 = nRT_1$

Etat final $P_2V_2 = nRT_2$

$$V = cte \to \frac{P_1}{P_2} = \frac{T_1}{T_2}$$
 (1.13)

I.1.9.3. Transformation isobare (voir Tables en annexes)

Soit un gaz supposé parfait et enfermé dans une enceinte à volume déformable, il subit une transformation à pression constante dP=0.

Fig. I.10. Transformation isobare

Etat initial $PV_1 = nRT_1$ Etat final $PV_2 = nRT_2$

$$P = cte \rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2} \tag{I.14}$$

I.1.9.4. Transformation isotherme dT= 0 (voir Tables en annexes)

Etat initial $P_1V_1 = nRT$ Etat final $P_2V_2 = nRT$

$$T = cte \rightarrow \frac{P_1}{P_2} = \frac{V_2}{V_1}$$

$$PV = cte$$
(I.15)

Fig. I.11. Transformation isotherme

I.1.9.5. Transformation adiabatique (voir Tables en annexes)

La transformation est dite adiabatique si le système ne subit aucun échange de chaleur (renfermé) dQ=0

Pour un gaz parfait l'équation devient :

$$PV^{\gamma} = \text{cte} \rightarrow P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$$
 (Relation de Laplace)
 $\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$ (I.16)

Remarque : La transformation adiabatique et réversible est dite isentropique.

I.1.9.6. Transformation polytropique

La transformation polytropique englobe l'ensemble des transformations existantes et est défini par l'équation :

$$PV^n = cte (1.17)$$

 $\rightarrow \begin{cases} n = 0 \rightarrow P = \text{cte transformation isobare} \\ n = 1 \rightarrow T = \text{cte transformation isotherme} \\ n = \gamma \rightarrow PV^{\gamma} = \text{cte transformation adiabatique} \end{cases}$

I.1.10. Rendement de cycle thermodynamique

✓ Cycles thermodynamiques idéaux :

Un cycle est une Succession des états thermodynamiques par lesquels un système repasse indéfiniment, soit dans le temps (système sans transvasement) soit dans l'espace (système avec transvasement) » « Transformation fermée subie par un système thermodynamique » Représentation \Rightarrow courbe fermée dans un diagramme thermodynamique T-S ou P-V.

Fig. I.12. Cycles thermodynamiques fermés

✓ Rendement énergétique :

Le rendement énergétique du cycle thermodynamique est le rapport du travail fourni et la quantité de chaleur reçue.

I.2. Premier principe de la thermodynamique

I.2.1. Enoncé

Un système fermé qui subit une transformation thermodynamique échange de l'énergie avec le milieu extérieur de deux façons :

• en produisant ou en consommant du travail W : travail des actions macroscopiques exercées par le milieu extérieur sur le système.

• en produisant ou en consommant du transfert thermique (ou chaleur) Q. (Ceci se traduit au niveau microscopique par un mouvement incohérent, chaotique des particules du système).

Au cours d'une transformation quelconque d'un système fermé, la variation de son énergie totale est égale à l'énergie échangée avec le milieu extérieur.

$$E_{totale} = (EC_{macro} + EC_{micro}) + (Ep_{macro} + Ep_{micro})$$
(1.18)

I.2.2. Notion d'énergie interne

L'énergie interne est déterminée sous forme de variation entre deux états 1 et 2 d'une transformation thermodynamique d'un système et elle est égale à la somme des quantités de chaleur et de travail échangé pendant cette transformation, soit pour la masse totale.

$$\Delta U + \Delta K + \Delta E = W + Q \tag{I.19}$$

 ΔK , ΔE Négligeables pour un système purement thermodynamique

$$\Delta U_{1-2} = U_2 - U_2 = Q_{1-2} + W_{1-2} = Q_{1-2} - \int_1^2 P dV$$
 (I.20)

Sur un cycle W + Q = 0

Fig.I.14. Energie interne

I.2.3. Système ouvert et notion d'enthalpie

L'enthalpie est égale à la somme de l'énergie interne 'U' et du produit de la pression 'P' et du volume 'V' soit :

...

. . .

$$H = U + PV \tag{I.21}$$

Variation d'enthalpie

$$dH = dU + d(PV)$$

$$dH = dU + PdV + VdP \quad (dW_{\acute{e}chang\acute{e}} = -PdV)$$

$$dH = dQ + VdP \qquad (1.22)$$

.

Au cours d'une transformation d'un système fermé et isolé d'un état initial à un état final, son énergie interne est conservée et sa variation égale à la quantité d'énergie échangée avec le milieu extérieur par transfert thermique (chaleur) et mécanique (travail pour un système ouvert).

I.3. Second principe de la thermodynamique

I.3.1. Enoncé

La chaleur ne passe pas elle-même d'une source froide à une source chaude.

Enoncé de Kelvin

On ne peut construire un moteur qui puise de la chaleur à une seule source et la transformer entièrement en travail.

Lors d'un cycle le second principe permet d'écrire :

$$\frac{Q_1}{T} + \frac{Q_2}{T} \le 0 \quad \text{Relation de Clausus} \tag{I.23}$$

$$\frac{Q_1}{T} + \frac{Q_2}{T} < 0 \quad \text{Cycle irréversible}$$
(1.24)

$$\frac{Q_1}{T} + \frac{Q_2}{T} = 0 \quad \text{Cycle réversible}$$
(1.25)

I.3.2. Notion d'entropie

Lors d'une transformation élémentaire, le second principe s'écrit :

$$dS \ge \frac{\delta Q}{T} \begin{cases} dS > \frac{\delta Q}{T} & \text{tranformation irréversible} \\ dS = \frac{\delta Q}{T} & \text{tranformation réversible} \end{cases}$$

 $ds \geq \frac{\delta Q}{T} \rightarrow \delta Q - T \, dS \leq 0 \quad \ \ \text{Critère d'évolution}$

Pour un système isolé :

$$dS \ge \frac{\delta Q}{T}$$
 et $\delta Q = 0 \rightarrow dS \ge 0$
 $\begin{cases} dS > 0 \text{ tranformation irréversible} \\ dS = 0 \text{ tranformation réversible} \end{cases}$

I.3.3. Energie libre et enthalpie libre

- Équation fondamentale de Gibbs

L'entropie, variable d'état ou fonction d'état, permet d'exprimer la variation d'énergie interne d'un système d'une autre façon que celle vue précédemment. En effet, pour une transformation réversible, l'utilisation conjointe des deux principes donne :

 $dU = \delta Q_{r\acute{e}v} + \delta W_{r\acute{e}v}$ et $dS = \frac{\delta Q_{r\acute{e}v}}{T} \rightarrow dU = TdS - PdV$ (équation de Gibbs) (1.26) La même démarche peut être effectuée avec l'enthalpie. Pour une transformation réversible $H = U + PV \rightarrow dH = TdS - PdV + d(PV)$

$$Donc: dH = TdS + VdP$$

On obtient un nouveau jeu de relations en introduisant l'énergie libre F F = U - TS dH = TdS - PdV + d(TS)dF = -SdT - PdV

$$dF = -SdT - PdV \tag{1.27}$$

En introduisant l'enthalpie libre G, il vient : G = H - TS $\rightarrow dG = TdS + VdP \pm d(TS)$

$$dG = -SdT + VdP \tag{1.28}$$

I.4. Applications et Corrigés

I.4.1. Applications :

Questions de compréhension

- 1. Les grandeurs thermodynamiques extensives sont indépendantes de la géométrie du système.
- 2. dw= vdp est le travail élémentaire pour un système ouvert.
- 3. La variation de l'énergie interne est nulle pour une transformation cyclique.
- 4. La chaleur latente est la chaleur nécessaire pour qu'une quantité de matière puisse changer son état physique à une température variable.
- 5. La proportion en masse de vapeur dans le mélange est dite concentration de vapeur.
- 6. Les transformations de chauffage du liquide et de changement de phase se font à pression constante.

Exercices1

Une mole de gaz reçoit au cours d'une transformation élémentaire réversible une quantité de chaleur δQ qui peut s'exprimer de trois façons différentes, suivant le choix des variables (pression P, volume V, température T) :

$$dQ = C_V dT + ldV$$

$$dQ = C_P dT + hdp$$

$$dQ = \lambda dp + \mu dV$$

 $\gamma \ et \ \mu$: Coefficients calorimétriques

• Exprimer les coefficients calorimétriques l, h, λ et μ en fonction des capacités calorifiques Cv, Cp et les dérivées $\left(\frac{\delta T}{dP}\right)_{V}$, $\left(\frac{\delta T}{dV}\right)_{P}$

Exercice2

La pression atmosphérique est-elle constante ? Si Non établir la relation dp= f(dz, M, R, T, P_{atm}) supposant que l'air se comporte comme un gaz parfait et en négligeant la variation de la température ambiante (T : température ambiante, dz : variation de l'altitude, M : la masse molaire de l'air, R : constante universelle des gaz parfaits,

 P_{atm} : la pression atmosphérique à z=0. On donne la loi de Pascal $\frac{dp}{dz} = -\rho g$.

Exercices3

Un volume d'air (considéré comme gaz parfait) de 2m³ à une pression de 3 bars subit une détente isotherme jusqu'à la pression finale de 2 bars. Déterminer :

- 1. La variation d'énergie interne (la variation des énergies potentielle et cinétique est négligeable).
- 2. Le travail fournit par l'air lors de cette détente.
- 3. La quantité de chaleur échangée.

Exercice4

Un réchauffeur est traversé par un débit de 1000 kg/h d'air qui entre à +15 °C, et sort chauffé à 75 °C, sous une pression constante de 10 bars absolue. Calculer :

1°/ la variation d'énergie interne du gaz.

2°/ la chaleur absorbée par son échauffement.

3°/ le travail fournit lors de la dilatation du gaz.

L'air sera supposé sec et l'on prendra γ=1,4 et r=287,1 J/Kg.K.

Exercice5

Un compresseur prélève de l'air dans l'atmosphère à une température de 27°C à la pression de 1,0 x 10^5 Pa. Elle remplit en une minute une bouteille de 20 L de telle façon que la pression finale soit de 10 x 10^5 Pa, l'air étant alors à une température de 57°C. On admet :

- que la transformation subie par l'air équivaut à deux transformations quasi -statiques théoriques successives :

- une transformation 1-2 à température constante.

- une transformation 2-3 à volume constant.

- que l'air peut être assimilé à un gaz parfait
- que la bouteille était préalablement vide d'air.

Travail demandé :

- 1. Calculer le nombre de moles d'air subissant ces transformations.
- 2. Calculer le volume initial V₁ occupé par cet air.
- 3. Déterminer l'état théorique du gaz (P₂, V₂, T₂) à la fin de la transformation 1-2.
- 4. Calculer la puissance minimale de la pompe.

On donne :

* Constante des gaz parfaits : R = 8,32 J.mol ⁻¹. K ⁻¹

* Expression du travail reçu par un gaz lors d'une transformation isotherme à la température T : $W_{AB} = n R T Ln (P_B / P_A)$

Exercice6

Une quantité de matière n = 1 mol de gaz parfait subit la succession de transformations (théoriques) suivantes :

 $A \rightarrow B$: détente isotherme de $P_A = 2$ bar et $T_A = 300$ K jusqu'à $P_B = 1$ bar en restant en contact avec un thermostat de température $T_0 = T_A$.

 $B \rightarrow C$: évolution isobare jusqu'à V_C = 20,5 L toujours en restant en contact avec le thermostat à $T_0.$

 $C \rightarrow A$: compression adiabatique réversible jusqu'à revenir à l'état A. Le coefficient isentropique y est pris égal à 7/5.

- 1. Représenter ce cycle dans le diagramme de Clapeyron (*P*, *V*).
- 2. Déterminer l'entropie crée entre A et B. Commenter.
- 3. Calculer la température en C, le travail WBC et le transfert thermique QBC reçus par le gaz au cours de la transformation BC. En déduire l'entropie échangée avec le thermostat ainsi que l'entropie crée. Conclure : le cycle proposé est-il réalisable ? Le cycle inverse l'est-il ?

I.4.2. Corrigés

Questions de compréhension :

1. Faux//2.Vrai // 3.Vrai // 4. Faux// 5.Faux// 6.Vrai

Exercice1

$$dQ = C_V dT + ldV....(1)$$

$$dQ = C_P dT + hdP....(2)$$

$$dQ = \lambda dp + \mu dV....(3)$$

1) A pression constante dp=0

 $(2) \rightarrow dQ = C_p dT$ $(1) \rightarrow C_p dT = C_V dT + l dV \rightarrow (C_p - C_V) dT = l dV$ $l = (C_p - C_V) \left(\frac{dT}{dV}\right)_p$

$$(3) \to C_P dT = \mu dV \to \mu = C_P \left(\frac{dT}{dV}\right)_p$$

2) A volume constant dV=0

$$(1) \rightarrow dQ = C_V dT$$

$$(2) \rightarrow dQ = C_P dT + hdP \rightarrow (C_p - C_V) dT = ldV$$

$$(3) \rightarrow dQ = \lambda dp$$

$$\longrightarrow C_V dT = \lambda dp = C_P dT + hdP \rightarrow \lambda = C_V \left(\frac{dT}{dp}\right)_V$$

$$\rightarrow h = (C_V - C_p) \left(\frac{dT}{dp}\right)_V$$

Exercice2

$$\begin{cases} \frac{dp}{dz} = -\rho g \text{ Loi de Pascal (1)} \\ pV = nRT \text{ Loi des gaz parfaits (2)} \\ (1) \rightarrow dp = -\rho g dz \text{ (3)} \\ (2) \rightarrow pV = \frac{\rho V}{M} RT \rightarrow p = \frac{\rho}{M} RT \text{ (4)} \\ \frac{(3)}{(4)} \rightarrow \int_{p_{atm}}^{p} \frac{dp}{p} = -\frac{M}{\rho RT} \int_{0}^{z} dz \rightarrow p = p_{atm} e^{-\frac{M}{\rho RT}z} \end{cases}$$

Exercice3

Pour une détente isotherme, de 1 à 2, $T_2 = T_1$ et donc l'équation des gaz parfaits se réduit à, $P_2 V_2 = P_1 V_1 = m.r.T_2 = m.r.T_1 = m.r.T = K.$ Ce qui donne : $V_2 / V_1 = P_1 / P_2$

1. La variation d'énergie interne est :

 $\Delta U_{1-2} = U_2 - U_1 = m. C. (T_2 - T_1) = 0$

2. Le travail fournit par l'air lors de cette détente est :

$$\begin{split} W_{1\text{-}2} &= -\text{ K. Ln } (V_2 \ / \ V_1) = -\text{ K. Ln } (P_1 \ / \ P_2) = -\text{ P}_1 \ V_1. \ \text{Ln } (P_1 \ / \ P_2) \\ &= -3 \ x \ 10^5 \ x \ 2 \ x \ \text{Ln } (3/2) \\ &= -243 \ x \ 103 \ \text{J} \\ &= -243 \ \text{KJ} \end{split}$$

3. La quantité de chaleur échangée est :

Puisque la variation d'énergie interne $\Delta U1-2 = 0$, la quantité de chaleur échangée est égale au travail fournit.

 $Q_{1-2} = -W_{1-2} = 243 \text{ KJ}$

Exercice4

1. Variation de l'énergie interne :

$$\Delta U_{12} = mC_V(T_2 - T_1) = m\frac{r}{\gamma - 1}(T_2 - T_1) = 1000 \cdot \frac{287.1}{1.4 - 1}(348 - 288) = 430065 \text{ kJ/h}$$

2. Chaleur absorbée par le réchauffeur du gaz :

Le gaz est supposé parfait

$$\Delta Q_{12} = mC_p(T_2 - T_1) = m \frac{r\gamma}{\gamma - 1}(T_2 - T_1)$$
$$\Delta Q_{12} = 1000.\frac{287.1.1.4}{1.4 - 1}(348 - 288) = 60291 \text{ kJ/h}$$

3. Travail fournit lors de la dilatation du gaz :

Volume du gaz entré dans le réchauffeur :

$$V_{1} = \frac{mrT_{1}}{p_{1}} = \frac{1000.287,1.288}{10.10^{5}} = 82,685 \text{ m}^{3}/\text{h}$$

$$V_{2} = V_{1}\frac{T_{2}}{T_{1}} = 82,685.\frac{348}{288} = 99.91 \text{ m}^{3}/\text{h}$$

$$W_{12} = p(V_{2} - V_{1}) = \text{m.r.} (T_{2} - T_{1}) = 1000.287,1. (348 - 288) = 17226 \text{ kJ/h}$$

Exercice5

3.

1-2 est une transformation isotherme \Rightarrow T₂ = T₁ \approx 273 + 27 \approx 300 K

2-3 est une transformation isochore ⇒ $V_2 = V_3 \approx 20$ litres On en déduit $P_2 = n.R.T_2/V_2$ (car gaz parfait) ⇒ $P_2 \approx 7 \times 8,32 \times 300 / 20.10$ -3 ≈ 873.103 Pa (≈ 9 bar). **4.**

On peut représenter les transformations dans le plan P(V) :

Ici il y a un travail de transvasement de l'air dans la bouteille grâce au travail de la pompe : en plus du travail de transvasement, la pompe effectue un travail qui comprime l'air : le travail total W_t est réalisé en $\Delta t \approx 1$ min par la pompe. On a alors

$$P = W_t / \Delta t$$

le travail de la pompe Wt correspond à la surface hachurée (voir cours n° 3).

On a $W_t = (P_3 \times V_2) + W_{12} - P_1 \times V_1 \Leftrightarrow W_t = (P_3 \times V_2) + n.R.T_1 \times ln(P_2/P_1) - P_1 \times V_1$

$$p = \frac{(P3.V2) + n.R.T1.ln(\frac{P2}{P1}) - P1.V1}{\frac{\Delta t}{1.10^5}} \approx \frac{(10.10^5.20.10^{-3}) + 7.8,32.300.ln(\frac{873.10^3}{1.10^5}) - (1.10^5.182.10^{-3})}{60} \approx 690 W$$

Exercice6

D'où

- 1. Représentation du cycle :
 - Calculons son volume V_A :

$$V_{\rm A} = \frac{{\rm nRT}_{\rm A}}{{}_{P_{\rm A}}} = 12 \ {\rm L}$$

 On applique de nouveau la loi des gaz parfaits avec T_B = T_A car la transformation est isotherme.

2. La transformation AB est une isotherme, la variation d'entropie ΔS_{AB} est donc en fonction de T qui s'élimine, par exemple :

$$\Delta S_{AB} = n \cdot R \cdot T_A \cdot \ln \frac{p_A}{p_B} = \Delta S_{AB} = 1 \cdot 8.32.300 \cdot \ln 2 = 1.73 \text{ KJ/K}$$

• Calculons maintenant l'entropie échangée, à partir du transfert thermique et donc du premier principe, $\Delta U_{AB} = W_{AB} + Q_{AB}$

Comme il s'agit d'une transformation isotherme d'un gaz parfait,

$$\Delta U_{AB} = C_V \Delta T = 0$$
 Donc $W_{AB} = -Q_{AB}$

Calculons alors le travail échangé WAB en supposant la transformation quasi-statique.

$$W_{AB} = -\int P_{ext}dV = -\int PdV = -\int nRT \frac{dV}{V} =_{isotherme} - nRT_A \int_{V_A}^{V_B} \frac{dV}{V}$$

Ce qui conduit :

$$W_{AB} = -nRT_A ln \frac{V_B}{V_A} = nRT_A ln \frac{P_B}{P_A}$$

$$Q = -nRT_A ln \frac{P_B}{P_A}$$

On en déduit l'entropie échangée avec le thermostat de température T0 = TA au cours de la transformation AB.

$$S_{\text{\acute{e}ch}} = \frac{Q_{AB}}{T_0} = -nRT_0 ln \frac{P_B}{P_A}$$

On remarque alors que $\Delta S = S_{ech}$, c'est-à-dire que $S_{cree} = 0$: la transformation AB est réversible.

3. D'après l'équation d'état du gaz parfait.

$$T_{\rm C} = \frac{P_{\rm B}V_{\rm C}}{nR} = 250 \text{ K}$$

La transformation est isobare, donc le travail reçu s'écrit

$$W_{BC} = -P_B(V_C - V_B) = 440 \text{ J}$$

Enfin, le transfert thermique se déduit du premier principe, par exemple en termes d'enthalpie.

$$Q_{BC} = \Delta H_{BC} = C_p(T_C - T_B)$$
 D'où $Q_{BC} = \frac{nR\gamma}{\gamma - 1}(T_C - T_B) = -1.6$ kJ

L'entropie échangée s'en déduit directement

$$S_{\text{éch,BC}} = \frac{Q_{BC}}{T_0} = -5.2 \text{ J/K}$$

Pour calculer l'entropie crée, il faut d'abord calculer la variation d'entropie du gaz entre B et C, ce qui se fait avec les expressions données. Comme la transformation est isobare, le plus astucieux est d'utiliser une expression dépendant de P puisque les termes associés se compensant. On en déduit :

$$\Delta S_{BC} = \frac{nR}{\gamma - 1} ln \frac{T_C}{T_B} = -5.7 J/K$$

Enfin, on en déduit l'entropie crée,

 $S_{cr\acute{e},BC} = \Delta S_{BC} - S_{\acute{e}ch,BC} = -0.5 \; J/K$

L'entropie crée au cours de l'étape BC serait donc négative, ce qui est absolument impossible. Le cycle proposé est donc irréalisable. En revanche, le cycle inverse est possible car deux transformations sont réversibles et la troisième associée à une création d'entropie, ce qui est permis par le second principe.

CHAPITRE II Machines à cycles récepteurs

II.1. Compresseurs

II.1.1. Généralités

II.1.1.1. Définition

Le compresseur est dit « cœur » du circuit frigorifique ; il aspire le fluide frigorigène gazeux (sous une très basse température et basse pression) provenant de l'évaporateur, le comprime (à haute température et haute pression) et puis le refoule vers le condenseur.

Fig. II.1. Compresseur à piston

II.1.1.2. Principe de fonctionnement

Le compresseur est dit « cœur » du circuit frigorifique ; il aspire le fluide frigorigène gazeux (sous une très basse température et basse pression) provenant de l'évaporateur, le comprime (à haute température et haute pression) et puis le refoule vers le condenseur.

Fig. II.2. Fonctionnement de compresseur

II.1.2. Compresseurs alternatifs :

II.1.2.1. Types de compresseurs alternatifs :

a. Compresseurs hermétiques :

Le moteur électrique et le compresseur font partie de la même enveloppe. Il s'agit de compresseurs de petite puissance destinés aux applications domestiques ou commerciales (vitrines de réfrigération, climatiseurs individuels, réfrigérateur ménager).

Fig. II.3. Compresseur hermétique

Avantage :

- Pas de problèmes d'accouplement entre le moteur et le compresseur.
- Production en grande série, donc de faible coût.
- Encombrement réduit.
- Très robustes.

Inconvénients :

- Interventions difficiles du fait de l'enveloppe étanche
- Performances assez médiocres.
- Peu de régulation de puissance possible, à moins d'un double bobinage du moteur.
 Problèmes liés au fait que le bobinage est baigné par le fluide frigorigène (compatibilité chimique, problèmes d'isolement,...).

b. Compresseurs ouverts

Les enveloppes moteur et compresseur sont séparées (ouverts).

Une extrémité de l'arbre manivelle traverse le compresseur. On peut entièrement le démonter en vue d'une intervention de dépannage.

Le moteur et le compresseur sont logés dans un corps commun. La culasse, les flasques d'extrémités, ainsi que le fond du carter peuvent être démontés en vue de l'accès aux organes internes lors des visites d'entretien.

Fig. II.4. Compresseur ouvert

Avantage :

- Choix du mode d'entraînement
- Appareil robuste

Inconvénients :

 Problèmes d'étanchéités au niveau de la garniture de sortie d'arbre. Le compresseur "ouvert"

c. Compresseurs semi-hermétiques

Les enveloppes moteur et compresseur sont accolées (semi-hermétiques). La liaison mécanique est assurée par un arbre de transmission.

Avantage :

- Meilleures performances que les compresseurs hermétiques
- Intervention aisée
- Régulation en puissance plus facile
- Limitation des risques de fuites
- Vitesse de rotation des compresseurs à piston : typiquement 1400 ou 2800 t/mn. Le compresseur "semi-hermétique"

Fig. II.5. Compresseur semi-hermétique

II.1.2.2. Compression mono-étagée

Un compresseur mono étagé possède un ou plusieurs cylindres. Chaque cylindre comprime l'air ou vapeur pour le faire passer à la pression de service.

Fig. II.6. Compression mono-étagée

II.1.2.3. Compression multi-étagée

Un compresseur multi étagé possède deux cylindres ou plus connectés en série, dans lesquels l'air ou vapeur est comprimé progressivement jusqu'à la pression finale de service. Entre étapes, l'air ou vapeur comprimé est refroidi par l'air ou par l'eau. Cela permet d'améliorer l'efficacité, tout en obtenant une pression bien supérieure à celle effectuée par un compresseur mono-étagé.

Fig. II.7. Compression multi-étagée

II.1.2.4. Rendement des compresseurs

La compression polytropique est une compression réelle, l'augmentation réelle d'enthalpie est plus élevée que l'augmentation isentropique d'enthalpie.

Fig. II.8. Diagramme TS : compression réelle (polytropique)

Point 2['] : point finale de la compression réelle

$$H_{2} - H_{1} > H_{2} - H_{1}$$
 (II.1)

$$T_{2'} - T_1 \rangle C_p (T_2 - T_1)$$
 (II.2)

Avec ici :

$$P.V^n = Cte \tag{II.3}$$

n : Exposant polytropique $(1 \langle n \langle 1.4)$ Le travail peut être exprimé par :

$$W_{1-2} = PdV = VdP \tag{II.4}$$

On obtient la relation :

$$W_{1-2} = P_1 V_1 \frac{n}{n-1} \left[\left(\frac{P_2}{P_1} \right) - 1 \right]^{\frac{n}{n-1}}$$
(II.5)

Par conséquent :

$$W_{1-2} = rT \frac{n}{n-1} \left[\left(\frac{P_2}{P_1} \right) - 1 \right]^{\frac{n}{n-1}}$$
(II.6)

De même, le travail dépend du taux de compression, de la température initial et du rendement de la compression (appelle souvent rendement isentropique) peut être s'écrit sous la forme suivante.

$$\eta i = \frac{H_2 - H_1}{H_{2'} - H_{1'}} \tag{II.7}$$

Ou

$$\eta i = \frac{Cp(T_2 - T_1)}{Cp(T_{2'} - T_1)} = \frac{T_2 - T_1}{T_{2'} - T_1}$$
(II.8)

Le travail nécessaire de la compression est nettement inférieur à celui de la compression isentropique, donc l'apport de l'énergie est le plus faible dans les applications industrielles, il faut toujours chercher à s'approcher de la compression parfaite pour un bon refroidissement.

II.2. Machines frigorifiques

II.2.1. Installations frigorifiques

Une machine frigorifique est une machine thermodynamique destinée à assurer le froid d'un local ou d'un système à partir d'une source de chaleur externe dont la température est supérieure à celle du local ou du système à refroidir. C'est donc un système de froid qui transfère des calories d'un milieu à haut niveau de température vers un milieu où la température doit être inférieur.

L'écoulement naturel de la chaleur s'effectuant toujours d'un corps froid vers un corps chaud. On peut définir également la machine frigorifique comme un matériel permettant de réaliser l'écoulement de chaleur inverse du sens naturel, c'est–à–dire d'un milieu chaud vers un milieu froid. Une dépense d'énergie sera bien entendu inévitable pour réaliser ce transfert inverse. L'énergie nécessaire pour assurer le transfert doit être inférieure à l'énergie calorifique utile pour que le système ait un quelconque intérêt.

Les installations frigorifiques ou de production de froid pour l'usage domestique ou industriel

(appelée aussi frigo-pompes et qui sont des installations réceptrices) ont pour but de refroidir une enceinte (ou volume) et les produits s'y trouvant à une température inférieure à la température ambiante.

- 1-2 : Compression
- 2-3 : Condensation formée
- 3-4 : Détente
- 4-1 : Evaporation

Fig. II.9. Principe des installations frigorifiques

II.2.2. Fluides frigorigènes

Les fluides frigorigènes sont des substances ou des mélanges de substances, utilisés dans les circuits de systèmes frigorifiques tels que : des chambres froides, des réfrigérateurs, des vitrines réfrigérées. Les fluides frigorigènes ont la particularité d'avoir sous la pression atmosphérique, une température d'évaporation très faible. Cette propriété thermodynamique permet de produire du froid et du chaud.

II.2.2.1. Types des fluides frigorigènes

a. CFC (Chlorofluorocarbone)

Le plus connu des CFC était le R12. ODP du R12 = 1 GWP100 du R12 = 10 900 selon IPCC 4 et 10 200 selon IPCC 5 Température d'ébullition à la pression atmosphérique : – 29,8 °C. La molécule du R12 est constituée d'un atome de carbone, de 2 atomes de chlore et de 2 atomes de fluor. La production des CFC donc du R12 a été interdite à partir du 1^{er} janvier 1995.

b. HCFC (Hydrochlorofluorocarbone)

Le plus connu des HCFC est le R22. Le R22 est un fluide chloré : ODP = 0,055. GWP100 = 1 810 selon IPCC 4 et 1 760 selon IPCC 5. Température d'ébullition à la pression atmosphérique : – 40,8 °C. La molécule du R22 est constituée d'un atome de carbone, d'un atome de chlore, d'un atome d'hydrogène et de 2 atomes de fluor. L'utilisation des HCFC, donc du R22 a été interdite à partir du 1er janvier 2015.

c. HFC (Hydrofluorocarbone)

Le plus connu des HFC est le R134a. ODP de ce fluide : 0. GWP100 = 1 430 selon IPCC 4 et 1 300 selon IPCC 5. Température d'ébullition à la pression atmosphérique : – 26,08 °C. L'indice « a » indique que la molécule est isomérique. Constitution la molécule : 2 atomes de carbone, 2 atomes d'hydrogène et 4 atomes de fluor. Le R134a est à ce jour très utilisé, cependant, son potentiel de réchauffement étant relativement élevé (1 300), son remplacement par des fluides à faible GWP est dès à présent envisagé.

d. Les fluides naturels.

Ou les fluides à faible GWP Les seuls fluides naturels sont en fait l'air et l'eau. Le CO 2, le propane, l'isobutane et l'ammoniac sont tous transformés chimiquement. Dire qu'ils sont naturels n'est donc pas exact, il vaut mieux les qualifier de fluides à faible GWP. Ils sont classés dans la série des R700. L'appellation normalisée est R700 auquel il faut ajouter la valeur de la masse moléculaire. Exemples :

- L'eau (H₂O) = R (700 + 2 + 16) = R718
- Ammoniac (NH₃) = R (700 + 14 + 3) = R717, ODP = 0, GWP100 = 0
- Le dioxyde de carbone (CO₂) = R (700 + 12 + 32) = R744, ODP = 0, GWP100 = 1
- e. Les hydrocarbures

Il s'agit de composés chimiques dont la molécule ne contient que du carbone et de l'hydrogène. Exemples :

- Le propane (R290) Température d'ébullition à la pression atmosphérique normale -42
 °C, ODP = 0, GWP = 3
- L'isobutane (R600a) ou méthylpropane Température d'ébullition à la pression atmosphérique normale : – 11,7 °C ODP = 0 GWP = 3. Ces fluides étant très inflammables, leur utilisation est limitée aux petites puissances, par exemple le froid

domestique et dans les équipements hermétiques scellés. Par ailleurs, la manipulation de ces fluides demande une formation spécifique

II.2.2.2. Impact environnemental

Les impacts environnementaux liés aux fluides frigorigènes reposent sur deux phénomènes :

- Destruction de la couche d'ozone
- Réchauffement de la planète

a. Destruction de la couche d'ozone

L'ozone est une forme d'oxygène constituée de trois atomes au lieu de deux. C'est un gaz instable et il est particulièrement vulnérable aux attaques des composés naturels contenant de l'hydrogène, de l'azote et du chlore. L'ozone situé dans la stratosphère (région située entre 11 et 48 km au-dessus de la surface de la terre) est aussi indispensable à la vie que l'oxygène. Il forme en effet un bouclier certes d'une extrême minceur mais d'une remarquable efficacité car il parvient à filtrer la quasi-totalité de tous les rayons ultra-violets nuisibles du soleil (absorption de la plupart des rayons UV B). La formation et la destruction de la couche d'ozone est un processus cyclique et naturel suivant les réactions suivantes :

 $UV + O_3 \longrightarrow O_2 + O$ (Destruction de la couche d'ozone) – $UV : Ultra-Violets - O_3 : Ozone$

$$O_2 + O \rightarrow O_3$$
 (Formation Ozone)

En effet, les UV agissent sur les molécules de certains fluides (principalement les CFC et dans une moindre mesure les HCFC) pour libérer les atomes de chlore et ce sont ces atomes qui vont réagir avec l'ozone pour la détruire suivant une réaction en chaîne :

Cas du CFC R12 (CF₂Cl₂)

 $UV + CF_2CI_2 \longrightarrow CI + CF_2CI + O$

(Libération atome de chlore du CFC R12)

 $CI + O_3 \rightarrow CIO + O_2$

(Réaction du chlore libéré avec l'Ozone : Destruction Ozone)

Cl + O -> Cl + O₂ (Réaction du ClO avec O et libération d'un atome de chlore à nouveau...)

Fig. II.10. Destruction de la couche d'Ozone

b. Réchauffement de la planète (effet de serre)

La température de la terre est maintenue par un équilibre entre l'effet réchauffant émanant du rayonnement solaire venant de l'espace et l'effet refroidissant des rayons infrarouges émis par la surface chaude de l'écorce terrestre et l'atmosphère qui remontent vers l'espace. Le rayonnement solaire sous forme de lumière visible qui atteint la terre se divise en plusieurs parties : - une partie est absorbée par l'atmosphère
- une partie est réfléchie par les nuages et le sol (tout particulièrement le désert et la neige) le reste est absorbée par la surface qui est réchauffée et qui à son tour réchauffe l'atmosphère, la surface réchauffée et l'atmosphère de la terre émettent des rayons infrarouges (IR) de grandes longueurs d'onde.
- Une partie des rayons IR de grande longueur d'onde renvoyées est absorbée dans l'atmosphère par certains gaz ralentissant ainsi les dégagements des rayonnements refroidissant et réchauffant ainsi la surface de la terre, il s'agit de l'effet de serre qui un phénomène naturel sans lequel la vie sur terre serait invivable avec une température moyenne de -18°C contre +15°C actuellement à la surface du globe terrestre.

Les gaz présents dans l'atmosphère et qui absorbent une partie de ce rayonnement IR sont appelés gaz à effet de serre. Il s'agit principalement du CO_2 , de la vapeur d'eau, du méthane (CH₄) et de l'oxyde nitreux (N₂O) et des fluides frigorigènes rejetés dans l'atmosphère (principalement les CFC).

Fig. II.11. Réchauffement de la terre (effet de serre)

II.2.3. Performances d'une installation frigorifique

Le coefficient de performance (COP) est défini par le rapport de la quantité de chaleur absorbée par l'évaporateur sur la quantité de chaleur fournit au générateur plus le travail de la pompe de solution.

Pour un système frigorifique ditherme⁽¹⁾, consommant une énergie mécanique, ou équivalente, **W**, en absorbant une quantité de chaleur Q_f dans la source froide à la température T_f et en cédant une quantité de chaleur Q_c au puits chaud à la température T_c , le coefficient de performance du système est, dans ce cas de :

✓ Production du froid (machine frigorifique) :

$$COP_{MF} = \frac{|Q_f|}{|Q_c - Q_f|} \text{ et } (COP_{MF})_{\text{théo}} = \frac{T_f}{T_c - T_f}$$
(II.9)

Car: $Q_f = T_f \Delta S_f$; $Q_c = T_c \Delta S_c \ et \ \Delta S_f = \Delta S_c$ (isentropique)

✓ Production de la chaleur (pompe à chaleur) :

$$COP_{PC} = \frac{|Q_c|}{|Q_c - Q_f|} \text{ et } (COP_{PC})_{théo} = \frac{T_c}{T_c - T_f}$$
(II.10)

Le coefficient de performance des systèmes réels les plus efficaces sont compris entre 50 et 70 % de celui des systèmes idéaux fonctionnant entre les mêmes températures, ceci dans le domaine des températures usuelles.

II.2.4. Cycles de réfrigération

Le but d'une installation de réfrigération est de retirer une quantité de chaleur d'un volume dans lequel on désire maintenir une température inférieure à la température ambiante. Cette chaleur devra, à son tour, être évacuée à l'extérieur du système. Pour ce faire, on utilise une propriété physique des fluides, à savoir que la température d'ébullition varie avec la pression et celle, plus particulière des fluides réfrigérants, pour laquelle la température d'ébullition est inférieure à la température ambiante (voir Fig.2.9).

Le cycle frigorifique de référence (cycle pratique) est un compromis qui permet d'effectuer l'étude et le dimensionnement des machines frigorifiques avec une précision acceptable.

Fig. II.12. Cycle frigorifique

II.2.4.1. Cycles frigorifiques avec compression à vapeur

II.2.4.1.1. Cycle de base (cycle de Carnot)

Pour un cycle réversible :

$$\Delta S = \frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0 \qquad \text{(Second principe)}$$

Fig.2.14. Diagramme T-S

Rendement d'un cycle récepteur (réfrigérateur)

$$\begin{split} &\xi = \frac{Q_2}{W} = \frac{Q_2}{-Q_1 - Q_2} = \frac{Q_2}{-Q_1 + Q_1 \frac{T_2}{T_1}} = \frac{T_2}{T_2 - T_1} \quad (II.12) \\ &\xi = \frac{T_2}{T_1 - T_2} \text{ (cycle réversible)} \end{split}$$

Fig. II.15. Schémas simplifié de réfrigérateur

II.2.4.1.2. Cycles frigorifiques à compression mono-étagée

La production du froid ne se distingue pas de la production de chaleur uniquement en termes d'échelle de température ou en termes de signe de la quantité de chaleur échangée. En effet, on ne peut pas dire que la production du froid est simplement une production de chaleur négative à basse température. La distinction principale vient de l'existence du second principe de la thermodynamique qui, selon l'énoncé de Clausius, postule « qu'il ne peut pas s'effectuer, sans compensation, un passage de chaleur d'un corps froid à un corps plus chaud » alors qu'il peut tout à fait, sans compensation, s'effectuer un passage de chaleur d'un corps chaud vers un corps moins chaud. On peut donc définir la production de froid comme la mise en œuvre d'une suite de transformations thermodynamiques. Ces transformations sont subies par une substance active (le frigorigène), qui prélève de la chaleur à la source froide, en rejette dans la source chaude et à laquelle on doit apporter de l'énergie en compensation.

Fig. II.16. Réfrigérateur à compression mono-étagée

a. Cycle idéal (réversible)

- (1-2) Compression isentropique : $W_C = H_2 H_1$ **T**
- (2-3) Condensation isobare :

$$Q_{1rev} = H_3 - H_2 = T_1(S_3 - S_2)$$

- (3-4) Détente isentropique (laminage) : $W_D = 0$
- (4-1) Evaporation isobare :

$$Q_{2rev} = H_1 - H_4 = T_2(S_1 - S_4)$$

01<0

⊾ S

$$\operatorname{COP}_{r\acute{e}v} = \frac{Q_{2r\acute{e}v}}{|Wrev|} = \frac{Q_{2r\acute{e}v}}{|Q_{2r\acute{e}v} - Q_{1r\acute{e}v}|} = \frac{H_1 - H_4}{|(H_1 - H_4) - (H_3 - H_2)|} = 1 + \frac{H_1 - H_4}{H_3 - H_2}$$
(II.13)

$$COP_{r\acute{e}v} = \frac{T_2}{T_1 - T_2} \qquad \text{Pour un cycle de Carnot} (\Delta S_{14} = \Delta S_{32}) \tag{II.14}$$

b. Cycle réel (irréversible)

- (1-2') Compression réelle : $W_{C'} = H_{2'} H_1$
- (2'-3) Condensation isobare : $Q_{1irrév} = H_3 H_{2'} = T_1(S_3 S_{2'})$
- (3-4') Détente isentropique (laminage) : $W_D = W_{34'} = 0$
- (4'-1) Evaporation isobare : $Q_{2irrév} = H_1 H_{4'} = T_2(S_1 S_{4'})$

$$COP_{irrév} = \frac{Q_{2irrév}}{|W_{irrév}|} = \frac{Q_{2ir} e_v}{|Q_{2irrév} - Q_{1irrév}|} = \frac{H_1 - H_4'}{|(H_1 - H_4') - (H_3 - H_2')|} = 1 + \frac{H_1 - H_4'}{H_3 - H_2'}$$
(II.15)
$$\begin{cases} W_{irrév} > W_{rév} \\ Q_{2irrév} < Q_{2rév} \\ Q_{1irrév} > Q_{1rév} \end{cases}$$

- c. Cycle idéale à refroidissement après condensation (sous refroidissement)
- (1'-2') Compression : $W_{C'} = H_{2'} H_{1'}$
- (2'-3) Condensation isobare : $Q_1 = H_3 H_{2'} = T_{2'}(S_3 S_{2'})$
- (3-3') Sous refroid is sement isobare : $m.c_p.(T_{3'} T_3)$
- (3'-4) Détente isentropique (laminage) : $W_D = W_{34'} = 0$
- (4-1') Evaporation isobare : $Q_2 = H_{1'} H_4 = T_{1'}(S_{1'}-S_4)$

$$COP = \frac{Q_2}{|W_C|} = \frac{H_1' - H_4}{H_2' - H_1'} = 1 + \frac{T_1'(S_1' - S_4)}{H_2' - H_1'}$$

II.2.4.1.3. Cycles frigorifique à compression bi-étagée

 Pour certaines utilisations telles que la production de froid à basse température, on peut être amené à adopter des températures d'évaporation et de condensation très éloignées. Le taux de compression de la machine frigorifique est alors très élevé.

(II.16)

- La diminution de la production frigorifique massique due à l'augmentation du litre en vapeur donc.
- la baisse de la température d'évaporation et l'augmentation du taux de compression ont pour conséquence une élévation importante de la température des vapeurs refoulées.
- Le simple fait de fractionner la compression ne permet pas de limiter la température des vapeurs refoulées : il faut de plus mettre en œuvre un système de refroidissement des vapeurs pendant la compression. Ce refroidissement s'effectue entre les deux compresseurs, a la pression intermédiaire. Le cycle bi étagé le plus simple.
- Le refroidissement des vapeurs dans ce cycle peut être réalisé de deux façons :
- ✓ Cycle à injection totale.
- ✓ Cycle à injection partielle.

29

a. Cycle à injection totale :

Fig. II.17. Schémas de réfrigérateur à compression bi-étagée (injection totale)

Fig. II.18. Cycle frigorifique à compression bi-étagée (injection totale)

- 1-2 : compression des vapeurs de Po à Pi.

- 2-3 : désurchauffe des vapeurs refoulées dans la bouteille intermédiaire. Cette désurchauffe est assurée par la vaporisation d'une faible fraction du liquide contenu dans la bouteille.

- 3-4 : compression des vapeurs de P_i à P_c . Notons que le point 3 peut aussi correspondre à des vapeurs surchauffées (selon la qualité de l'isolation thermique).

- 4-5 : désurchauffe, condensation P_c, et sous refroidissement du liquide forme.
- 5-6 : sous refroidissement et pertes de charge éventuelles dans la conduite liquide.
- 6-7 : détente isenthalpique du liquide de P_c à P_i .
- 7-8 : séparation du liquide dans la bouteille intermédiaire.
- 8-9 : détente du liquide saturant de Pi à Po

- 9-10 : vaporisation sous la pression P₀.

-10-1 : surchauffe et chutes de pression éventuelles dans la tuyauterie d'aspiration.

-7-3 : séparation des vapeurs dans la bouteille intermédiaire ; aspiration par le compresseur HP. On suppose que la pression intermédiaire est déjà fixée ; son choix sera traité ultérieurement. Le choix des autres grandeurs internes est réalisé de la même façon que pour les cycles mono étagés.

• Débit massique des vapeurs aspirées par le compresseur BP :

$$\phi_B = \frac{Q_2}{H_{10} - H_9} \tag{II.17}$$

• Débit massique des vapeurs aspirées par le compresseur HP :

On déduit ce dernier d'un bilan enthalpique sur la bouteille séparatrice :

$$\phi_B \cdot H_2 - \phi_H \cdot H_3 + \phi_H \cdot H_6 - \phi_B \cdot H_8 + Q_{bt} = 0$$
(II.18)

 Q_{bt} : Puissance thermique reçue par la bouteille intermédiaire (pertes par l'isolation).

$$\phi_H = \phi_B \cdot \frac{H_2 - H_8}{H_3 - H_6} + \frac{Q_{bt}}{H_3 - H_6} \tag{II.19}$$

Si les pertes dans la bouteille intermédiaire sont négligées)

$$\phi_H = \phi_B \cdot \frac{H_2 - H_8}{H_3 - H_6} \tag{II.20}$$

Le coefficient de performance COP de l'installation s'exprime par :

$$COP = \frac{Q_2}{W_H + W_B} \tag{II.21}$$

b. Cycle à injection partielle :

Le détendeur **BP** n'est plus alimenté à partir de la bouteille intermédiaire sous la pression \mathcal{P}_{0} , mais par du liquide à la pression \mathcal{P}_{k} . Cependant, avec du liquide pris directement à la sortie du condenseur, la production frigorifique massique serait trop faible. Pour augmenter cette grandeur, on augmente le sous refroidissement du débit massique **BP** grâce à un échangeur sous refroidisseur placé dans le liquide contenu dans la bouteille intermédiaire.

Fig. II.19. Cycle frigorifique à compression bi-étagée (injection partielle)

Fig. II.20. Cycle frigorifique à compression bi-étagée (injection partielle)

Contrairement au cas d'injection totale, la détente du débit massique alimentant l'évaporateur n'est pas fractionnée : il s'agit d'une détente mono étagée entre p_k et p_0 .

Le débit masse **HP** augmente lui aussi ; en effet, si l'on néglige les pertes thermiques par l'isolation, le rapport des deux débits s'exprime par la relation :

$$\phi_H = \phi_B \cdot \frac{H_2 - H_8}{H_3 - H_6} \tag{II.22}$$

Le COP d'une installation à injection partielle est plus faible que celui d'une installation équivalente à injection totale. Cette dégradation est imputable à l'échange thermique dans la bouteille à pression intermédiaire, qui introduit une irréversibilité supplémentaire.

II.2.5. Puissance thermique

II.2.5.1. Puissance thermique de l'évaporateur

Si le bilan général est établi pour 24 heures, il est évident que pour des raisons de bonne tenue et de longévité du matériel la moindre baisse de rendement ou un arrêt accidentel de la machine mettrait en cause la production frigorifique journalière.

La puissance frigorifique de la machine est donc calculée sur un temps moyen de fonctionnement compris entre 14 et 20 heures.

La puissance frigorifique nécessaire a l'évaporateur sera donc dans ces conditions, en appelant t le temps de fonctionnement de la machine frigorifique exprime en secondes :

$$P_{\rm E} = \frac{Q_{\rm T}}{t} ({\rm KW}) \tag{II.23}$$

 Q_T : Bilan total des quantités de chaleur ; t : Temps de fonctionnement

Si on néglige les pertes de charges dans l'installation :

$$P_{\rm E} = \frac{Q_2}{t} (\rm KW) \tag{II.24}$$

 Q_2 : Quantité de chaleur extraite de la source froide dans l'évaporateur.

II.2.5.2. Puissance thermique de compresseur

Si le compresseur alimente uniquement l'installation frigorifique dont on vient d'effectuer le calcul du bilan thermique, la puissance frigorifique de l'évaporateur est égale a la puissance frigorifique utile du compresseur dans les conditions 00 et 0k correspondant aux températures d'évaporation et de condensation particulière a l'installation.

$$P_{\rm C} = P_{\rm E} \frac{\Delta H_C}{\Delta H_E}$$
 (KW) (II.25)

Avec ΔH_E la variation d'enthalpie entre la sortie et l'entrée de l'évaporateur, en kJ/kg, et ΔH_C la variation d'enthalpie entre l'entrée de l'évaporateur et l'aspiration du compresseur, en kJ/kg.

II.2.6. Choix et dimensionnement d'une installation frigorifique

II.2.6.1. Choix de l'évaporateur

- Type de produit à refroidir ou à conserver
- Ecart des ailettes
- Matériaux utilisés
- Type d'évaporateur et implémentation
- Pression disponible
- Bruit acoustique

II.2.6.2. Choix de compresseur

Le dimensionnement courant du compresseur pour une installation de froid alimentaire est naturellement conditionné par :

- la puissance frigorifique à fournir
- le type de fluide réfrigérant ;
- la température nécessaire à l'application au niveau de l'évaporateur (froid positif ou négatif, type de denrées à conserver, ...) et ce, dans des conditions optimales
- la température extrême qu'il peut régner au niveau du condenseur (température de l'air ou de l'eau selon le type de condenseur).

II.2.6.3. Choix de détendeur

- un coût d'investissement faible
- une très bonne fiabilité
- un réglage relativement simple
- un coût de maintenance également plus faible
- ne travaille correctement qu'à des Δp faibles en réduisant le taux de remplissage de l'évaporateur
- sa régulation n'est pas très fine par rapport à celle des détendeurs électroniques
- précision limitée dans la mesure de la surchauffe

II.2.6.4. Choix de condenseur

- Type de fluide caloporteur à disposition (air, eau douce, eau de mer)
- Puissance calorifique à rejeter
- Températures nominales de condensation et du fluide caloporteur, le sousrefroidissement estimé ou demandé
- Type de technologie que l'on veut ou que l'on peut employer contraintes d'encombrement, sonores et environnementales

II.3. Pompes à chaleur

II.3.1. Principe de fonctionnement

Le principe est simple : absorber de l'énergie thermique (chaleur) de l'extérieur de la maison pour la rejeter à l'intérieur de la maison (d'où son nom). Il s'agit donc simplement d'un réfrigérateur ouvert sur l'extérieur et dont la grille arrière est placée dans notre appartement.

Fig.2.20. Principe de fonctionnement de la pompe à chaleur

La pompe à chaleur absorbe donc la chaleur Q_2 de l'extérieur et c'est la grille chaude du réfrigérateur qui chauffe la pièce. Dans ce cas c'est la chaleur Q_1 restituée à l'air ambiant qui nous intéresse, et l'efficacité est donc définie par :

$$COP = \left|\frac{Q_1}{W}\right| \tag{II.26}$$

On démontre alors que pour le cycle de Carnot (cycle ditherme réversible) on obtient :

$$COP_{max} = \frac{T_1}{T_1 - T_2} \tag{II.27}$$

II.4. Applications et Corrigés

II.4.1. Applications

Exercices1

Système de climatisation équipé en fluide R134a avec :

- Température de sortie compresseur (compression isentropique) : + 62°C
- Température d'entrée compresseur : -10°C
- Température de sortie condenseur (condensation isobare) : + 41°C
- Pression d'aspiration : 2 bars (absolue)
- Pression de refoulement : 16 bars (absolue).

A la sortie du condenseur, le fluide est juste saturé (100% liquide). La détente est isenthalpique. Dans notre cas, on obtient un mélange 40% vapeur et 60% liquide en sortie détendeur

1-Tracer le digramme enthalpique.

2-Calculer l'efficacité frigorifique et calorifique

Exercice2

A l'aide du diagramme du R134a, déterminer le bilan d'une installation frigorifique. Cela concerne l'évolution de 1 kg de fluide frigorigène. Une installation fonctionnant au R134a fonctionne aux conditions suivantes :

 T_{ecomp} = -5°C, T_{scomp} = +42°C, T_{scond} = +30°C, T_{eevap} = -12°C.

Exercice3

On s'intéresse à une pompe à chaleur qui participe au chauffage de locaux, en prélevant de la chaleur aux effluents liquides à température élevée d'une installation industrielle, avant leur rejet dans une rivière qui recevra des effluents à température plus faible.

L'installation représentée ci -dessous comporte : un compresseur, un détendeur et deux serpentins qui sont le siège des échanges thermiques, avec les effluents d'une part, et avec l'eau d'un circuit de chauffage d'autre part.

Fig.2.21. Circuit de chauffage

1-2 : dans le compresseur : compression adiabatique, la pression passant de $p_1 = 10^5$ Pa à $p_2 = 2 \times 10^5$ Pa et la température passant de $T_1 = 310$ K à T_2 .

2-3 : dans le serpentin au contact du circuit de chauffage (V $_3 < V_2$) : refroidissement isobare, la température passant de T₂ à T₃ = 330 K.

3-4 : dans le détendeur : détente adiabatique, la pression passant de $p_3 = p_2$ à $p_4 = p_1$, la température passant de T_3 à $T_4 = 271$ K.

4-1 : dans un serpentin plongé dans les effluents industriels : échauffement isobare jusqu'à la température T_1 .

On donne :

Constante du gaz parfait : R = 8,32 J .mol $^{-1}$. K $^{-1}$

Capacité thermique massique de l'air à pression constante : c $_{p}$ = 1 000 J.kg ⁻¹. K ⁻¹

Rapport des capacités thermiques massiques de l'air, à pression constante et à volume constant $\gamma = \frac{c_p}{c_v}$ =

- On rappelle que lors de la transformation adiabatique réversible d'un gaz parfait : $pV^{\gamma} = cte$

1) Représenter l'allure du cycle décrit par l'air sur un diagramme de Clapeyron (p, V). Indiquer par des flèches le sens des transformations.

2) Montrer que $T_2 = 378$ K.

3) Calculer les quantités de chaleur échangées par une masse de 1 kg d'air au cours de chacune des 4 transformations.

4) Quelle est la variation de l'énergie interne de l'air qui décrit le cycle ? Enoncer le premier principe de la thermodynamique pour un cycle.

5) En déduire le travail W reçu par la masse de 1 kilogramme d'air, au cours du cycle.

6) On désigne par COP_C l'efficacité de la pompe à chaleur, c'est-à-dire le rapport de la quantité de chaleur reçue par la source chaude et du travail reçu par l'air, au cours d'un cycle. Calculer COP_C

Exercice4

Une pompe à chaleur fonctionne entre deux sources : une nappe souterraine qui constitue la source froide et l'eau du circuit de chauffage qui constitue la source chaude.

Le fluide utilisé dans cette pompe à chaleur est de l'air assimilable à un gaz parfait de constante R = 8,32 J.K⁻¹.mol⁻¹, de capacité thermique molaire à pression constante C_p = 29,1 J.K⁻¹.mol⁻¹. Le rapport des capacités thermiques molaires à pression constante C_p et à volume constant C_v vaut γ = 1,4.

L'air de la pompe à chaleur décrit le cycle de transformations réversibles suivant :

- Passage de l'état initial A, à l'état B par une compression adiabatique dans un compresseur.

État A : pression : $P_A = 1,0 \times 105 P_a$, volume V_A , température $T_A = 298 K$;

État B : pression : $P_B = 2,2 \times 105 Pa$, volume V_B, température T_B.

- Passage de l'état B à l'état C par une transformation isobare pendant laquelle l'air reçoit de la source chaude une quantité de chaleur Q_1 .

État C : pression $P_C = P_B$, température $T_C = 340$ K

- Passage de l'état C à l'état D par une détente adiabatique.

État D : pression $P_D = P_A$, température TD

- Passage de l'état D à l'état A par une transformation isobare pendant laquelle l'air reçoit de la source froide une quantité de chaleur Q₂. On effectuera les calculs relatifs à une mole d'air.

1 - Placer les points B, C, D sur la figure a du document-réponse.

2 - Calculer les volumes V_A et V_B .

3 - Calculer les températures T_B et T_D.

4 - Pour chaque cycle décrit par une mole d'air, calculer :

4.1 - les quantités de chaleur Q_1 et Q_2 ,

4.2 - le travail W reçu au cours de la totalité du cycle.

5 -L'efficacité ε de la pompe à chaleur est le rapport de la quantité de chaleur reçue par la source chaude au cours d'un cycle décrit par l'air, et du travail reçu par l'air au cours de ce même cycle. 5.1 - Exprimer ε en fonction de Q₁ et W. Calculer sa valeur.

II.4 - Justifier le choix de cette définition.

II.4.2. Corrigées

Exercice1

Pour le traçage il suffit de déterminer les points sur ce diagramme représentant les transformations :

1. Compression isentropique : [1-2]

Le travail dépensé par le compresseur

2. Désurchauffe isobare [2-2']

Q1'= H_{2'} - H₂= 426.54-432.58=6.02 kJ/kg

3. Condensation isobare : [2'-3] ------ (vapeur/liquide) à $T_{econd}=T_2=620C$ Chaleur cédée à la source chaude

 $Q_1 = H_{2'} - H_3 = 290.68 - 426.54 = -135.86 \text{ kJ/kg}$

4. Sous refroidissement [3-3'] T_{refroi} de 62°C à 41°C

Q''= 257.74-290.68= 32.94 kJ/kg

5. Détente : [3'-4] ------ transformation isentropique

Le travail dépensé par le compresseur

6. Evaporation : [4-1] ------ transformation isobare (liquide/vapeur)

Chaleur soustraite à la source froide

L'efficacité frigorifique (performance frigorifique)

En fonction du travail de compression, on trouve :

$$COP_F = \frac{Q_2}{W_c} = \frac{133.58}{35.2} = 3.79$$

En fonction du travail de compression, on trouve :

$$COP_F = \frac{Q_2}{|Q_1| - |Q_2|} = \frac{133.58}{(135.86 + 32.94 + 6.02) - 133.58} = 3.25$$

L'efficacité frigorifique peut être améliorée par surchauffer la vapeur à l'entrée du compresseur faisant :

$$\frac{133.58}{(135.86 + 32.94 + 6.02) - 133.58 + X} = 3.79$$

A=Wc'-Wc= 41.24-35.2= 6.04 kJ/kg

Qui donne T= à 10°C à l'entrée du compresseur au lieu de 10°C en utilisant le diagramme pression-enthalpie du réfrigérant R134a (voir diagramme thermodynamique de l'ammoniac en annexe).

L'efficacité calorifique (performance calorifique) :

$$COP_C = \frac{Q_1}{W_C} = \frac{174.82}{35.2} = 4.95$$

Fig.2.22. diagramme thermodynamique

Exercice2

Bilan énergétique d'un cycle :

En utilisant le diagramme pression-enthalpie du fluide frigorigène R134a on trouve :

$$W_{c=} H_2 - H_1 = (436-398 = 38 \text{ kJ/kg}).$$

Désurchauffe des vapeurs sèches au refoulement (évacuation de la chaleur sensible de la vapeur).

Bilan du condenseur :

C'est l'enthalpie massique de changement d'état au condenseur (quantité de chaleur latente évacuée par 1 kg de fluide qui se condense).

$$Q_1 = H_4 - H_3 = 260 - 418 = -158 \text{ kJ/kg}.$$

Sous-refroidissement du liquide dans le condenseur et la ligne liquide (évacuation de la chaleur sensible du liquide).

$$H_5 - H_4 = (240 - 260 = -20 kJ/kg)$$

Bilan du détendeur : La détente du fluide frigorigène à lieu sans échange d'énergie avec le milieu extérieur.

$$H_6 - H_5 = (240 - 240 = 0 \text{ kJ/kg}).$$

Bilan de l'évaporateur : C'est l'enthalpie massique de changement d'état à l'évaporateur. (Quantité de chaleur latente absorbée par 1 kg de fluide qui s'évapore).

$$Q_2 = H_7 - H_6 = (390 - 240 = 150 \text{ kJ/kg}).$$

Surchauffe de la vapeur sèche dans l'évaporateur et dans la conduite d'aspiration (gain de chaleur sensible de la vapeur.

$$H_1 - H_7 = (398 - 390 = 8 \text{ kJ/kg}).$$

Bilan de l'installation : Gains et pertes

$$\begin{split} \Delta U &= \left[(h_6 - h_4) + (h_7 - h_6) + (h_1 - h_7) \right] - \left[(h_2 - h_1) + (h_3 - h_2) + (h_4 - h_3) \right] \\ \Delta U &= \left[150 + 8 + 38 \right] - \left[-18 - 158 - 20 \right] = 196 - 196 = 0 \text{ kJ/kg.} \end{split}$$

Facteur de performance frigorifique (COP_F)

$$COP_F = \frac{Q_2}{W_c} = \frac{150}{38} = 3.94$$

Facteur de performance calorifique (*COP*_C)

$$COP_C = \frac{Q_1}{W_C} = \frac{158}{38} = 4.15$$

Exercice3

1.

Fig.2.22. cycle des transformations thermodynamiques

Le cycle est forcément décrit dans le sens trigonométrique car il s'agit d'une pompe à chaleur (le cycle est donc résistant : il nécessite un apport de travail pour se réaliser). La réversibilité du cycle implique qu'il n'est pas ditherme, et donc que le circuit de chauffage et les effluents industriels ne constituent pas des sources de chaleur : leur température est certainement relativement constante, égale à T₁ (source chaude) et T₃ (source froide), ce qui implique que le cycle est ditherme et donc qu'il n'est certainement pas réversible.

2.

 $pV^{\gamma} = cte$ Pour une transformation adiabatique

$$\rightarrow \begin{cases} pV^{\frac{1}{\gamma}} = cte \\ PV = nRT \end{cases}$$
 En faisant le rapport $pV^{\frac{1}{\gamma}/\gamma}$. $T = cte$ d'ou $pV^{1-\gamma/\gamma}$. T
$$\rightarrow T_2 = T_1 \cdot \left(\frac{P_2}{P_1}\right)^{1-\gamma/\gamma} \approx 310. (1.10^5/2.10^5)^{1-\gamma/\gamma} \approx 378 K$$

3.

 $Q_{12} = 0$ et $Q_{34} = 0$ car ces transformations sont adiabatiques.

 Q_{23} = m.cp. (T₃-T₂) car la transformation 2-3 est isobare, de même Q_{41} = m.cp.(T₁-T₄)

On trouve $Q_{23} \approx 1 \times 1000 \times (330 - 378) \approx -48$ kJ et $Q41 \approx 1 \times 1000 \times (310 - 271) \approx 39$ kJ

4.

Sur tout cycle $\Delta U_{cycle} = 0$ car la température finale est toujours égale à la température initiale pour un cycle.

1er principe : $W_{cycle} + Q_{cycle} = \Delta U_{cycle} \Rightarrow W_{cycle} + Q_{cycle} = 0.$

5.

$$W_{cycle} = -Q_{cycle} d'où W_{cycle} = -(Q_{23} + Q_{41}) \approx -(-48.103 + 39.103) \approx 9 kJ$$

6.

$$COP_C = \left|\frac{Q_{23}}{W_c}\right| = \left|\frac{48.10^3}{9.10^3}\right| = 5.3$$

Remarque : pour une pompe à chaleur ditherme fonctionnant entre les sources $T_1 et T_3$ on a on

 $COP_{Cmax} = T_3 / (T_3 - T_1) = 330 / (330 - 310) \approx 16,5$ obtenu pour un cycle réversible donc le cycle est irréversible.

Exercice4

1.

Fig.2.23. cycle des transformations thermodynamiques

2.

$$P_A.V_A = n.R.T_A \text{ or } n = 1 \text{ mole d'où } V_A = R.T_A/P_A \approx 8,32 \times 298 / 1.10^5 \approx 25 \text{ L}$$

 $P_B.V_B{}^{\gamma} = P_A.V_A{}^{\gamma} \Rightarrow V_B = V_A. (P_A/P_B) \approx 25.10^{-3} \times (1.10^5/2, 2.10^5) \approx 14 \text{ L}$

3.

$$P_B.V_B = R.T_B \Rightarrow T_B = P_B.V_B / R \approx 2,2.10^5 \times 8.10^{-3} / 8,32 \approx 376 \text{ K}$$

de même $T_D = P_D.V_D/R = P_A.V_D/R$, reste à calculer V_D

On sait que T_C = 340 K et que P_C = P_B \approx 2,2.10⁵ Pa, puisque P_C.V_C = R.T_C on en déduit que :

$$V_{C} = R.T_{C}/P_{B} \approx 13 L$$
 et $P_{D}.V_{D}^{\gamma} = P_{C}.V_{C}^{\gamma}$

on en déduit que $V_D = V_C . (P_C/P_D)^{1/\gamma} \Rightarrow V_D = R.T_C/P_B \times (P_B/P_A)^{1/\gamma}$

$$\Rightarrow T_{D} = P_{A} \cdot [R \cdot T_{C} / P_{B} \times (P_{B} / P_{A})^{1/\gamma}] / R$$
$$\Leftrightarrow T_{D} = P_{A} \times T_{C} / P_{B} \times (P_{B} / P_{A})^{1/\gamma} \approx 1.10^{5} \times 340 / 2,2.10^{5} \times (2,2.10^{5} / 1.10^{5})^{1,4} \approx 271 \text{ K}$$

Rq : on a alors $V_D = R.T_D/P_D \approx 22 L > VC$.

4.

4.1. Q_1 : chaleur échangée lors de la transformation $B_C \Rightarrow Q_1 = C_p$. (T_C-T_B) puisque la transformation est isobare et que n = 1 mole. D'où $Q_1 \approx 29,1 \times (340 - 376) \approx -1059 \text{ J}$: la chaleur est rejetée à la source chaude.

de même $Q_2 = C_p.(T_A-T_D) \approx 29,1 \times (298 - 271) \approx 786 \text{ J}$: la chaleur est absorbée de la source froide.

4.2.
$$1^{er} \text{ principe} \Rightarrow W_{cycle} + Q_{cycle} = \Delta U_{cycle} = 0 \Leftrightarrow W_{cycle} = -Q_{cycle} = -(Q_{AB} + Q_{BC} + Q_{CD} + Q_{DA})$$

Or $Q_{AB} = 0$ et $Q_{CD} = 0$ (transfo adiabatiques), d'où $W_{cycle} = -(Q_{BC} + Q_{DA})$

 \Leftrightarrow W_{cycle} = - Q₁ - Q₂ \approx 1059 - 786 \approx 274 J : la pompe à chaleur nécessite un apport de travail.

5.

5.1.
$$COP_C = \frac{Q_1}{W_{cycle}} \approx 1059/274 \approx 3.9$$

Pour un cycle réversible ditherme (sources de chaleur de températures T_A et T_C on a $COP_{Cmax} = TC/(TC - TA) = 340/(340-298) \approx 8,1$: le cycle n'est donc pas réversible

Le choix de cette définition vient du fait que l'efficacité est une sorte de rendement, c'est à - dire un rapport énergie restituée énergie dépensée, l'énergie restituée au local à chauffer étant Q₁ et l'énergie dépensée étant l'énergie fournie à la pompe pour effectuer le travail W_{cycle} , on obtient bien $COP_C = \frac{Q_1}{W_{cycle}}$.

CHAPITRE III Cycles Idéaux des Moteurs à combustion interne

III.1. Généralités sur Moteurs à combustion interne

III.1.1. Description

Un dispositif qui fournit de l'énergie mécanique par transformation de l'énergie calorifique, libérée par calcination d'un combustible. Il existe quatre types principaux de moteurs à combustion interne : le moteur à allumage commandé, ou moteur à explosion, le moteur Diesel, le moteur à piston rotatif et la turbine à gaz. De nombreux types de moteurs utilisent le principe de la propulsion à réaction, Voir Fusée. Le moteur à allumage commandé, inventé par le technicien allemand Nikolais August Otto, est le moteur Diesel, conçu par Rudolf Christian Karl Diesel, fonctionne suivant un principe différent et utilise du gazole ou de l'huile lourde comme carburant. Ce moteur est utilisé dans les générateurs électriques, la propulsion des navires, des camions et des bus, ainsi que dans certaines automobiles. Le moteur à allumage commandé et le moteur Diesel existent en deux temps ou quatre temps.

Fig. III.1. Moteur à combustion interne

Fig. III.2. Rapport volumétrique

Le moteur AC est d'abord un moteur alternatif à combustion interne, c'est-à-dire que le travail est produit par la combustion d'un mélange carburé à l'intérieur d'un cylindre, dans lequel se déplace un piston en mouvement alternatif. Les deux limites extrêmes du mouvement sont appelées respectivement point mort haut (PMH) et point mort bas (PMB). Le volume balayé entre ces deux points constitue la cylindrée unitaire, et si d est le diamètre du cylindre (ou alésage) et C la course du piston, la cylindrée V s'écrit :

$$V = C\pi \frac{d^2}{4} \tag{III.1}$$

Au point mort haut le volume résiduel est appelé volume mort ; il détermine ce que l'on nomme la chambre de combustion, qui est donc la portion de volume limitée par la culasse, le haut de chemise et la partie supérieure du piston. Du volume mort v et de la cylindrée V se déduit le rapport volumétrique de compression.

$$V = \frac{V+v}{v} \tag{III.2}$$

Tous les moteurs à combustion interne fonctionnent suivant le même processus général décrit schématiquement ci-dessous. Un volume variable est délimité par un cylindre, l'une de ses bases qui est fixe, appelée culasse, et l'autre qui est un piston mobile dans l'alésage du cylindre, entraîné par un système bielle-manivelle. Dans un moteur à quatre temps, les organes qui

commandent le refoulement ou l'admission sont des soupapes actionnées par des poussoirs couplés à l'arbre moteur par un arbre à cames.

III.2. Cycle à allumage commandé

Un moteur à allumage commandé, plus communément appelé moteur à essence en raison du type de carburant utilisé, est une famille de moteur à combustion interne, pouvant être à mouvement alternatif (à deux ou quatre temps) ou à mouvement rotatif (Wankel). L'ingénieur belge Étienne Lenoir fabrique en 1860 le premier moteur à allumage commandé. C'est un moteur à deux temps, de rendement très médiocre, mais qu'il fabriquera à quelques 400 exemplaires faisant ainsi de lui le premier industriel de cette technique de l'allumage commandé.

La production de moteurs à allumage commandé (AC) est largement majoritaire dans le monde, puisqu'elle représente 85 % du total des moteurs thermiques alternatifs (102 millions d'unités en 2000, sur une production totale de 121 millions). La France se distingue avec une production diesel plus importante que la moyenne, qui ramène la proportion de moteurs AC à 52 % (environ 1,75 millions d'unités). La motorisation diesel étant plutôt réservée aux unités de grande puissance, il est évident que les proportions indiquées deviendraient sensiblement différentes si elles étaient évaluées à partir des kilowatts produits. Le domaine réservé du moteur AC est la traction automobile, qui représente 46 % de la production mondiale de ce type de moteur (36 % pour les véhicules particuliers, 10 % pour les camions), la proportion atteignant 65 % si l'on inclut les motocycles. Le reste est partagé entre les moteurs agricoles (21 %), les moteurs industriels (12 %), les moteurs marins et aéronautiques (statistiques 2000). La grande majorité de ces moteurs sont à cycle 4 temps (> 90 %), les moteurs 2 temps étant cantonnés dans les petites cylindrées (moins de 500 cm3), domaine privilégié des motos et des moteurs hors-bords.

III.2.1. Principe de fonctionnement

III.2.1.1. Cycles à quatre temps

- Lors de l'admission : la chambre de combustion est ouverte, le piston descend du point mort haut (PMH) au point mort bas (PMB), ce qui augmente le volume de la chambre. Le mélange air + carburant est admis dans la chambre de combustion à une pression constante ; on parle de transformation isobare (p = Cte).
- Lors de la compression : la chambre est fermée, le piston monte du PMB au PMH, le volume de chambre diminue, la pression et la température augmentent ; on parle de transformation adiabatique (loi de Poisson : p.V = Cte).
- Lors de l'inflammation et durant la combustion : la chambre reste fermée, et le piston ne se déplace pas. La transformation de l'énergie contenue dans le carburant provoque une forte augmentation de température et de pression, c'est l'explosion ; on parle de transformation isochore (V = Cte).
- Lors de la détente du gaz enflammé : le piston se déplace de nouveau vers le PMB, la pression chute selon une nouvelle transformation adiabatique.
- Lors du quatrième temps, l'échappement, les gaz brûlés sont évacués du cylindre par la remontée du piston selon une nouvelle transformation isobare.

Fig. III.3. Moteur à quatre temps

III.2.1.2. Cycle à deux temps

Les différences majeures de structure du cylindre d'un moteur "2 temps" par rapport à un moteur "4 temps" :

- L'absence de soupape
- Une lumière de transfert
- Le piston peut être prolongé par une jupe
- Le cylindre est percé de plusieurs lumières

Etape 1 : Piston montant vers le point le plus haut

Au-dessus du piston, le mélange air/essence est comprimé dans la culasse. Ainsi, on retrouve bien l'étape de compression du moteur 4 temps. Au-dessous du piston, en remontant il se créer une dépression dans le carter moteur. Le piston va alors dégager la lumière d'admission et grâce à la dépression qui règne alors, le mélange air/essence va pouvoir entrer à l'intérieur du moteur. Ceci correspond à l'étape d'admission du moteur 4 temps

Etape 2 : Piston descendant vers le point le plus bas

Au-dessus du piston, la bougie émet l'étincelle, l'inflammation du gaz se fait. La pression augmente et le piston est poussé vers le bas. C'est la détente. Arrivé à peu près au point le plus bas, le piston dégage la lumière d'échappement et les gaz d'échappement vont être poussés par le mélange frais qui arrive par la lumière de transfert qui est découvert peu après la lumière d'échappement. Ce mélange frais arrive d'autant plus vite qu'il se situe au-dessous du piston et qu'il soit comprimé par la descente du piston. Cette étape est appelé le balayage. Le gaz se retrouve alors au-dessus du piston au moment où celui-ci remonte. Ainsi, la détente et l'échappement dans un moteur deux temps s'effectuent dans le même temps.

Fig. III.3. Moteur à deux temps

III.2.1.3. Taux de compression

Correspond au rapport des pressions en fin P_B et en début P_A de phase de compression :

$$\varepsilon = \frac{P_B}{P_A} \tag{III.3}$$

Dans le cadre d'une compression adiabatique parfaite, on peut écrire que :

$$\varepsilon_{\nu} = \left(\frac{\mathbf{P}_B}{\mathbf{P}_A}\right)^{\gamma} = \frac{\mathbf{V}_A}{\mathbf{V}_B} \tag{III.4}$$

III.2.1.4. Rendement thermodynamique

Le rendement thermodynamique théorique μ d'un moteur à allumage commandé est le rapport du travail mécanique fourni par le moteur lors de la phase de détente sur le travail thermique reçu lors de la phase de combustion du carburant. On détermine ce rendement par la formule :

Fig. III.4. Cycle de moteur à allumage contrôlé

III.3. Cycle Diesel

Théoriquement, le cycle thermodynamique du moteur Diesel diffère du moteur à allumage commandé : dans le moteur Diesel, la combustion s'effectue à volume constant, et non à pression constante. La plupart des moteurs Diesel sont, également, des moteurs à quatre temps. À la différence des moteurs à allumage commandé, les moteurs Diesel ne possèdent ni carburateur ni de système d'allumage proprement dit. Le premier temps est l'admission : le cylindre aspire de l'air pur - alors que c'est un mélange d'air et d'essence dans le moteur à allumage commandé - par la soupape d'admission. Au cours du second temps, ou compression, l'air est comprimé, ce qui l'amène environ à 440°C. À la fin du temps de compression, le combustible vaporisé est injecté sous forte pression dans la chambre de combustion et brûle instantanément, la température de l'air étant très élevée dans la chambre de combustion. Ainsi, à la différence du moteur à allumage commandé, le mélange gazeux s'enflamme ici de luimême.

III.3.1. Rendement thermodynamique

Le rendement du cycle étant le rapport de l'énergie utile sur l'énergie dépensée :

$$\delta = \frac{\operatorname{travail} \operatorname{du} \operatorname{cycle}}{\operatorname{chaleur} \operatorname{de} \operatorname{combustion}} = \frac{W_{cycle}}{Q_c} = \frac{\oint TdS}{Q_c} \qquad (III.6)$$
(1-2) transformation isentropique S₁= S₂
(3-4) transformation isentropique S₃= S₄
(1-4) transformation isochore V₁= V₄

$$\frac{V_3}{V_2} = \tau, \frac{V_2}{V_1} = \varepsilon$$

$$\delta_{Diesel} = \frac{\int_1^2 TdS + \int_2^3 TdS + \int_3^4 TdS + \int_4^1 TdS}{\int_2^3 TdS} \qquad (III.7)$$

$$\delta_{Diesel} = 1 - \frac{\int_1^4 C_v dT + \int_4^4 pdV}{\int_2^3 C_p dT - \int_2^3 Vdp} = \frac{\int_1^4 C_v dT}{\int_2^3 C_p dT}$$
Fig. III.5. Cycle Diesel

$$\delta_{Diesel} = 1 - \frac{C_{v}(T_{4} - T_{1})}{C_{p}(T_{3} - T_{2})} = 1 - \gamma \frac{(\frac{T_{4}}{T_{1}} - 1)}{\frac{T_{2}}{T_{1}}(\frac{T_{3}}{T_{2}} - 1)}$$
(III.8)

Si le gaz est considéré parfait : $p_1V_1 = RT_1$; $p_2V_2 = RT_2$; $p_3V_3 = RT_3$; $p_4V_4 = RT_4$

 $\rightarrow \frac{T_4}{T_1} = \frac{p_4}{p_1}; \frac{T_3}{T_2} = \frac{V_3}{V_2} = \tau \quad \text{et} \quad pV^{\gamma} = cte$ $\rightarrow \frac{T_4}{T_1} = \left(\frac{V_3}{V_2}\right)^{\gamma}; \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} \cdot \frac{V_2}{V_1} = \varepsilon^{\gamma - 1} \quad \text{donc} \quad \delta_{Diesel} = f(\tau, \varepsilon, \gamma)$

 ε : Taux de compression

 τ : Taux d'introduction

III.4. Cycle OTTO (Beau de Rauchas)

Fig. III.6. Cycle Otto (Diagramme Clapeyron et entropique)

- 1) (1-2) Compression isentropique
- 2) (2-3) Chaleur apportée à V = cte
- 3) (3-4) Détente isentropique
- 4) (4-1) Chaleur cédée à V = cte

Pas de travail dans les étapes d'échange de chaleur

- Le système considéré est le fluide compris dans le cylindre lors des phases de compression et de détente

Pour une unité de masse et pour chaque étape :

$$U = C_{v} \Delta T = Q + W$$
(III.9)

$$U_{2} - U_{1} = Cv (T_{2} - T_{1}) = W_{21}$$

$$U_{3} - U_{2} = Cv (T_{3} - T_{2}) = Q_{2}$$

$$U_{4} - U_{3} = Cv (T_{4} - T_{3}) = W_{43}$$

$$U_{1} - U_{4} = Cv (T_{1} - T_{4}) = Q_{1}$$
Sur le cycle :

$$0 = W + Q_{1} + Q_{2}$$

 $\mathsf{U}=\mathsf{C}_{\mathsf{v}}\,\Delta\mathsf{T}=\mathsf{Q}+\mathsf{W}$

- Les transformations (1-2) et (3-4) considérées isentropiques $S_2 - S_1 = 0$ $S_4 - S_3 = 0$

III.4.1. Rendement thermodynamique

$$\frac{T_4}{T_3} = \left(\frac{V_3}{V_4}\right)^{\gamma-1} = \left(\frac{V_2}{V_1}\right)^{\gamma-1} = \frac{T_1}{T_2}$$
(III.10)
$$\frac{T_4}{T_1} = \frac{T_3}{T_2}$$

$$\eta = \frac{-W}{Q_2} = 1 + \frac{Q_1}{Q_2} = 1 + \frac{(T_1 - T_4)}{(T_3 - T_2)} = 1 - \frac{T_1 \frac{T_4}{T_1} - 1}{T_2 \frac{T_3}{T_2} - 1}$$
(III.11)

$$\eta = 1 - \frac{1}{\left(\frac{V_1}{V_2}\right)^{V-1}}$$
(III.12)

L'efficacité dépend uniquement du rapport de compression (V_1/V_2) et du rapport des capacités calorifiques : l'efficacité augmente lorsque le rapport de compression augmente. Cette conclusion s'applique également aux moteurs à combustion réels.

III.5. Cycle mixte

Ce cycle est caractérisé par l'évolution d'une masse gazeuse m que l'on assimile en première approximation à un gaz parfait et dont on admet que l'échappement dans l'atmosphère et l'admission ultérieure équivalent à un refroidissement à volume constant. Le cycle est composé des processus diffèrent à celui de Diesel.

III.5.1. Rendement thermodynamique

Le rendement du cycle étant le rapport de l'énergie utile sur l'énergie dépensée voir l'équation (3.6) :

(1-2), (4-5): transformation isentropique
$$S_1 = S_2; S_3 = S_4$$

(1-5), (2-3) : transformation isochore $V_1 = V_5; V_2 = V_3$
(3-4) : transformation isobare $p_3 = p_4$

$$\frac{V_4}{V_3} = \tau'; \frac{p_3}{p_2} = \sigma; \frac{V_2}{V_1} = \varepsilon$$

$$\delta_{mixte} = \frac{\int_1^2 TdS + \int_2^3 TdS + \int_3^4 TdS + \int_4^5 TdS + \int_5^1 TdS}{\int_2^3 TdS + \int_3^4 TdS}$$
(III.13)

$$\delta_{mixte} = 1 - \frac{\int_{1}^{5} c_{v}dT + \int_{1}^{5} pdV}{\int_{2}^{3} c_{v}dT + \int_{3}^{4} c_{p}dT - \int_{3}^{4} Vdp}$$

$$\delta_{mixte} = 1 - \frac{\int_{1}^{5} c_{v}dT}{\int_{2}^{3} c_{v}dT + \int_{3}^{5} c_{p}dT} = 1 - \frac{c_{v}(T_{5} - T_{1})}{c_{v}(T_{3} - T_{2}) + c_{p}(T_{4} - T_{3})}$$

(III.14)

En poursuit les mêmes opérations que le cycle Diesel on trouve le rendement du cycle mixte comme suit :

$$\delta_{mixte} = 1 - \frac{\sigma \tau'^{\gamma}}{\varepsilon^{\gamma-1}[(\sigma-1)+\gamma\sigma(\tau'-1)]}$$
(III.15)

Le rendement de cycle mixte est en fonction de taux de compression ε et taux d'introduction du gaz τ' .

III.6. Applications et Corrigés

III.6.1. Applications

Exercice1

Un moteur à combustion interne fonctionne suivant le cycle avec apport de chaleur à pression constante (Cycle Diesel). Ce cycle est caractérisé par les paramètres suivants :

P₁= 0.9 bar ; v₂= 0.1 (m³/ Kg) ; ε = 15 ; T_{max}= 1800 °C et γ = 1.4 ; r= 287 J/Kg/K

1- Représentez ce cycle Diesel sur un diagramme de Clapeyron P-V ?

2- Calculer les variables d'état du fluide moteur (P, v, T) aux points caractéristiques du cycle 1, 2, 3 et 4 ?

3- Calculer le taux de détente ultérieur δ , en déduire la valeur de ε ' (Le taux de détente préalable) ?

4- Calculer le rendement de ce cycle ?

Exercice2

Le moteur Diesel est un moteur à combustion interne dont l'allumage n'est pas commandé par des bougies mais une compression élevée. Il fonctionne suivant le cycle éponyme constitué de deux isentropiques, d'une isobare et d'une isochore. Plus précisément, le cycle peut être décrit en quatre temps :

1. un cylindre admet l'air seul à travers une soupape d'admission dans un volume V_{A} (portion IA du cycle) ;

2. Les soupapes sont fermées. L'injection de combustible démarre au point B et est progressive jusqu'à un point C de sorte que la pression reste constante ;

3. Les soupapes sont toujours fermées et les produits de la combustion subissent une détente isentropique en repoussant le piston jusqu'à sa position initiale (portion CD) ;

4. La soupape d'échappement s'ouvre : la pression chute brutalement (portion DA), et les gaz brûlés sont évacués.

Le cycle est caractérisé par le taux de compression volumétrique α qui vaut : $\frac{V_A}{V_B}$ et le rapport

de détente préalable β qui vaut : $\frac{V_C}{V_B}$. Les températures du mélange en A et C valent : $T_A = 293$ K

et $T_{C} = 1220$ K.

- 1. Tracer schématiquement ce cycle de Diesel dans le diagramme de Clapeyron, en faisant figurer les 5 points I, A, B, C, et D.
- 2. Identifier sur le cycle les quantités de chaleur échangées et leurs signes, les travaux fournis et leurs signes, et écrire le bilan thermique sur un cycle.
- 3. Donner l'expression des quantités de chaleur échangées et donner l'expression de l'efficacité η m de ce moteur thermique. Faire l'application numérique.
- 4. Montrer que l'efficacité de ce moteur ne dépend que du taux de compression α et du rapport de détente α . On donne : $\gamma = 1,4$; $\alpha = 14$ et $\beta = 1,55$.

Exercice3

Un moteur à combustion interne fonctionne suivant le cycle mixte (cycle de Sabathé). Ce cycle est caractérisé par les paramètres suivants :

 λ = 1.5 (rapport de combustion à volume constant), γ = 1.4, Q₃= 400 (KJ/Kg), ε = 14, T₁= 70 °C, V₂= 1 (m³/ Kg), η_{th} = 50 %

1- Tracer ce cycle sur un diagramme P-V ?

2- Calculer les variables d'état du fluide moteur (P, v, T) aux points caractéristiques du cycle 1, A, A', B, C et D ?

- 3- Calculer le taux de détente préalable arepsilon' ?
- 4- Que devient ce cycle lorsque ε '= 1 ?
- 5- Calculer la vitesse moyenne du piston de ce moteur sachant que N=3000 tours/min.

On donne :

Alésage du cylindre : D = 90 mm et le rapport course du piston/alésage du cylindre = 1.5 ?

III.6.2. Corrigés

Exercice1

1- Représentation du cycle Diesel sur le diagramme Clapeyron P-V :

Fig. III.8. Diagramme Clapeyron

- 2- Calcule des variables d'état du fluide moteur (P, v, T) aux points caractéristiques du cycle 1,2, 3 et 4 ? **r= 287 J/Kg/K**
- Point 1 : P₁=0.9 bar ; V₁=V₂. ε = 1.5 (m^3/Kg) ; $T_1 = \frac{P_1 \cdot V_1}{r} = 470.38 K$
- Point 2 : V₂ = 0.1 (m^3/Kg) ; P₂ = P₁. $(\frac{V_1}{V_2})^{\gamma}$ = 39.88 bars ; T₂ = T₁. $(\frac{V_1}{V_2})^{\gamma-1}$ = 1389.58 K
- Point 3 : $T_{max} = T_3 = 2073 \ K$; $V_3 = V_2$. $\frac{T_3}{T_2} = 0.149 \ (m^3/Kg)$; $P_3 = P_2$

- Point 4 : V₄=V₁ ;
$$P_4$$
= P_3 . $(\frac{V_3}{V_4})^{\gamma}$ = 1.57 *bars* ; T_4 = T_3 . $(\frac{V_3}{V_4})^{\gamma-1}$ = 823.07 *K*

3- Calcul du taux de détente ultérieur δ :

$$\delta = \frac{V_4}{V_2} = 10.06$$

4- Calcul du taux de détente préalable ε' :

 $\varepsilon' = \frac{V_3}{V_2} = 1.49$

5- Rendement du cycle Diesel :

$$\boldsymbol{\eta}_{th} = 1 - \frac{1}{\varepsilon^{\gamma-1}} \cdot \frac{(\varepsilon')^{\gamma} - 1}{\gamma(\varepsilon'-1)} (\varepsilon'-1) = 0.63 = 63\%$$

Exercice2

1. Traçage de cycle dans un diagramme thermodynamique :

Fig. III.9. Cycle Diesel

2. Sur les deux isentropiques AB et CD, aucune chaleur n'est échangée par définition. Le mélange reçoit de la chaleur ($Q_C > 0$) au cours de la combustion isobare (portion BC), et perd de la chaleur ($Q_f < 0$) lors de la détente isochore (portion DA). Sur un cycle, du travail est fourni W_{Total} < 0 (le cycle est parcouru dans le sens horaire ; c'est un cycle moteur) et il résulte d'un travail W_{AB} > 0 fourni au gaz au cours de sa compression entre A et B, et d'un travail W_{CD} < 0 que génère le gaz entre C et D.

Le bilan thermique sur un cycle :

$$\Delta U = -W_{AB} + Q_C + W_{CD} + Q_f = 0$$
$$W_{Total} = W_{AB} + W_{CD} = -Q_C - Q_f$$

3. Au cours de la transformation isobare, la quantité de chaleur échangée est égale à la variation d'enthalpie du gaz, en effet :

$$dU = d(U + P.V) = \delta Q + V dP$$

Dont l'expression soit :

Soit :

$$Q_C = \Delta H_{BC} = C_p (T_C - T_B)$$

Au cours de la transformation isochore, la quantité de chaleur échangée est égale à la variation d'énergie interne du gaz, dont l'expression est simple, soit :

$$Q_f = \Delta H_{DA} = C_p (T_A - T_D)$$

L'efficacité δ_m de ce moteur thermique est donnée par :

- $\delta_m = \frac{|w|}{q_c} = \frac{q_c + q_f}{q_c} = 1 + \frac{q_f}{q_c} = 1 + \frac{C_p(T_A T_D)}{C_p(T_c T_B)}$
- 4. Puisque les transformations AB et CD sont deux isentropiques, et en considérant que le mélange air/carburant est un fluide parfait, on a :

$$\frac{T_A}{T_B} = \left(\frac{V_B}{V_A}\right)^{\gamma-1} = \left(\frac{1}{\alpha}\right)^{\gamma-1}$$
$$\frac{T_C}{T_D} = \left(\frac{V_D}{V_C}\right)^{\gamma-1} = \left(\frac{V_A V_B}{V_B V_C}\right)^{\gamma-1} = \left(\frac{\alpha}{\beta}\right)^{\gamma-1}$$

Alors, l'efficacité s'écrit :

$$\delta_m = 1 + \frac{1}{\gamma} \cdot \frac{T_B \alpha^{1-\gamma} - T_B \alpha^{1-\gamma} \beta^{1-\gamma}}{T_C - T_B}$$

Par ailleurs, la transformation entre B et C est une isobare. D'après la loi des gaz parfaits, on peut écrire alors :

$$\frac{T_C}{V_C} = \frac{T_B}{V_B}$$

Soit: $T_C = \frac{V_C}{V_B}T_B = \beta T_B$

En remplaçant T_C par son expression dans l'équation précédente, on obtient :

$$\delta_m = 1 + \frac{1}{\gamma} \cdot \frac{T_B \alpha^{1-\gamma} (1-\beta^{\gamma})}{T_B (\beta - 1)} = 1 - \frac{1}{\gamma \alpha^{\gamma - 1}} \cdot \frac{(1-\beta^{\gamma})}{(\beta - 1)}$$

$$\delta_m = 61.7\%$$

Cette efficacité est supérieure à celle obtenue dans le cas de moteur à explosion.

Exercice3

1. Représentation du cycle mixte sur les coordonnées P-V :

Fig. III.10. Cycle mixte

- 2. Calcule des variables d'état du fluide moteur (P, v, T) aux points caractéristiques du cycle A, A', B, C et D :
 - Point A : V₁=V₂. ε = 14 (m^3/Kg) ; T_1 =343 K ; P₁ = $\frac{r.T_1}{V_1}$ = 7031.5 Pa
 - Point A' : V₂ = 1 (m^3/Kg); $T_2 = T_1$. $(\frac{V_1}{V_2})^{\gamma-1} = 985.7 K$; $P_2=P_1$. $(\frac{V_1}{V_2})^{\gamma} = 8.23 bars$
 - Point B : $P_3 = \lambda . P_2 = 4.24 \ bars$; $V_3 = V_2$; $T_3 = \lambda . T_2 = 1478.5 \ K$
 - Point C : $P_4 = P_3$; $T_4 = T_5$. $(\frac{P_4}{P_5})^{\frac{\gamma-1}{\gamma}} = 2205.33 \ K$; $V_4 = \frac{rT_4}{V_4} = 1.49 \ (m^3/\text{Kg})$
 - Point D: $T_5 = T_1 + \frac{Q_3}{C_v} = T_1 + \frac{Q_3 10^3 (\gamma 1)}{r} = 900.49 K$; V₅=V₁=14 (m^3/Kg);

$$P_5 = \frac{rT_5}{V_5} = 1.846 \ bars.$$

3. Calcule le taux de détente préalable ε'

$$\varepsilon' = \frac{V_4}{V_3} = 1.49.$$

Si le taux de détente préalable $\varepsilon' = \frac{V_4}{V_3} = 1$ le cycle devient à **Essence**

4. Calcul de la vitesse moyenne du piston :

$$v_{moy \ piston} = \frac{C_p.N}{30} = \frac{1.5. \text{ D. } 10^{-3}. N}{30} = 13.5 \ m/s$$

CHAPITRE IV Turbine à gaz et turboréacteur

IV.1. Généralités

IV.1.1. Turbomachines

Les turbomachines, c'est-à-dire les moteurs fonctionnant avec une turbine (parfois simplement appelés « turbines à gaz », présentent deux grands avantages par rapport à leurs homologues à pistons-cylindres :

Le rapport puissance-poids des turbomachines est environ trois fois supérieur. Lorsque de grandes puissances sont requises avec contrainte d'espace ou de poids, les turbomachines sont incontournables.

Dans le cas de la propulsion aéronautique, le fluide moteur peut être utilisé comme médium de propulsion lui-même. Il sut de laisser l'air sortir de la turbine avec une pression résiduelle et de le laisser se détendre dans une tuyère. On obtient alors une poussée par réaction (égale au débit de masse multiplié par sa vitesse) : c'est le principe du turboréacteur.

Parmi les inconvénients associés, on remarquera que l'efficacité et la réactivité des turbomachines chutent très rapidement à faible puissance. En e.et, à charge partielle, le taux de compression et l'efficacité isentropique des turbines et compresseurs s'effondrent (pour des raisons qui seront étudiées en cours de mécanique des fluides).

Les turbomachines sont donc utilisées lorsque de hautes puissances sont requises de façon soutenue. Par exemple, le secteur automobile, où les variations de puissance sont nombreuses et doivent être actées instantanément, leur est inaccessible.

IV.1.1.1. Turboréacteur

Les deux étages de turbine de B.P entraînent le ventilateur tandis que l'étage H.P de turbine entraîne le compresseur. L'air passant par le compresseur, après que l'addition de la chaleur dans la chambre de combustion fournis toute la puissance de conduire les trois étages de la turbine. Les gaz chauds partant du dernier étage de turbine alors se détendent dans la tuyère de propulsion (tuyère principale) et développent la poussée à une vitesse élevée et à un débit relativement bas.

Le débit massique d'air entrant dans le ventilateur est :

$$\phi_m = \phi_T + \phi_e \tag{IV.1}$$

Ou : ϕ_e : Débit massique d'air traversant l'unité conventionnelle du moteur.

 ϕ_T : Débit massique d'air qui est déviée dans la tuyère du ventilateur.

Fig. IV.3. Principe de fonctionnement d'un Turboréacteur

IV.1.1.2. Turbine à gaz

a. Description et principe de fonctionnement

La turbine à gaz est une installation motrice dans laquelle un mélange gazeux est comprimé par un turbocompresseur avant d'être porté à haute température de façon quasi is obare, puisdétendu dans une turbine. Dans sa version la plus répandue, la turbine à gaz aspire de l'air atmosphérique qui est comprimé, puis se transforme en fumées à haute température par combustion d'un carburant dans une chambre adéquate. Ces fumées sont ensuite détendues dans la turbine, et enfin évacuées dans l'atmosphère. Le schéma de principe d'une telle installation est illustré dans la figure. IV.4, tandis que les diagrammes p,v et T,S permettent de suivre l'évolution thermodynamique du fluide.

Fig. IV.4. Principe de fonctionnement de la Turbine à gaz (TAG)

L'expansion thermique des gaz due à l'effet de la source chaude donne lieu à la production d'une puissance motrice de détente supérieure à celle nécessaire à la compression du gaz frais. L'excédent de la puissance de la turbine sur l'ensemble des puissances que prélève le compresseur, que dissipent les frottements mécaniques (paliers et butées) et que consomment les auxiliaires (pompe à combustible, lubrification, soufflante de refroidissements...), constitue la puissance effective P_e de cette installation motrice :

$$P_e = P_{mT} - P_{mC} + P_{fm+aux} \tag{IV.2}$$

b. Composantes de la turbine à gaz :

• Compresseurs

La plupart des compresseurs sont axiaux, c'est-à-dire que l'air les traverse parallèlement à l'axe de rotation, mais on utilise parfois des compresseurs centrifuges, qui projettent l'air radialement ; quel que soit le procédé utilisé, les évolutions thermodynamiques de l'air restent identiques.

Nous quantifions le rendement d'un compresseur en comparant sa puissance avec celle d'un compresseur idéal (un compresseur qui serait isentropique). L'efficacité isentropique du compresseur peut être définie en fonction de la puissance isentropique pour un débit d'air constant et la puissance réelle consommée par le compresseur :

$$\eta_{c} = \frac{P_{isentropique}}{P_{r\acute{e}elle}}$$
(IV.3)

Comme celle d'une turbine, le rendement d'un compresseur est toujours inférieur à 1. Si ce rendement est connu, nous pouvons comparer les propriétés réelles de l'air à l'entrée et à la sortie du compresseur avec celles que l'on mesurerait dans le cas idéal :

$$P_{C} = m. C_{p}. (T_{B r} - T_{A}) = \frac{1}{\eta_{C}} (T_{B} - T_{A})$$
(IV.4)

Dont :

T_{Br}, T_B: Températures : réelle et idéale à la sortie du compresseur

T_A : Température ambiante

• Chambre de combustion :

L'apport de chaleur des turbomachines se fait dans une ou plusieurs chambres de combustion. L'air y est réchauffé à pression constante par combustion ; sa température et son volume spécifique augmentent fortement. Aucun travail n'est apporté dans la chambre de combustion, et la pression y reste approximativement constante.

La puissance produite par la chambre de combustion est définie en fonction de la température d'air entrant T_A et de du gaz brulé à la sortie T_B :

$$P_C = H_B - H_A = C_{p \ gaz} T_B - C_{p \ air} T_A \tag{IV.5}$$

• Turbine :

Le rôle de la turbine est d'alimenter le compresseur : elle doit donc extraire de l'air une puissance suffisante pour faire fonctionner ce dernier et compenser d'éventuelles pertes de transmission. En fonction de la configuration de la turbomachine, la turbine pourra ensuite extraire encore de l'énergie, pour alimenter d'autres composants.

Son rendement est défini par :

$$\eta_T = \frac{P_{r\acute{e}elle}}{P_{isentropique}}$$
(IV.6)

La puissance extraite par la turbine s'exprime en fonction des températures (réelle et idéale) à la sortie de la turbine :

$$P_T = C_{p \ gaz} (T_{B \ r} - T_A) = \eta_T C_{p \ gaz} (T_B - T_A)$$
(IV.7)

IV.2. Cycle de base

IV.2.1. Cycle de Joule-Brayton idéal

Il est appelé aussi cycle théorique simplifié, la forme idéale se compose de deux processus isobares et de deux processus isentropiques. Les isobares comprennent le système de chambre de combustion de la TAG et le côté de gaz d'échappement. Les isentropiques représentent la compression (compresseur) et la détente (extenseur de turbine).

Fig. IV.4. Cycle de Joule-Brayton

Le cycle de Brayton est composé de quatre processus fondamentaux :

- 1) 1 2 : Compression isentropique
- 2) 2 3 : Apport de chaleur à pression constante (combustion isobare)
- 3) 3 4 : Détente isentropique des gaz dans la turbine
- **4)** 4 1 : Echappement des gaz de combustion vers l'atmosphère à pression constante (gaz d'échappement et d'admission dans le cycle ouvert)

IV.2.1.1. Rendement thermodynamique

En appliquant le premier principe de la thermodynamique :

- 1) (1-2)
 - Travail de compression (isentropique) :

$$W_c = m. C_{p air} (T_2 - T_1)$$
(IV.8)

• Puissance de compresseur

$$P_C = \emptyset_{m air} (h_2 - h_1) \tag{IV.10}$$

2) (2-3)

• Chaleur fournie par la combustion (isobare)

$$Q_1 = Q_{23} = m. C_{p \ gaz} (T_3 - T_2)$$
 (IV.10)

- 3) (3-4)
 - Travail récupéré par détente de la turbine (isentropique)

$$W_T = m. C_{p \ gaz} (T_4 - T_3)$$
 (IV.11)

• Puissance de la turbine

$$P_T = (\phi_{m air} + \phi_{m gaz}). (h_4 - h_3)$$
 (IV.12)

4) (4-1)

• Chaleur cédée lors de l'échappement des gaz brulés

$$Q_2 = Q_{41} = m. C_{p \ gaz} (T_4 - T_1)$$
(IV.13)

• Travail du cycle :

$$W_{cycle} = W_T - W_c \tag{IV.14}$$

• Rendement thermique :

$$\eta_{th} = \frac{W_{effectif}}{Q_{fournie}} = \frac{W_T - W_c}{Q_1} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$
 (Transformation isentropique) (IV.15)

- Inconvénients de ce cycle
- Importance de travail de compression Wc par rapport à Wt
- Puissance installée plus élevée que la puissance utile (effet aggravé par les pertes)

IV.2.2. Cycle de Joule-Brayton réel :

Fig. IV.4. Cycle de Joule-Brayton réel

- Cycle irréversible (1 2 3 4 1)
- Cycle irréversible (1 2' 3 4' 1)
- 1) 1 2 : Compression adiabatique irréversible
- 2) 2 3 : Apport de chaleur à pression constante (combustion isobare)
- 3) 3 4 : Détente adiabatique irréversible des gaz dans la turbine
- 4) 4 1 : Echappement des gaz de combustion vers l'atmosphère.
 - Rendement du compresseur :

$$\eta_{c} = \frac{h_{2^{*}} - h_{1}}{h_{2} - h_{1}} = \frac{T_{2^{*}} - T_{1}}{T_{2} - T_{1}}$$
(IV.16)

• Rendement de la turbine :

$$\eta_T = \frac{h_3 - h_4}{h_3 - h_{4^*}} = \frac{T_3 - T_4}{T_3 - T_{4^*}}$$
(IV.17)

IV.2.2.1. Rendement thermodynamique

$$\eta_{th} = \frac{W_{effectif}}{Q_{fournie}} = \frac{C_{p \ gaz} \ (T_3 - T_4) - C_{p \ air} \ (T_2 - T_1)}{C_{p \ gaz} \ (T_3 - T_2)}$$
(IV.18)

Après introduction des différents rendements : ($C_{p gaz} = C_{p air} = cte$)

$$\eta_{th} = \frac{\eta_T (T_3 - T_4^*) - \frac{T_2^* - T_1}{\eta_C}}{(T_3 - T_1) - \frac{T_2^* - T_1}{\eta_C}}$$
(IV.19)

$$\eta_{th} = \frac{\eta_{T_{1}} \frac{T_{3}}{T_{1}} (1 - \frac{T_{4}^{*}}{T_{3}}) - \frac{T_{2}^{*}}{\eta_{C}}}{\frac{T_{2}^{*}}{(\frac{T_{3}}{T_{1}} - 1) - \frac{T_{2}^{*}}{\eta_{C}}}}$$
(IV.20)

IV.3. Autres cycles

IV.3.1. Cycle de Joule-Brayton avec récupération

Le cycle avec récupération est caractérisé par la possibilité de réchauffer l'air comprimé par les gaz échappés de la turbine avant d'être introduit dans la chambre de combustion

 $T_{2^*} = T_2$ et $T_{4^*} = T_4$ (échange de chaleur parfait et chaleur spécifique constante)

IV.3.1.1. Rendement thermodynamique

$$\eta_{th} = \frac{C_p (T_3 - T_4) - C_p (T_2 - T_1)}{C_p (T_3 - T_2)} = 1 - \frac{(T_2 - T_1)}{(T_3 - T_4)}$$
(IV.21)

$$\eta_{th} = \frac{T_1}{T_3} \frac{\binom{T_2}{T_1} - 1}{\binom{1 - \frac{T_4}{T_3}}{T_3}} = \frac{T_1}{T_3} \frac{\binom{\gamma - 1}{\tau^{\gamma} - 1}}{\binom{1 - \frac{1}{\gamma - 1}}{\tau^{\gamma}}}$$
(IV.22)

 τ Taux de compression $\tau = \frac{P_2}{P_1}$

IV.3.2. Cycle d'Ericsson (compression et détente isotherme)

Transformation caractérisée par une compression et détente isothermes et échange de chaleur isobare.

Fig. IV.7. Cycle d'Ericsson

1) 1 - 2 : Compression isotherme

$$W_C = (h_2 - h_1) - Q_{12} = T_L(s_2 - s_1)$$
, $h_2 = h_1$

2) 2 - 3 : Combustion isobare

$$Q_{23} = h_3 - h_2$$

- 3) 3 4 : Détente isotherme
- $W_T = (h_4 h_3) Q_{34} = T_H(s_4 s_3)$, $h_4 = h_3$
- 4) 4 1 : Rejet de chaleur par échappement isobare

$$Q_{41} = h_1 - h_4 = -Q_{23}$$

IV.3.2.1. Rendement thermodynamique

$$s_{4} - s_{3} = -R.Ln \frac{P_{4}}{P_{3}} = R.Ln \frac{P_{1}}{P_{2}} = s_{1} - s_{2}$$

$$\eta_{th} = \frac{T_{L} (s_{4} - s_{3}) - T_{H} (s_{1} - s_{2})}{T_{L} (s_{4} - s_{3})} = 1 - \frac{T_{H}}{T_{L}}$$
(IV.23)

IV.3.3. Cycle à compression et détente multi-étagées

Fig. IV.8. TAG à compression et détente multi étagées avec refroidissement et réchauffement intermédiaires

IV.3.3.1. Rendement thermodynamique

$$\eta_{Cycle} = \frac{W_{effectif}}{Q_{fournie}} = \frac{Q_H - Q_L}{Q_H} = 1 - \frac{Q_L}{Q_H} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$

IV.3.4. Cycle combiné ou cogénération

Fig. IV.9. Cycle combiné (gaz/vapeur)

IV.3.4.1. Génération combinée d'électricité :

- Récupération de la chaleur des gaz chaud en sortie turbine pour alimenter un cycle à vapeur.
- Génération combinée d'électricité et de chaleur (rendement > 60 %)
- Récupération de la chaleur des gaz chaud en sortie turbine pour alimenter un échangeur externe à eau pour la production d'eau chaude.

IV.3.4.2. Echanges de chaleur dans le générateur de vapeur GVR :

Dans une centrale à cycle combiné, la veine des gaz chauds sortant de la turbine à gaz doit être refroidie par l'eau du cycle de récupération à vapeur. Dans un cycle à un seul niveau de pression, cette eau entre dans l'échangeur à l'état liquide à environ 30 °C, après avoir été comprimée par les pompes d'alimentation situées en aval du condenseur. Elle est ensuite échauffée dans l'économiseur jusqu'à la température d'ébullition correspondant à sa pression. Elle est alors vaporisée, à température constante, puis surchauffée, avant d'être détendue dans la turbine à

vapeur.

Fig. IV.10. Cycle combiné (gaz/vapeur)

IV.4. Applications et Corrigés

IV.4.1. Applications

Exercice1

Un système de turbine à gaz sans récupération représenté par le cycle de Joule (voir digramme entropique ci-dessous) composé de :

-Compresseur axial (taux de compression τ_c =4, η_{comp} =80%) aspire l'air ambiant à la température T₁=27°C.

-Chambre de combustion avec pertes thermiques négligeables, T₃=1027°C.

-Turbine à roue mobile, d'efficacité η_{turb}=65%

-Economiseur à l'échappement.

Les gaz régnant dans le cycle supposés parfaits, $Cp_{air} = Cp_{gaz} = 1 \text{ KJ/Kg.K}, \beta = \frac{\gamma - 1}{\gamma} = 0.4$.

- **1.** Calculer les travaux réels de compression et de détente W_c et W_d.
- 2. Déterminer l'apport thermique fourni/échappé par le cycle (Q₂₃, Q₄₁).
- **3.** Calculer η_{ther} réel du cycle.

Fig. IV.11. Diagramme entropique

Exercice2

Un débit d'air de 20 Kg/s à la température $T_1 = 30$ °C entre dans le compresseur d'une installation de turbine à gaz fonctionnant suivant le cycle de Joule (Brayton). Le taux de compression est de 7 et la température à l'entrée de la turbine est $T_3 = 650$ °C. Les rendements isentropiques de la turbine et du compresseur sont respectivement 0,85 et 0,80, le rendement de la chambre de combustion est de 0,80.

On considère que $C_{pair} = C_{pgaz} = 1 \text{ KJ/Kg.K et } \gamma_{air} = \gamma_{gaz} = 1,4. \text{ Calculer}$:

- 1- La puissance réelle nécessaire pour la compression de l'air
- 2- La puissance totale réelle produite par la turbine
- 3- La puissance disponible (reçue par la génératrice électrique) si le rendement de l'accouplement est égal à 0,90
- 4- Le rendement thermique théorique du cycle.
- 5- Le rendement réel du cycle.

Exercice3

On considère une turbine à gaz de centrale électrique. Les données du problème sont les suivantes :

- l'état 1 est caractérisé par les valeurs : p_1 = 100 kPa et T_1 = 20 °C.

– la pression à laquelle est réalisée la combustion est : $p_2 = p_3 = 1780$ kPa.

– les gaz combures ont, à la sortie de la chambre de combustion, une température T_3 = 1000 °C.

- les transformations dans la turbine et le compresseur sont supposées isentropiques ;

– les rendements m'mécaniques de la turbine et du compresseur valent η_{mec} = 0.98.

On demande de calculer :

Dans le cas où on considère une valeur constante pour γ (γ = 1, 4) :

1. les états (p, T) successifs du gaz au cours du cycle.

2. l'action calorifique Q d'engagée par la combustion, le travail moteur disponible et le rendement global du cycle.

Exercice4

On se propose d'étudier le cycle à 4 temps développé par Ericsson. Ce cycle est parcouru par une masse constante d'air m=58 g, considéré comme un gaz parfait. Ce système thermodynamique subit successivement les 4 transformations réversibles suivantes :

1. Une compression isotherme de l'état A ($P_A = P_1$, V_A , $T_A = T_1$) vers l'état B ($P_B = P_2$, V_B , T_B).

2. Un échauffement isobare de l'état B vers l'état C (P_C , V_C , $T_C = T_2$).

3. Une détente isotherme de l'état C vers l'état D (P_D, V_D, T_D).

4. Un refroidissement isobare de l'état D vers l'état A.

On donne les valeurs suivantes :

Constante des gaz parfaits : $R = 8.314 J.K^{-1}.mol^{-1}$.

Capacité calorifique molaire à pression constante : Cp, m = $\frac{7}{2}$.R

Masse molaire de l'air : $M = 29 \text{ g.mol}^{-1}$.

Taux de compression : $\tau = P_2/P_1 = 5$.

Température au point C : $T_C = 1200$ K.

 $V_A = 50L, P_1 = 10^5 Pa.$

1. Déterminer les valeurs numériques de P, V et T pour chacun des états A, B, C et D. On fera un tableau récapitulatif et on exprimera les résultats dans les unités SI.

2. Représenter le cycle dans le diagramme de Clapeyron.

3. Calculer les travaux et les quantités de chaleur échangés au cours des 4 transformations. Faire les applications numériques.

4. Donner la chaleur reçue (Q_{reçue}) et la chaleur cédée (Q_{cédée}) par l'air au cours du cycle. Donner le travail total échangé ainsi que la variation d'énergie interne totale. Conclure.

5. Pensez-vous que l'on pourrait utiliser cette machine thermique comme réfrigérateur, comme pompe à chaleur ou comme moteur thermique ?

6. Calculer le rendement ou l'efficacité de cette machine thermique.

7. Quel serait le rendement ou l'efficacité de cette machine thermique dans le cas où elle fonctionnait suivant un cycle de Carnot entre les deux sources de chaleur aux températures T_1 et T_2 ? Comparer à la valeur déjà trouvée. Commenter le résultat.

8. Afin de connaître la puissance de cette machine thermique, on a mesuré le débit massique de l'air. La valeur mesurée est : $\phi_m = 5.8 \text{ kg/s}$. Sachant qu'un cycle utilise une masse m = 58 g, quel est le temps correspondant à un cycle. En déduire la puissance développée par cette machine thermique.

IV.4.2. Corrigés

Exercice1

1- Travail réel de compression :

2- Travail réel de détente dans la turbine :

 $(w_{dét})_{réel} = H_{4'} - H_3 = C_p x (T_{4'} - T_3)$

Pour une transformation isentropique :

 $\begin{array}{l} T_4 = T_3 \left(P_4 / P_3 \right)^{(v-1)/v} = \left(1027 + 273 \right) x \left(1/4 \right)^{(1,4-1)/1,4} \left(P_4 = P_1 ; P_3 = P_2 \right) & T_4 = 746,65 \ K \\ T_{4'} = T_3 + \left(T_4 - T_3 \right) x \ \eta \ _{dét} = \left(1027 + 273 \right) + \left[746,65 - (1027 + 273) \right] x \ 0,65 \\ = 940,32 \ K \\ \left(w_{dét} \right)_{réel} = 1x \left[940,32 - (1027 + 273) \right] & = -359,67 \ \text{KJ/Kg} \end{array}$

3- L'apport thermique fourni/échappé par le cycle (Q₂₃, Q₄₁) :

Q_{23r}= H₃ - H₂'= C_p x (T₃ - T₂') = 1x [1027+273-577,91]= 722,09 Kj/Kg

 $Q_{41r} = H_1 - H_{4'} = C_p x (T_1 - T_{4'}) = 1x [27+273-940,32] = -640,32 \text{ KJ/Kg}$

4- Le rendement réel du cycle

$$\begin{split} \eta_{\text{th-r\acute{e}el}} &= (w_{\text{cycke}})_{\text{r\acute{e}el}} / (q_1)_{\text{r\acute{e}elle}} = [| (w_{\text{turb}})_{\text{r\acute{e}el}} | - | (w_{\text{comp}})_{\text{r\acute{e}el}} |] / (q_{41})_{\text{r\acute{e}elle}} \\ \eta_{\text{th-r\acute{e}el}} &= \frac{359,67 - 277,91}{640,32} = 0.127 \end{split}$$

Exercice2

1- La puissance réelle nécessaire pour la compression de l'air est :

 $(P_{u \text{ comp}})_{r \text{ eel}} = \varphi \times (w_{comp})_{r \text{ eel}} = \varphi \times (H_{2'} - H_1) = \varphi \times C_p \times (T_{2'} - T_1)$

1-2 pour une transformation adiabatique réversible (isentropique) :

 $T_{2} = T_{1} (P_{2}/P_{1})^{(v-1)/v} = (30+273) \times (7/1)^{(1,4-1)/1,4} T_{2} = 528,32 \text{ K}$ $T_{2'} = T_{1} + (T_{2} - T_{1}) / \eta_{comp} = (20+273) + [528,32-(30+273)] / 0,80$ = 584,65 K $(P_{ucomp})_{réel} = 20x1x [584,65-(30+273)] = 5633 \text{ KW}$

2- La puissance totale réelle produite par la turbine est :

 $\begin{array}{l} (\mathsf{P}_{u \ turb}) \ {}_{r\acute{e}el} = \phi \ x \ (w \ {}_{turb}) \ {}_{r\acute{e}el} = \phi \ x \ (\mathsf{H}_{4'} - \mathsf{H}_3) = \phi \ x \ \mathsf{Cp} \ x \ (\mathsf{T}_{4'} - \mathsf{T}_3) \\ \mathsf{T}_4 = \mathsf{T}_3 \ (\mathsf{P}_4/\mathsf{P}_3)^{\,(v-1)/v} = \mathsf{T}_3 \ (\mathsf{P}_1/\mathsf{P}_2) \ (v-1)/v = (650+273) \ x \ (1/7)^{\,(1,4-1)/1,4} \\ = 529,35 \ \mathsf{K} \\ \mathsf{T}_{4'} = \mathsf{T}_3 + (\mathsf{T}_4 - \mathsf{T}_3) \ x \ \eta_{turb} = (650+273) + [529,35 - (650+273)] \ x \ 0.85 = 588,4 \ \mathsf{K} \end{array}$

 $(P_{u \text{ turb}})_{réel} = 20 \times 1 \times [(588,4 - (650+273))]$ = - 6692 KW = - 6,692 MW Ou en valeur absolue, | $(P_{u \text{ turb}})_{réel}$ |= 6692 KW = 6,692 MW

3- La puissance utile (disponible) sur l'arbre :

 $|(P_{uturb})_{réel}| = [|(P_{uturb})_{réel}| - |(P_{ucomp})_{réel}|] \times \eta_{gen} = (6692 - 5633) \times 0, 9 = 953,1 \text{ KW}$

4- Le rendement thermique du cycle théorique (réversible) :

$$\begin{split} \eta_{\text{th-theo}} &= (w_{\text{cycle}})_{\text{theo}} / (q_1)_{\text{theo}} = [| (w_{\text{turb}})_{\text{theo}} |-| (w_{\text{comp}})_{\text{theo}} |] / (q_1)_{\text{theo}} \\ &= [(H_3 - H_4) - (H_2 - H_1)] / ((H_3 - H_2)) \end{split}$$

 $= [(T_3 - T_4) - (T_2 - T_1)]/((T_3 - T_2))$ = [(650+273 - 529,35) - (528,32 - (273+30))]/(650+273 - 528,32)) = 0,427

5- Le rendement réel du cycle avec pertes de la chambre de combustion :

$$\begin{split} \eta_{th-r\acute{e}el} &= (w_{cycke})_{r\acute{e}el} / (q_1)_{r\acute{e}elle} = [| (w_{turb})_{r\acute{e}el} | - | (w_{comp})_{r\acute{e}el} |] / (q_1)_{r\acute{e}elle} \\ &= [(H_3 - H_{4'}) - (H_{2'} - H_1)] / [(H_3 - H_{2'}) / \eta_{ch.c}] \\ &= [(T_3 - T_{4'}) - (T_{2'} - T_1)] / [(T_3 - T_2) / \eta_{ch.c}] \\ &= [(650 + 273 - 588, 4) - (584, 65 - (273 + 30))] / [(650 + 273 - 584, 65) / 0, 80] = 0,125 \end{split}$$

Exercice3

Pour des chaleurs massiques constantes

Tableau caractéristique des états :

Etat	Pression (bars)	Températu	re (°C et K)
1	1	20	293.15
2	17.8		
3	17.8	1000	1273.15
4	1		

1. Comme les transformations $(1 \rightarrow 2)$ et $(3 \rightarrow 4)$ sont isentropiques, la loi de transformation p.v^{γ} est constante. Donc :

$$\frac{T_2}{T_1} = \frac{P_1}{P_3} \frac{\gamma^{-1}}{\gamma}$$
Ce qui donne : T₂= 667.35 K ; T₄=559.26 K

$$\frac{T_4}{T_3} = \frac{P_4}{P_3} \frac{\gamma^{-1}}{\gamma}$$

2. Le travail effectif : (C_{pair} = C_{pgaz} = 1 KJ/Kg.K)

$$W_{eff} = \eta_{m\acute{e}c,T} C_{p \ gaz} (T_3 - T_4) - \frac{1}{\eta_{m\acute{e}c,C}} C_{p \ air} (T_2 - T_1) = 320.95 \ KJ/Kg$$

3. L'action calorifique dégagée par la combustion

$$Q = C_{p gaz}(T_3 - T_2) = 611.86 KJ/Kg$$

4. Le rendement :

$$\eta_{Cycle} = \frac{W_{eff}}{Q} = 0.525$$

Pour une chaleur spécifique à pression constante (C_p) connue et constante, l'exercice se résout de fa, con simple et rapide. Il suffit d'appliquer les deux lois de transformation pour trouver les températures de fin de transformation. En est-il de même lorsqu'on modifie l'hypothèse de C_p constant ?

Exercice4

1. Calcul de nombre de moles d'air présent dans le cycle :

$$n = \frac{m}{M} = 2 moles$$

En utilisant la loi des gaz parfaits, la propriété d'une transformation isotherme : PV = constante et la caractéristique d'une transformation isobare : V/T constante, on trouve facilement les variables d'état du gaz considéré :

	P (Pa)	V (m³)	т (К)
A	10 ⁵	50.10 ³	300.7
В	5.10 ⁵	10.10 ³	300.7
С	5.10 ⁵	40.10 ³	1200
D	10 ⁵	200.10 ⁵	1200

2. Représentation du cycle dans le diagramme de Clapeyron :

Fig. IV.11. Cycle TAG à compression et détente isothermes (Ericsson).

3. Calcul des travaux échangés au cours des quatre transformations :

• Transformation AB : isotherme réversible

$$\delta W_{AB} = -PdV = -RT_1 \cdot \frac{dV}{V} \quad \rightarrow \quad W_{AB} = -RT_1 \cdot Ln \frac{V_B}{V_A}$$

L'utilisation de la loi de Joule et du premier principe nous indique que pour une transformation isotherme :

$$\Delta U_{AB} = W_{AB} + Q_{AB} = 0 \rightarrow Q_{AB} = - W_{AB} = RT_1 \cdot Ln \frac{V_B}{V_A}$$

• Transformation BC : isobare réversible

$$\delta W_{AB} = -P_2 dV \quad \rightarrow \quad W_{AB} = -P_2 (V_C - V_B)$$
$$\delta Q_{BC} = n \cdot c_p dT = \frac{7}{2} nR (T_2 - T_1)$$

Transformation CD : isotherme réversible

$$\delta W_{CD} = -PdV = -RT_2 \cdot \frac{dV}{V} \rightarrow W_{CD} = -RT_2 \cdot Ln \frac{V_D}{V_C}$$

• Transformation DA : isobare réversible

$$\delta W_{DA} = -P_1 dV \quad \rightarrow W_{DA} = -P_1 (V_A - V_D)$$
$$\delta Q_{DA} = n \cdot c_p dT = \frac{7}{2} nR (T_1 - T_2)$$

• Applications numériques

	A-B	B-C	C-D	D-A
W (Joules)	8047	-15000	-32111	15000
Q (Joules)	-8047	52337	32111	-52337

4. Calcul :

 $Q_{reçue}$ = somme des quantités de chaleurs positives = $Q_{BC}+Q_{CD}$ = +84448 J

Q_{cédée} = somme des quantités de chaleurs négatives = Q_{AB}+Q_{DA}= -60384 J

 $W_{total} = W_{AB} + W_{BC} + W_{CD} + W_{DA} = -24064 \text{ J}$

 $\Delta U_{cycle} = W_{total} + Q_{reçue} + Q_{cédée} = 0 J$

On vérifie que $\Delta U_{cvcle} = 0 J$; ce qui est attendu car U est une fonction d'état : sa variation sur un cycle est nulle.

- 5. Le travail total au cours du cycle est négatif ($W_{total} < 0$). Il s'agit d'un moteur thermique. 6. Le rendement de ce cycle moteur est : $\eta_{cycle} = \frac{W_{total}}{Q_{reçue}} = \frac{24064}{84448} = 0.285$

7. Dans le cas d'un cycle de Carnot fonctionnant entre les deux sources de chaleur aux températures T1 et T2, le rendement est : $\eta_{Carnot} = 1 - \frac{T_1}{T_2} = 1 - \frac{300.7}{1200} = 0.749$. Cette valeur est supérieure à celle déjà trouvée. Ceci vérifie bien que le cycle de Carnot est un cycle idéal qui présente un rendement maximal.

Si le débit massique d'air est : $\phi_m = 5.8 \text{ kg/s}$, sachant que la masse d'air circulant dans le cycle est m = 58 g = 58.10⁻³ kg, cela veut dire que la durée d'un cycle est : $\Delta t = m/\phi_m = 0.01 \text{ s}$.

Le travail fourni pendant un cycle est W_{total} = +24064 J, on a donc une puissance :

Puissance = $W_{total}/\Delta t = 2.4.10^6 W$.

CHAPITRE V Turbines à vapeur

V.1. Rappel : Changement de phase d'un corps pur (liquide-vapeur)

Lorsqu'un corps pur évolue d'un état d'équilibre à un autre, on assiste dans certaines conditions à une modification importante et soudaine de ces propriétés optiques, mécaniques, électriques...

On dit alors qu'il subit un changement (transition) d'état (de phase). Ces phénomènes sont couramment observés, qu'il s'agisse du changement de l'eau liquide en vapeur ou en glace, mais cette définition englobe également d'autres phénomènes comme le passage du fer ! (réseau métallique cubique centré) au fer ! (réseau métallique cubique à faces centrées) à une température de 1176K sous pression atmosphérique, c'est alors une variation allotropique.

V.1.1. Zone d'existence des différentes phases

On appelle changement d'état ou transition de phase la traversée d'une courbe d'équilibre du diagramme P, T

Durant le changement de phase, les deux états coexistent : l'état est diphasé.

Un changement d'état liquide-vapeur s'explique qualitativement par une agitation ou une vibration de plus en plus grande des molécules qui finissent par vaincre les forces de liaison, si la pression environnante est forte sur le liquide il faudra plus d'agitation donc une température plus forte. L'entropie croît dans une transition liquide-vapeur.

Fig. V.1. Transition liquide-vapeur

V.1.2. Equilibre d'un corps pur sous deux phases

V.1.2.1. Condition et courbe d'équilibre

Considérons une masse m d'un corps pur, subissant une évolution réversible à T et p constantes (isotherme et isobare) :

Introduisons l'enthalpie libre G = U+PV-TS

$$dG = dU + PdV + VdP - TdS - SdT = TdS - PdV + PdV + VdP - TdS - SdT$$
(V.1)

On va utiliser cette fonction pour un système présentant deux phases 1 et 2 L'enthalpie libre totale du système est une fonction extensive donc :

(V.3)

$$G = m x G_2 + m (1-x) G_1$$

 G_1 et G_2 les enthalpies libres massiques des phases 1 et 2 à la température et à la pression de l'équilibre, m la masse totale et x la fraction massique en phase 2.

Pour que la coexistence des deux phases soit un état d'équilibre à T et p, G doit atteindre un état d'équilibre, et ne plus varier en fonction de x : $G_1(T, p) = G_2(T, p)$.

Fig. V.2. Courbe d'équilibre

V.1.2.2. Formule de Clapeyron

Considérons un corps pur sous deux phases en équilibre. On a égalité des enthalpies massiques $G_1(T, p) = G_2(T, p)$. Si on prend un autre état d'équilibre à T + dT et à P + dP

On a :

$$G_1(T + dT, P + dP) = G_2 (T + dT, P + dP)$$
 (V.4)

Or on a montré que dG = VdP-S dT

Soit par unité de masse

$$dG_1 = dG_2 \quad Ou \quad -S_1 dT + V_1 dP = -S_2 dT + V_2 dP$$
(V.5)

$$\Delta S = S_2 - S_1 = (V_2 - V_1) dP/dT$$
 (V.6)

 $V_2,\,V_1$ et ΔS sont des grandeurs massiques

$$H_{12} = L_{12} = T (V_2 - V_1) dP/dT$$
 (V.7)

dP/dT est calculé le long de la courbe d'équilibre de T.

Remarque : L_{12} et ΔS , ont même signe, L_{12} est donc positif quand le désordre croît (par exemple pour une vaporisation).

V.1.3. Titre en vapeur (teneur en vapeur)

Lorsqu'on est en présence du mélange liquide-vapeur, la pression étant fonction de T les variables d'état à utiliser est T ou p et x la proportion en masse de vapeur dans le mélange, ou encore titre en vapeur.

Fig. V.3. Titre en vapeur

Notation usuelle : il est d'usage d'utiliser des lettres primées une fois pour les grandeurs relatives au liquide saturant et des lettres primées deux fois pour celles de la vapeur saturante. Les lettres minuscules sont souvent réservées aux grandeurs massiques.

Soit **m** la masse total du corps sous deux phases :

Le titre en vapeur est alors X=m"/m

Remarque importante :

X s'exprimera en fonction des variables extensives utiles, pratiquement le volume, l'enthalpie et l'entropie.

Raisonnons par exemple avec le volume :

V=V'+V", ou les volumes sont totaux

En grandeurs massiques V = mv = m'v' + m''v''

En introduisant x on obtient v = x v"+ (1-x) v'

On d déduit que :

$$X = \frac{V - V'}{V'' - V'} = \frac{h - h'}{h'' - h'} = \frac{s - s'}{s'' - s'}$$
(V.9)

V.2. Généralités

V.2.1. Principe de fonctionnement de la turbine à vapeur (TAV)

La turbine à vapeur est un moteur thermique à combustion externe, fonctionnant selon le cycle thermodynamique dit Clausius-Ranhime. Ce cycle se distingue par le changement d'état affectant

le fluide moteur qui est en général de la vapeur d'eau. Ce cycle comprend au moins les étapes suivantes :

- ✓ L'eau liquide est comprimée par une pompe et envoyée vers la chaudière
- ✓ La vapeur se détend dans la turbine en fournissant de l'énergie mécanique
- ✓ La vapeur détendue est condensée au contact de la source froide sous vide partiel. La turbine en constitue une évolution exploitant les principaux avantages des turbomachines à savoir :
- ✓ Puissance massique et puissance volumique élevée
- ✓ Rendement améliorée par la multiplication des étages de détente

Fig. V.5. Installation de TAV

V.2.1. Les principaux composants des turbines à vapeur

• Alternateur :

L'alternateur est une machine électrique du type génératrice à courant alternatif qui transforme l'énergie mécanique en énergie électrique. Il est entraîné par la turbine [3].

• Transformateurs :

Transformateur principal (TP) : L'évacuation de l'énergie produite par l'alternateur est évacuée sur le réseau haute tension à travers un transformateur principal élévateur : 13800V/63000V, un disjoncteur 63 KV, trois câbles souterrains à pression d'huile et une ligne triphasée aérienne. Transformateur de soutirage (TS) : Les auxiliaires du groupe sont alimentés à travers un transformateur de soutirage (TS) abaisseur : 13800V/6300V en service normal et un transformateur de démarrage (TD) abaisseur : 63000V/ 6300V en secours.

• Chaudière :

Le rôle du générateur de vapeur est d'extraire l'énergie calorifique du combustible pour la céder à l'eau et produire de la vapeur à des paramètres fixés. Il constitue la source chaude du cycle thermodynamique. Cette vapeur sera utilisée par la turbine pour fournir de l'énergie mécanique.

• Condenseur :

Afin de maximiser le rendement de la turbine à vapeur, la pression et la température de la sortie de vapeur doivent être aussi basses que possible. Pour cela, la vapeur qui sort de la turbine est dirigée vers le condenseur où elle est refroidie et condensée. Le condenseur est un échangeur de chaleur avec des milliers de tubes dans lesquels l'eau du circuit de refroidissement circule. La vapeur circule sur les tubes et se condense au contact de ceux-ci. L'eau du circuit de refroidissement extrait alors la chaleur de la vapeur.

• Pompe d'alimentation :

La pompe KSB à très haute pression est une pompe a centrifuge multicellulaire. Elle comprend un corps d'aspiration, un corps de refoulement et un certain nombre d'étages ou de cellules assemblées par des tirants. L'eau, provenant de la bâche alimentaire à la pompe, possède une énergie de pression et une énergie cinétique qui seront augmentées dans les turbines en mouvement pour alimenter le générateur de vapeur (chaudière) en quantité nécessaires d'eau pour maintenir le niveau normal.

Fig. V.6. Schémas d'une turbine à vapeur

V.3. Cycles de Rankine sans surchauffe

Fig. V.7. Cycle de Rankine sans surchauffe

• Etude des différentes transformations :

✓ Travail de compression

L'application du premier principe de la thermodynamique permet d'écrire :

$$dh = dQ + dW + K + gz \quad dQ=0 ; dW=Vdp$$
 (V.10)

$$dh = TdS + dW$$

 $dh = Vdp$ (V.11)

En faisant l'approximation que le volume massique de l'eau reste constant sur l'intervalle de pression considéré : $\Delta h = h_A - h_E = V dp = V \int_{p_E}^{p_A} dp = V (p_A - p_E) > 0$ (V.12)

✓ Transfert_thermique dans le générateur de vapeur (chaudière)

On décompose la transformation AC en deux étapes : échauffement isobare du liquide puis vaporisation à la pression $p_A = p_B = p_C$.

a. Calcul de la chaleur reçue lors de l'échauffement isobare de l'eau (AB) :

L'application du premier principe permet d'écrire :

dh = dQ + dW ; dW=0 (puisqu' il n'y a pas de parties mobiles dans le GV)

$$dh = dQ = C_{eau} dT$$
 (V.13)

En supposant que C_{eau} est en première approximation indépendant de la température (constante) et après intégration : $\Delta h = h_B - h_A = C_{eau}$ (T_B- T_A) (V.14)

b. Calcul de l'enthalpie de vaporisation de l'eau (BC) :

dh = dQ = dm $L_{vap}(T_B) = L_{vap}(T_B)$ ($L_{vap}(T)$: enthalpie de vaporisation à la température du changement d'état).

$$\Delta h = h_{\rm C} - h_{\rm B} = L_{\rm vap}(T_{\rm B}) \tag{V.15}$$

 \longrightarrow L'unité de masse d'eau reçoit lors de son échauffement puis de sa vaporisation une énergie thermique : $Q_{chaude} = Q_1 = h_C - h_A$ (si Q_1 augmente le rendement du cycle diminue)

✓ Détente isentropique dans la turbine

dh = dQ + dW ; dQ=0 (transformation isentropique)
$$\longrightarrow \Delta h = h_D - h_C < 0$$

 \mathbf{h}_{D} peut être déterminée des courbes de saturation ou calculée moyennement en connaissant les grandeurs des tables thermodynamiques :

L'entropie est une grandeur extensive ce qui permet la relation suivante d'écrire au point D :

$$S_{D} = X S_{D vap} + (1-X) S_{D liq} \qquad X = \frac{S_{D} - S_{liq}}{S_{vap} - S_{liq}} \quad S_{D} = S_{C}$$
(transformation isentropique) (V.16)

Avec s _{vap} et s _{liq} respectivement les entropies massiques de la vapeur saturante et du liquide de saturation à la pression de fin de détente et X le titre de mélange (liquide-vapeur) Ce qui donne l'enthalpie h_D :

$$h_{D} = X h_{D vap} + (1-X) h_{D liq}$$
 (V.17)

✓ Transfert thermique au condenseur

Quantité de chaleur échangée au condenseur (DE) :

<u>Hypothèse</u> : $p_D = p_E$ transformation isobare

L'application du premier principe permet d'écrire :

dh = dQ + dW ; dW=0 (transformation isobare)

 $\Delta h = h_D - h_C < 0$

V.3.1. Rendement thermique

Le rendement thermique est défini comme le rapport entre l'énergie utile et l'énergie totale reçue par le système {1 kg d'eau}. Pour l'installation étudiée, au cours d'un cycle :

le travail massique récupéré lors de la détente de la vapeur dans la turbine constitue l'énergie utile.

L'énergie thermique reçue par 1 kg d'eau au GV et le travail massique reçu par l'eau lors de sa compression constitue l'énergie totale reçue.

Ce qui permet d'écrire :

$$\eta_{th} = \frac{\text{travail de la turbine-tra}}{\text{quantité de chaleur absorbée}} = \frac{(h_c - h_D) - (h_A - h_E)}{h_c - h_A}$$
(V.18)

D'après le 1^{er} Principe (W + Q_1 + Q_2) cycle = 0 ; w_e = -W = Q_1 + Q_2

$$\eta_{\text{th}} = \frac{W_e}{Q_1} = \frac{Q_1 + Q_2}{Q_1} = 1 + \frac{Q_2}{Q_1} \quad ; \quad Q_2 < 0 \tag{V.19}$$

V.4. Cycle de Rankine avec surchauffe (Hirn)

Dans le cas du cycle de RANKINE, on peut apercevoir qu'en fin de détente, le point de fonctionnement se trouve à l'intérieur de la courbe de saturation. Ceci montre qu'en fin de détente, il y a début de liquéfaction et formation de gouttes d'eau liquide. Ceci peut endommager gravement la roue de la turbine. Il y aura donc intérêt à éliminer cette formation d'eau liquide en cours de détente. Pour cela, on peut augmenter la température de la vapeur en la surchauffant.

La surchauffe isobare de la vapeur saturante est la transformation CC', La vapeur au point C est dite vapeur sèche.

L'intérêt de la surchauffe est d'augmenter l'efficacité e de l'installation. Le travail récupéré lors de la détente de la vapeur surchauffée rapporté à la dépense en énergie thermique principalement est plus important pour le cycle de Hirn que pour le cycle de Rankine.

V.4.1. Rendement thermique

$$\eta_{\rm th} = \frac{W_T}{Q} = \frac{W_{C'D}}{Q_{AC'} + W_{EA}} = \frac{h_D - h_{C'}}{(h_C - h_A) + (h_A - h_E)}$$
(V.20)

 $W_p = W_{EA} = (h_A - h_E)$ est négligeable

$$\eta_{\rm th} = \frac{h_D - h_{C\prime}}{(h_C - h_A)} \tag{V.21}$$

V.5. Cycles à soutirage

Fig. V.9. TAV à soutirages

Le soutirage sert à Augmenter le flux de vapeur vive d'une fraction X, dont la chaleur résiduelle est utilisée pour chauffer le flux sortant du condenseur.

(3-4) Travail de détente : $W_{34} = (h_3 - h_4)$

(V.22)

(4-5) Condensation isotherme et isobare (Vapeur/liquide)

(5-a) Pompage d'eau $h_5 = h_a$

(a-b) Chauffage de l'eau dans le mélangeur au contact de la fraction X soutirée hypothèse : le point b est sur la courbe de saturation

(3-7) Détente de la fraction x de vapeur, de HP à MP, dans la turbine.

$$W_{37} = (h_3 - h_7)$$
 (V.23)

(7-b) Condensation de la fraction X soutirée jusqu'à eau liquide, à la pression MP la quantité de chaleur nécessaire au changement de phase sert à chauffer l'eau de a à b

(b-b) pompage de la quantité (1 + x) d'eau liquide, passage de MP à HP hypothèse : les points sont confondus et situés sur la courbe de saturation

(b-2') Chauffage isobare de la quantité (1 + X) d'eau

$$Q_{b2\prime} = (h_{2\prime} - h_b)$$
 (V.24)

(2'-2") Evaporation isobare et isotherme de la quantité (1 + X) dans le GV.

$$Q_{2'2''} = (h_{2'} - h_{2''}) \tag{V.25}$$

(2"-3) chauffage isobare de la quantité (1 + X) de vapeur.

$$Q_{2''3} = (h_3 - h_{2''})$$
 (V.26)

V.5.1. Rendement thermique

$$\eta_{\rm th} = \frac{W_{37} + W_{34}}{Q_{b2\prime} + Q_{2\prime2\prime\prime\prime} + Q_{2\prime\prime3} + W_{p1} + W_{p2}} \approx \frac{(h_3 - h_4) + X(h_3 - h_7)}{(1 + X)(h_3 - b)}$$
(V.27)

 $Q_1 = Q_{b2\prime} + Q_{2\prime 2\prime\prime} + Q_{2\prime\prime 3} + W_{p1}$

V.6. Applications et Corrigés

V.6.1. Applications

Exercice1

Afin de produire une puissance utile de P_u = 80 MW à la turbine à vapeur TAV, on envisage un cycle de Rankine, la température minimale au condenseur est T_A = 306 K. Les caractéristiques de la vapeur saturée à l'entrée de la turbine sont P = 28 bar et T_C = 503 K. (Voir table de saturation de l'eau ci-dessous).

Le mélange sortant de la turbine est caractérisé par un titre en vapeur $X_v=0.88$. On demande de :

- 1. Calculer les quantités de chaleur produite/cédée Q1 et Q2
- 2. Calculer le rendement thermique du cycle en fonction des quantités de chaleur Q_1 et Q_2 .
- **3.** Déduire le débit massique Q_m requis pour produire la puissance utile P_u .

On donne : $Q_m \approx P_u / |W_t|$ (W_t : travail de détente à la TAV).

Fig. V.11. Cycle de Rankine

Exercice2

On adopte le modèle de machine à vapeur suivant : un système fermé constitue de 1 kg d'eau sous deux phases liquide et vapeur décrit un cycle **ABCDA**. Les évolutions **BC** et **DA** sont adiabatiques et réversibles ; les évolutions **AB** et **CD** sont isothermes et isobares. On note X le titre massique en vapeur. Les données concernant **le cycle** et les **enthalpies** extraites des **tables de saturation** sont regroupées successivement dans les tableaux ci-dessous.

	Α	В	С	D	Г	T(en K)	P (en bar)	h, (kJ.kg ⁻¹)	h _v (kJ.kg ⁻¹)
P (en bar)	20	20	1	1	H	485	20	909	2801
T (en K)	485	485	373	373	-	373	1	/18	2676
X (%)	0	100	83	19		575	T	410	2070

- Etudier le bilan énergétique des différentes transformations.
- Calculer le rendement global de cette machine.

Exercice3

Un débit masse d'eau de 75 [kg/s] subit une série d'évolutions :

 – 1-2 : un relèvement de pression adiabatique avec des travaux de frottement caractérisés par un rendement interne égal à 0.8 ; ceci a lieu dans une pompe.

- 2-3 : un relèvement isobare d'enthalpie dans une chaudière.

- 3-4 : une détente dans une vanne.

- 4-5 : une détente dans une turbine à vapeur caractérisée par un rendement isentropique interne égal à 0.86.

- 5-1 : une condensation isobare de la vapeur d'eau jusqu'`a un état de liquide saturé.

L'état 1 est caractérisé par une pression de 0.05 bar. La pression en 2 vaut 80 bars. Dans la chaudière, l'eau est soumise à un flux calorifique de 225 MW ; le rendement de la chaudière est supposé unitaire et les pertes de charge y sont n'négligées. A l'état 4, la pression vaut 28 bars. La pression en 5 vaut 0.05 bar. On demande :

- 1. Représenter qualitativement les différentes évolutions dans un diagramme (h, s).
- 2. Compléter le tableau ci-dessous par les caractéristiques (p, t, h, s, x) de l'eau aux divers états.

3. Calculer la puissance motrice de la pompe (Pm, P) et la puissance de la turb	ne (P _m ,T).
---	-------------------------

Etats	P (bars)	Т (К)	H (kJ.kg ⁻¹)	Titre %	S (kJ.kg ⁻¹)
1	0.05			0	
2	80				
2 s	80				
3	80				
4	28				
5 s	0.05				
5	0.05				

Exercice4

Afin de produire une puissance nette de 125 MW, on envisage différents types de cycles.

Pour ceux-ci, la pression au condenseur supposée invariable est de 0.05 bar. Les caractéristiques de la vapeur surchauffée à l'entrée de la turbine basse pression sont p = 30 bar et t = 540 °C. Le rendement mécanique (η_{mec}) vaut 0.998.

Si le cycle est similaire à un cycle de Rankine-Hirn ou l'on suppose que la détente dans la turbine est caractérisée par un rendement isentropique $\eta_{si} = 0.88$, on demande de :

On demande, pour chaque cycle :

- Exterminer le travail moteur, le rendement thermique (η_t) et les caractéristiques (p, t, h, x, s) aux divers états.
- Représenter ces différents états dans un diagramme (h, s).

- Calculer les valeurs du débit-masse d'eau.

Fig. V.12. TAV de cycle simple

V.6.2. Corrigés

Exercice1

L'application de premier principe de la thermodynamique pour un cycle de Rankine ouvert et régime permanent donne dh= dQ+dW

Le bilan énergétique (Voir table de saturation R718 en annexe) :

1- Compression isentropique (dQ=0) :

 $\Delta h_c = h_B - h_A = W_{comp} = VdP = V (P_B - P_A)$

W_{comp} = 2.81 KJ/Kg

2- Echauffement isobare (dW=0) :

$$\Delta h_E = h_C - h_B$$

 $h_B = W_{comp} + h_A = 2.81 + 137,88 = 140.69 \text{ KJ/Kg}$ $\Delta h_E = 990.77 - 140.69 = 850.08 \text{ KJ/Kg}$

3- Vaporisation isobare (dW=0):

 $\Delta h_V = h_D - h_C = 2803.61 - 990.77 = 1812.84 \text{ KJ/Kg}$

 $Q_1 = h_D - h_A = 2803.61 - 140.69 = 2662.92 \text{ KJ/Kg}$

4- Détente isentropique (dQ=0) :

$$\begin{split} &\Delta h_d = h_E - h_D = W_{tur} \\ &h_E = X \ h_{E \ vap} + \ (1-X) \ h_{E \ liq} \ (X \ est \ le \ titre \ en \ vapeur) \\ &h_E = 0.88. \ 2561.35 + (1-0.88).137.88 = 2270.53 \ KJ/Kg \\ &W_{tur} = 2270.53 - 2803.61 = -533.07 \ KJ/kg \end{split}$$

5- Condensation isobare :

 $\Delta h_c = h_A - h_E = Q_2 = 137.88 - 2270.53 = -2132.65 \text{ KJ/kg}$

 $\eta_{\text{th}} = \frac{|W_t| - W_C}{Q_c} = 1 - \frac{Q^2}{Q_1} = 1 - \frac{2132.65}{2662.92} = 0.20$

6- Débit massique

 $Q_m \approx P_u / |W_t| = 80.10^6 / 533.07. \ 10^3 = 150.07 \ \text{Kg/s}$

Exercice2

1- (AB) Vaporisation isotherme

h_B-h_A = Q_C= 2801-909= 1892 KJ/Kg

2- (BC) Détente isentropique

 $h_{C}-h_{B} = W_{T}$

 h_{C} = X $h_{C vap}$ + (1-X) $h_{C liq}$ (X est le titre en vapeur) h_{C} = 0.83 x 2676+ (1-0.83) x 418= 2292.14 KJ/Kg h_{C} - h_{B} = 2292.14-2801=-508.86 Kj/Kg

3- (CD) Condensation isotherme

 $h_D-h_C=?$

 h_D = X $h_{D vap}$ + (1-X) $h_{D liq}$ (X est le titre en vapeur) h_D =0.19 x 2676+ (1-0.19) x 418= 847.02 KJ/Kg h_D - h_C =-1445.12 KJ/Kg

4- (DA) Compression isentropique

 $h_{A}-h_{D}=Q_{f}=909-847.02=61.98 \text{ KJ/Kg}$

Le rendement thermique du cycle

$$\eta_{\text{th}} = \frac{|W_t| - W_c}{Qc} = \frac{508.86 - 6.98}{1892} = 0.236$$

Exercice3

• Les diagrammes (enthalpique et entropique) :

Fig. V.13. Diagramme entropique et enthalpique

• Caractéristiques thermodynamiques à chaque point :

Etats	P (bars)	T (°C)	H (kJ.kg ⁻¹)	Titre %	S (kJ.kg ⁻¹)
1	0.05	33	138	0	0.4778
2	80	33.68	146	/	0.7178

A Q.>(

T▲

3	80	402.4	3146	/	6.3756
4	28	361	3146	/	6.8227
5s	0.05	33	2089	0.8055	6.8227
5	0.05	33	2237	0.866	7.328

Calcul des puissances

 $P_{m, p} = \phi_m \times (h_2 - h_1) = 75 \times (140 - 138) = 0.75 [MW]$

 $P_{m,T} = \phi_m \times (h_4 - h_5) = 75 \times (3148 - 2237) = 68.325 [MW]$

Exercice4

La température de sortie des chaudières est limitée aux alentours de [540 °C - 560 °C].

Cette limite n'est pas fixée par la tenue des turbines de d'entente mais par le matériau des canalisations de la chaudière : de l'acier ferrique (fond à 560 °C).

Le titre de sortie d'une turbine doit être au supérieur à 0.88 pour éviter que trop de gouttelettes ne se forment.

Détermination des caractéristiques de l'état 3

En sortie de chaudière, le fluide se trouve à l'état de vapeur surchauffée. La connaissance de la pression p_3 et de la température T_3 suffit au calcul de h_3 et s_3 (Table thermodynamique en annexe).

 $h_3 = 3546 \text{ kJ/kg}$; $s_3 = 7.3464 \text{ kJ/kg.K}$

L'état 3 est ainsi complétement défini.

Détermination des caractéristiques de l'état 4

La détente isentropique du point 3 au point 4s nous fournit l'entropie de ce point :

Les données de l'exercice fournissent la pression de condensation :

A partir de la pression de condensation et via les tables de la vapeur d'eau saturée, on obtient les données suivantes :

t₄ = t_{4s} = 33 [°C]; s' ₄= 0.4778 kJ/kg.K; s["] ₄= 8.3885 kJ/kg.K

Ce qui permet de calculer le titre de détente isentropique :

$$S_{4s} = X_{4s} \cdot s'' \cdot 4 + (1+X) \cdot s' \cdot 4$$

 $X_{4s} = 0.868$

La connaissance du titre nous permet de calculer l'enthalpie qu'aurait le fluide en sortie d'une détente isentropique :

Ce qui nous permet de calculer l'enthalpie réelle du fluide après détente via la définition

du rendement isentropique de détente :

$$\frac{h_3 h_4}{h_3 - h_{4_s}} < 1$$

$$h_4 = 2396 \ kJ/kg$$

On calcule le titre de fin de détente réelle :

$$h_4 = X_4 .h''_4 + (1 + X_4) .h'_4$$

D'où on caractérise complétement cet état par le calcul de s_4 :

$$s_4 = X_4 . s''_4 + (1 + X_4) . s'_4$$

 $s_4 = 7.847 kJ/kg.K$

Détermination des caractéristiques de l'état 1

Par hypothèse du fonctionnement du cycle de Rankine-Hirn, le fluide est à l'état de liquide saturé en sortie du condenseur ($x_1 = 0$). Sa température et sa pression sont donc Identiques à celles de sortie de la détente. Les caractéristiques du point 1 se trouvent donc directement dans les tables thermodynamiques :

$$h_1 = h' (0.05) = 137.7 \ kJ/kg$$

 $s_1 = s' (0.05) = = 0.4778 \ kJ/kg.K$

Détermination des caractéristiques de l'état 2

N'ayant aucune information sur le comportement de la pompe, nous supposerons son évolution isentropique. Puisque la pompe sert `a augmenter la pression du fluide et que son comportement est isentropique, le fluide y reste constamment `a l'état de liquide. Le titre 2 est donc non défini.

$s_2 = s_1 = 0.4778 \ kJ/kg.K$

Le travail de compression s'établit ainsi, en rappelant que l'eau liquide est un fluide incompressible (le volume massique v est une constante) et que la transformation isentropique adiabatique (q=0) est réversible ($w_f = 0$) :

$$W_m = \int_1^2 v dp + W_f = \int_1^2 v dp = v(p_2 - p_1)$$

= $\Delta h - q = \Delta h = h_2 - h_1$
 $h_2 = h_1 + v(p_2 - p_1) = 140.8 \text{ kJ/kg}$

A cette température initiale, le coefficient μ_T vaut 0.09 et le coefficient c_p vaut 4.18. L'écriture de la différentielle totale de l'enthalpie :

$$dh = \left(\frac{dh}{dT}\right)_p dT + \left(\frac{dh}{dp}\right)_T dp = c_p dT + \mu_T dp$$
$$\Delta T = \left(\frac{v - \mu_T}{c_p}\right)_p \Delta p = \frac{(0.001005, \frac{10^5}{10^5} - 0.09)(30 - 0.05)}{4.18} = 0.0752$$

La température à l'état 2 vaut donc : $T_2 = 32.975 \, {}^{o}C$.

Bibliographie

Références

[1] JEAN-NOËL Foussard et Edmond Julien, Thermodynamique, bases et applications, édition Dunod, Paris 2005.

[2] JOSE-PHILIPPE PÉREZ, Thermodynamique, Fondements et applications, 3e édition, Dunod, Paris 2020.

[3] Lucien Borel, Thermodynamique et énergétique, édition Presses polytechniques et universitaires romandes, Lausanne 1991.

[4] OLIVIER BONNEFOY, Thermodynamique, Ecole Nationale Supérieure des Mines de Saint-Etienne 9 mai 2016.

[5] GORDON John Van Wylen, Richard Edwin Sontag, Thermodynamique appliquée, Editions du Renouveau Pédagogique, Montréal, 1992.

[6] Olivier Perrot, Cours de Thermodynamique, I.U.T. de Saint-Omer Dunkerque Département Génie Thermique et énergie, 2011.

[7] P. Arquès, Conception et construction des moteurs alternatifs, Ellipse 2000.

[8] H. Memetau, Techniques fonctionnelles de l'automobile : Le Moteur et ses auxiliaires, Dunod Paris 2002.

[9] MAURICE Bailly, Thermodynamique technique, volumes 1,2 et 3, Bordas Paris – Montréal 1971.

[10] EMILIAN Koller, Machines thermiques, collection technique et ingénierie Dunod, 2005.

[11] FOHR Jean-Paul, Thermodynamique des systèmes fluides et des machines thermiques : Principes, modèles et applications, Lavoisier 2010.

[12] CENGEL Yunus, Thermodynamics an engineering approach, John Wiley and Sons, Inc. 1st edition, 2010.

[13] MOUAD Diny, Etude du fonctionnement d'une machine frigorifique a adsorption modélisation des transferts de chaleur et de masse et optimisation du fonctionnement de la machine, thèse de Doctorat, Université de Henry Poincaré, Nancy, 1996.

[14] FRANCIS Meunier & DANIEL Colbourne, les fluides frigorigènes : Composés halogénés et fluides naturels Dunod, 2014.

[15] TAYEB Ouksel, Cours Moteurs à Combustion Interne, Université Larbi Ben M'hidi Oum El Bouaghi, 2020.

[16] BENOIT Enaux, Simulation aux Grandes Échelles d'un moteur à allumage commandé -Évaluations des variabilités cycliques, Thèse de Doctorat, Université de Toulouse, Juin 2010. [17] FKIH ben Salah, TD de Thermodynamique Série n°4, Université Sultan Moulay Slimane, 2020.

[18] ALESSANDRO Parente, Thermodynamique appliqué : cycles moteurs, Université de Bruxelles, 2011.

[19] OLIVIER Cleynen, Thermodynamique de l'ingénieur, Framabook, Magdeburg, Saxony-Anhalt, Germany, Seconde édition (Novembre 2018).

Annexes

Transformation	P = P(V)	Equation caractéristique	W	Q	ΔU
Isochore V = Cte	P V	$\frac{P}{T} = Cte$	W = 0	$Q = C_v \left(T_f - T_i \right)$ $C_v = \frac{nR}{\gamma - 1}$	$\Delta U = C_{V} \left(T_{f} - T_{i} \right)$
Isobare P = Cte	P *	$\frac{V}{T} = Cte$	$W\!=\!-\!P\!\left(V_{f}-\!V_{i}\right)$	$Q = C_{p} \left(T_{f} - T_{i} \right)$ $C_{p} = \frac{n\gamma R}{\gamma - 1}$	$\Delta U = Q + w$
Isotherme T = Cte	P V	PV = Cte	$W = -nRT_1 \ln \frac{V_f}{V_i}$	$Q = nRT_1 \ln \frac{V_f}{V_i}$	$\Delta U = 0$
Adiabatique Q=0	P f	$PV^{\gamma} = Cte$ $TV^{\gamma-1} = Cte$ $TP^{\frac{1-\gamma}{\gamma}} = Cte$	$W_{\substack{\text{adiabatique}\\ \text{réverssible}}} = \frac{P_0 V_0^{\gamma}}{\gamma - 1} \left[V_{\text{f}}^{\gamma - 1} - V_{\text{i}}^{\gamma - 1} \right]$	Q = 0	$\Delta U = W$

+ G	unsformation réversible àaz parfait	$\begin{cases} PV = nRT \\ C_P/C_V = \gamma \\ C_P-C_V = R \end{cases} \xrightarrow{d} d \\ d \\ d \end{cases}$	$W = -P.dV$ $U = \delta Q + \delta W$ $= d(PV)/(\gamma-1)$ $S = \delta Q/T$	et $\begin{cases} C_p = R. \psi(\gamma-1) \\ C_V = R/(\gamma-1) \\ \gamma \approx 1, 3 - 1, 4 \\ R \approx 8, 31 \text{ J.mol}^{-1}. K \end{cases}$
	Isobare	Isochore	Isotherme	Adiabatique
	٩.	Λ	Т	Τ ^γ Ρ ^{1- γ} , ΡV ^γ , ΤV ^{γ-1}
ğ	$nC_p.dT=P.dV.\gamma/(\gamma-1)$	nC _v .dT=V.dP/(γ -1)	P.dV	0
M	Vb.4-	0	Vb.4-	Vb.4-
NN NN	nC _p .dT- P.dV=P.dV/(γ -1)	nC _v .dT=V.dP/(γ -1)	0	Vb.4-
St	$nC_{p.}dT/T = P.dV/T.\gamma/(\gamma-1)$	$nC_v.dT/T = V.dP/T/(\gamma-1)$	P.dV/T	0
a	$nC_{p.}(T_2 T_1) = P.(V_2 - V_1). \gamma/(\gamma - 1)$	$nC_{v}(T_2^-T_1) = V(P_2^-P_1) / (\gamma^-1)$	- $P_1 V_1.InP_2/P_1$	0
N	-P.(V ₂ -V ₁)	0	$P_1 V_1.InP_2/P_1$	$(P_2 V_{2^-} P_1 V_1) / (\gamma - 1) = nC_{v-}(T_2 - T_1)$
U۲	$P(V_2^- V_1)/(\gamma - 1)$	$nC_{v}.(T_2-T_1) = V(P_2 - P_1) / (\gamma - 1)$	0	$(P_2 V_{2^-} P_1 V_1) / (\gamma - 1) = nC_{v-}(T_2 - T_1)$
٩S	$nC_{p}.lnT_{2}/T_{1}=nR.\gamma\!\!/(\gamma\!\!-\!1).lnV_{2}/V_{1}$	$nC_{v}.lnT_{z}/T_{1}=nR/(\gamma-1).lnP_{z}/P_{1}$	nR.InV ₂ /V ₁	0

REFRIGERATION CLASSIQUE	GAMME DE TEMPERATURES (℃)	APPLICATIONS
Conditionnement d'air	+16 à +26	Confort humain
Réfrigération des denrées	0 à +10	Conservation des aliments à court/moyen terme
Congélations des denrées	-35 à 0	Conservation des aliments à long terme
Lyophilisation	-80 à -30	Dessiccation à basse température
Traitements divers	-200 à 0	Applications chimiques
		Essais thermiques des matériaux
CRYOGENIE	GAMME DE TEMPERATURES (%)	APPLICATIONS
Liquéfaction du gaz naturel	93 à 113	Transport en phase liquide (méthanier)
Liquéfaction de l'air	70 à 80	Distillation
Liquéfaction de l'hydrogène	14 à 30	Recherche nucléaire
Liquéfaction de l'hélium	1 à 5	Supraconductivité
Méthodes magnétiques	10 ⁻³ à 10 ⁻²	Recherche fondamentale

I La percée de l'ammoniac(NH.)

L'ammoniac n'a aucun effet pollueur sur la couche d'ozone, pas plus qu'il n'en a sur l'effet de serre.

C'est un produit naturel, aussi banal que l'eau sur notre planète. D'ailleurs, il a provoqué un véritable engouement, sans doute un peu exagéré, chez nos voisins nordiques où il est porté aux nues pour remplacer le R 22.

En France, l'ammoniac dans les installations frigorifiques passe tour à tour, selon les termes de Michel Barth, Président de l'Association Française du Froid « pour bénéfique, écologique, miraculeux, universel, inacceptable, effrayant». Des contradictions qui révèlent tout simplement que l'ammoniac est encore mal connu. L'ammoniac a été jugé dangereux par le Ministère de l'Environnement qui a placé les installations de réfrigération au NH3 dans la réglementation des installations classées. Les seuils d'application de cette réglementation :

installation soumise à déclaration : à partir de 150 kg.

and betren and the state of the

à autorisation : à partie de 1.5 t...

DOSSIER : LE FROID DANS LES INDUSTRIES AGRO-ALIMENTAIRES

Température de fusion	- 77,7°C à 1,013 bar
Température d'ébullition/ Siqué Lastin	- 33,4°C à 1,013 bar
Densité (-33,4°C)	0,682 kg/l liquide à 1,013 bar
(-33,4°C)	0,889 kg/m³ gaz à 1,013 bar
(0°C)	0,771 kg/m³ gaz à 1,013 bar
Température d'inflammation	651°C (selon norme DIN 51794)
Température de décomposition	au delà de 450°C
Produit décomposé dangereux	Hydrogène
Concentration combustible dans l'air	15% - 28% (pourcentage en volume)
Réaction dangereuse	En contact avec les acides, neutralisation violente et fort dégagement de chaleur
Autres dangers	Attaque le cuivre, le zinc et leurs alliages
Poids moléculaire	17,032
Température critique	133°C
Pression critique	11,42 MPa
Chaleur d'évaporation à 33,4°C et 1,013 bar	1,370 kJ/kg
Densité relative du gaz en comparaison avec l'air sec à 0°C et 1,013 bar	0,6
Solubilité avec les huiles classiques	Faible

INFLUENCES PHYSIOLOGIQUES DE L'AMMONIAC SUR L'ETRE HUMAIN

	 A production of the contract of t	Luree de l'exposition admise	
25	L'odeur est sentie par la plupart des personnes. Les concentrations faibles, environ 5 ppm, sont plus facilement détectées à basse température (<0°C).	Journée de 8 heures autorisée. facilement détectées ut s'enfuir. Valeur VLE journée de 8 heures autorisée.	
50	Odeur caractéristique. Le personnel expérimenté veut s'enfuir.		
100	Aucune influence dangereuse sur les personnes en bonne santé. Impression désagréable pouvant créer l'angoisse ou la panique.	Ne pas rester plus longtemps que nécessaire.	
400-700	Irritation immédiate des yeux, du nez et des voies respiratoires. Les personnes habituées ne peuvent pas supporter cette concentration.	Aucun dommage corporel sérieux durant la l'ère heure.	
1700	Toux, irritation violentes dans le nez, les yeux et les voies respiratoires.	Dommages corporels graves en une demi-heure.	
2000 - 5000	Toux, contractions et irritations violentes dans le nez, les yeux et les voies respiratoires.	Décès en moins d'une demi-heure.	
7000	Paralysie, asphyxie.	Décès en quelques minutes.	

Une concentration de 2-5 ppm est détectable à l'odeur, suivant l'odorat de l'individu, la température ambiante et l'humidité relative de l'air. L'avantage de l'ammoniac réside dans sa détection à l'odeur à partir de concentrations faibles, ce qui est un signal d'alerte permettant aux personnes de s'éloigner rapidement. L'ammoniac forme un brouillard dans l'air, ce qui est un excellent avertissement.

Si l'ammoniac forme un brouillard blanc dans un espace clos, la mauvaise visibilité indique que la concentration dépasse 4%. Si la visibilité est acceptable, cela signifie que la limite de combustion est très loin d'être atteinte.

Fluide frigorigène	Désignation chimique	Formule chimique	Plage d'utilisati °C	Domaine d'application
R12	Dichlorodifluorom Ethane	CC12F2	-40 à +10	Réfrigérateurs, installation frigorifiques, industriels, équipement des engins de transport.
R13	Monochlorotrifluorométhane	CC1F3	-100 à -60	Installations frigorifiques en cascade pour application industriels.
R21	Dichlorofluométha	CHC12F	-20 à +20	Pompe à chaleurs, instillations frigorifiques à température de condensation élevée.
R22	Chlorodifuluorométhane	CHC1F2	-50 à +10	Pour navires, installation de congélation.
R23	Trifluorométhane	CHF3	-100 à -60	Installations frigorifiques mono et bi-étages pour application industrielles et laboratoires.
R717	Ammoniac	NH3	-70 à +10	Installations frigorifiques pour produits, applications industriels.

Diagramme Enthalpique (CFC)

			Specific		Specif	ic heat	Higher	Lower	LHV of	
Fuel	Formula (phase)	Molecular weight	gravity: (density,† kg/m ³)	Heat of vaporization, kJ/kg‡	Liquid, kJ/kg · K	Vapor c _p , kJ/kg · K	beating value, MJ/kg	heating value, MJ/kg	stoich. mixture, MJ/kg	(A/P),
Practical fuels										
Gasoline	C_H(I)	~ 110	0.72-0.78	305	2.4	~ 1.7	47.3	44.0	2.83	14.6
Light diesel	C H. (1)	~ 170	0.84-0.88	270	2.2	~ 1.7	44.8	42.5	2.74	14.5
Heavy diesel	C.H., (1)	~ 200	0.82-0.95	230	1.9	~ 1.7	43.8	41.4	2.76	14.4
Natural gas§	C _n H _{3.8n} N _{0.1n} (g)	~ 18	(~0.79†)	1	1	~2	50	45	2.9	14.5
Pure hydrocarbons										
Methane	CH ₄ (g)	16.04	(0.72†)	509	0.63	2.2	55.5	50.0	2.72	17.23
Propane	$C_1H_{\mu}(g)$	44.10	0.51 (2.0†)	426	2.5	1.6	50.4	46.4	2.75	15.67
Isooctane	C.H. (1)	114.23	0.692	308	2.1	1.63	47.8	44.3	2.75	15.13
Cetane	C, H, (1)	226.44	0.773	358		1.6	47.3	44.0	2.78	14.82
Benzene	C H (1)	78.11	0.879	433	1.72	1.1	41.9	40.2	2.82	13.27
Toluene	C ₇ H ₈ (1)	92.14	0.867	412	1.68	1.1	42.5	40.6	2.79	13.50
Alcohols										
Methanol	CH_O(1)	32.04	0.792	1103	2.6	1.72	22.7	20.0	2.68	6.47
Ethanol	C2H60(1)	46.07	0.785	840	2.5	1.93	29.7	26.9	2.69	9.00
Other fuels								i G		
Carbon	C(s)	12.01	~2§	1	1	I	33.8	33.8	2.70	11.51
Carbon monoxide	CO(g)	28.01	(1.25†)	1	I	1.05	10.1	10.1	2.91	2.467
Hydrogen	H (a)	2.015	(0.090†)	1	١	1.44	142.0	120.0	3.40	34.3

At 1 atm and 25°C for liquid fuels: at 1 atm and boiling temperature for gaseous fuels. § Typical values.

	$P = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 15 \\ V_1 \\ V_2 \\ V_2 \end{bmatrix} $	V_{1}		
Coefficient d'excès d'air	Entre 0,6 et 1,3	>1		
Flamme	Pré-mélange	Diffusion		
Combustion	A volume constant	A pression constante		
Puissance	Varie en fonction de la masse de la charge introduite dans le cylindre	Varie en fonction de la masse de carburant injectée dans la chambre de combustion		
Rendement thermique	Fonction du taux de compression	Fonction du taux de compression et du taux d'introduction		
Pression en fin de	Varie avec la variation de la masse introduite	Ne varie pas (moteur atmosphérique)		
compression	(10-15 bar)	(20-30 bar)		

Tableau 1-1. Comparaison entre le Moteur à Essence et le Moteur Diesel.

	Moleur 1	Moteur 2	Moteur 3
Туре	Expérimental	Automobile	Industriel
Désignation	Lister-Petter SR1	K9K766	MKDIR 620-145
Nombre de cylindres	1	4	6
Cylindrée [cm³]	631	1461	9840
D [cm]	9,525	7,6	12
S [cm]	8,85	8,05	14,5
L _p [cm]	16,5	13,375	22,7
ε	18 : 1	17,9 : 1	17:1
Turbocompresseur	Sans	kkk - Wastegate	Schweitzer - GV
Système Injection	Pompe unitaire	Injection DCi	Pompe distribution VR
AI statique	18 "VB avant le PMH	8 "VB avant le PMH	8 "VB avant le PMH
AOA	-36 "VB	+09 "VB	-06 "VB
RFA	+69 °VB	+20 °VB	+36 °VB
AOE	-76 "VB	-27 °VB	-50 "VB
RFE	+32 °VB	+07 °VB	+16 °VB
Puissance maximale	5,5 KW @ 1800 ts/min	60 KW @ 3750 tt/min	264 KW @ 2400 tr/min

NB : Ces performances sont valables si les pertes de charge à l'admission et à l'échappement sont nulles

VAP = Vannes anti-pompage du compresseur

Table of saturated values for: R717, NH3, Ammonia

250,00 1,650 1,4945 0,71133 95,26 1432,22 1338,95 0,6009 5,9487 251,00 1,726 1,4974 0,68146 99,75 1433,59 1338,45 0,6186 5,9029 252,00 1,806 1,5003 0,68345 104,23 1434,96 1332,72 0,6366 5,9172 253,00 1,874 1,5061 0,60116 113,22 1437,65 1324,43 0,6720 5,8863 255,00 2,062 1,5090 0,57691 126,70 131,24 1442,871 131,64 0,7421 5,8863 258,00 2,347 1,5179 0,51094 131,24 1442,81 1306,14 0,7785 5,8113 260,00 2,653 1,5240 0,42101 143,75 1444,15 1308,45 0,8114 7,774 5,736 261,00 2,662 1,5332 0,4215 18,447,91 1446,61 127,74 5,736 264,00 3,927 1,5458 0,8116 15,837	Т К	p Bar	VI dm ³ /ka	Vg m ³ /ka	hı kJ/ka	ha kJ/ka	R kJ/ka	sı k.J/(ka K)	sa k√(ka K)
251,00 1,726 1,474 0,6816 59,75 143,56 133,85 0,618 5,9329 252,00 1,806 1,5003 0,68345 104,22 1434,96 133,72 0,6366 5,9172 253,00 1,899 1,5023 0,6226 5,001 2,758 0,6545 5,9172 255,00 2,062 1,5009 0,57691 117,72 1438,97 121,26 0,8865 5,8710 256,00 2,154 1,5119 0,55384 122,22 1440,29 131,46 0,7247 5,8869 258,00 2,449 1,5129 0,49101 135,75 1444,15 131,46 0,7247 5,8859 260,00 2,662 1,5270 0,45388 144,79 1446,65 1301,87 0,7942 5,7822 262,00 2,774 1,5332 0,42010 153,84 1449,10 1295,27 0,8266 5,7736 264,00 3,009 1,5332 0,42010 153,84 1449,10 1295,27 0,8266 5,7736 265,00 3,133 1,5394 0,8381	250.00	1.650	1 4945	0.71133	95.26	1432.22	1336.95	0.6009	5 9487
252,00 1,806 1,5003 0,65345 104,23 1434,96 1330,72 0,6366 5,9172 253,00 1,809 1,5003 0,62665 108,72 1436,31 1327,58 0,6543 5,9017 256,00 2,062 1,5090 0,57691 117,72 1438,97 1324,43 0,6720 5,8869 256,00 2,154 1,5119 0,553187 126,73 1441,59 131,40 0,7247 5,8409 258,00 2,449 1,5209 0,49101 135,75 1444,15 1308,40 0,7595 5,8113 260,00 2,652 1,5201 0,43658 144,731 1442,87 131,64 0,7749 5,7867 263,00 2,774 1,5301 0,4365 163,31 1449,10 129,27 0,8268 5,8776 264,00 3,009 1,5363 0,40435 158,37 1450,10 128,60 0,8628 5,7784 265,00 3,280 1,5456 0,3311 1278,46 0,9306 <td>251.00</td> <td>1,726</td> <td>1 4974</td> <td>0.68165</td> <td>99.75</td> <td>1433 59</td> <td>1333.85</td> <td>0,6188</td> <td>5 9329</td>	251.00	1,726	1 4974	0.68165	99.75	1433 59	1333.85	0,6188	5 9329
253,00 1,889 1,5032 0,82665 108,72 1436,31 1327,58 0,6543 5,9017 254,00 1,974 1,5081 0,60116 113,22 1437,65 1321,26 0,6896 5,8710 256,00 2,154 1,5119 0,55384 122,22 1440,29 1318,07 0,7247 5,8463 257,00 2,249 1,5179 0,51084 131,24 1442,87 1311,64 0,7421 5,8659 258,00 2,449 1,5209 0,49101 135,75 1444,15 1308,40 0,7595 5,8113 260,00 2,652 1,5270 0,45388 144,79 1445,61 1301,87 0,7942 5,7862 282,00 2,774 1,5310 0,40345 158,37 1450,31 1291,54 8,8475 5,7364 284,00 3,280 1,5426 0,37455 167,44 1453,84 1281,45 0,8986 5,6977 286,00 3,527 1,5486 0,36122 171,53 1453,44	252.00	1,806	1,5003	0.65345	104.23	1434.96	1330.72	0,6366	5,9172
254.00 1,974 1,5061 0,60116 113,22 1437,65 1324,43 0,6720 5,8863 255,00 2,062 1,5090 0,57691 117,72 1448,97 1321,26 0,6896 5,8110 256,00 2,154 1,5119 0,55384 122,22 1440,29 1314,86 0,7247 5,8499 258,00 2,449 1,5209 0,49101 135,75 1444,15 1308,40 0,7595 5,7862 280,00 2,662 1,5270 0,45388 144,79 1446,65 1301,87 0,7942 5,7862 283,00 2,774 1,5301 0,40435 158,37 1440,31 1291,94 0,8457 5,7364 2840,0 3,009 1,5363 0,40435 158,37 1450,31 1291,94 0,8457 5,7364 285,00 3,260 1,5426 0,37495 167,44 1452,68 1288,60 0,8688 5,7155 286,00 3,667 1,5528 0,31251 1454,94 1284,6	253.00	1,889	1,5032	0.62665	108.72	1436.31	1327.58	0.6543	5,9017
255:00 2.062 1.5090 0.57691 117.72 1438.97 1321.26 0.6896 5.8710 256:00 2.154 1.5119 0.55384 122.22 1440.29 1318.07 0.7072 5.8409 258:00 2.347 1.5179 0.51094 131.24 1442.87 1311.64 0.7247 5.8409 259:00 2.449 1.5209 0.49101 135.75 1441.15 1308.40 0.7769 5.7967 261:00 2.662 1.5270 0.45388 144.79 1446.65 1301.47 0.7742 5.7862 262:00 2.774 1.5332 0.42010 153.84 1447.91 1291.54 0.8487 5.7364 264:00 3.260 1.5426 0.37455 167.44 1452.68 0.8628 5.7254 266:00 3.267 1.5520 0.3354 1456.31 1457.24 1271.61 0.9474 5.6570 270.00 3.667 1.5522 0.3354 185.63 1457.24 1271.61<	254.00	1.974	1,5061	0.60116	113.22	1437.65	1324.43	0.6720	5,8863
256,00 2:154 1,5119 0,55384 12:2:22 1441,29 1318,07 0,7072 5,8559 257,00 2:249 1,5179 0,51084 131,24 1442,87 1311,64 0,7421 5,8659 258,00 2,447 1,5179 0,51094 131,24 1442,87 1311,64 0,7421 5,8260 250,00 2,553 1,5240 0,47200 140,27 1445,41 1305,14 0,7769 5,7867 281,00 2,662 1,5320 0,42010 153,84 1449,10 1295,27 0,826 5,7386 284,00 3,009 1,5332 0,42010 153,84 1449,10 1291,94 0,8457 5,7394 285,00 3,133 1,5345 0,3412 171,98 1453,84 1281,60 0,8628 5,6715 286,00 3,527 1,5490 0,34810 176,53 1454,99 1271,61 0,9474 5,6705 270,00 3,687 1,5520 0,32541 185,03 1454,89<	255,00	2.062	1,5090	0.57691	117,72	1438,97	1321,26	0,6896	5,8710
257,00 2.249 1,5149 0,51087 126,73 1441,59 1314,86 0,7247 5,8409 258,00 2,347 1,5179 0,51094 131,24 1442,87 1311,64 0,7595 5,8113 260,00 2,553 1,5240 0,47200 1442,15 1301,87 0,7792 5,7862 282,00 2,774 1,5301 0,43658 1447,19 1288,58 0,8114 5,7878 284,00 3,099 1,5332 0,42010 153,84 1440,10 1295,27 0,8286 5,7536 284,00 3,020 1,5383 0,40435 158,31 1450,31 1281,50 0,8828 5,6977 286,00 3,527 1,5450 0,3812 171,63 1453,49 1278,46 0,9137 5,6841 299,00 3,667 1,5525 0,33254 185,63 1457,24 1271,61 0,9474 5,6470 271,00 3,811 1,5625 0,32354 185,63 1456,12 1275,64 0,9408	256,00	2,154	1,5119	0,55384	122,22	1440,29	1318,07	0,7072	5,8559
258,00 2,347 1,5179 0,51094 131,24 1442,87 1310,64 0,7595 5,8113 260,00 2,449 1,5209 0,47200 140,27 1445,41 1305,14 0,7769 5,7967 281,00 2,662 1,5270 0,45388 144,79 1446,65 1301,87 0,7742 5,7862 282,00 2,774 1,5301 0,43659 149,31 1295,27 0,8286 5,7536 284,00 3,009 1,5363 0,40435 158,37 1450,31 1291,94 0,4828 5,7254 286,00 3,260 1,5426 0,37495 167,44 1452,68 1285,23 0,8868 5,6077 288,00 3,667 1,5525 0,3254 181,08 1456,12 1276,04 0,9306 5,6705 271,00 3,860 1,5555 0,32254 185,03 1457,54 1276,14 0,9305 5,6707 274,00 4,270 1,5654 0,29052 199,31 1460,50 1261,19<	257,00	2,249	1,5149	0,53187	126,73	1441,59	1314,86	0,7247	5,8409
259,00 2,449 1,5209 0,47200 1442,15 1305,44 0,7769 5,7967 251,00 2,553 1,5240 0,47200 1442,77 1445,65 1301,87 0,7769 5,7967 282,00 2,774 1,5301 0,43659 149,31 1447,89 1298,58 0,8114 5,7576 283,00 2,890 1,5332 0,40435 158,37 1450,31 1291,94 0,8428 5,7536 286,00 3,260 1,5426 0,37495 167,44 1452,68 1285,20 0,8798 5,7115 286,00 3,527 1,5430 0,36110 176,53 1454,99 1276,40 0,9306 5,6705 271,00 3,811 1,5555 0,32354 185,63 1457,24 1271,61 0,9474 5,6841 273,00 4,270 1,5654 0,29052 199,31 1460,50 1261,19 0,9414 5,6437 274,00 4,413 1,5684 0,28051 1261,19 0,9414 5,656	258,00	2,347	1,5179	0,51094	131,24	1442,87	1311,64	0,7421	5,8260
280,00 2,553 1,5240 0,47200 1440,27 1445,41 1305,14 0,7742 5,7822 282,00 2,674 1,5301 0,43659 1447,89 1298,58 0,8114 5,7582 284,00 3,009 1,5332 0,42010 153,84 1449,10 1291,54 0,8457 5,7394 286,00 3,009 1,5332 0,44055 158,37 1450,31 1291,94 0,8457 5,7394 286,00 3,260 1,5426 0,37495 167,44 1281,62 0,8868 5,6977 286,00 3,527 1,5480 0,3410 176,53 1454,99 1278,46 0,9137 5,6841 289,00 3,667 1,5528 0,3254 185,63 1457,24 1271,61 0,9474 5,6670 271,00 3,960 1,5588 0,2254 185,63 1457,24 1271,61 0,9474 5,6670 271,00 4,242 1,5684 0,22052 199,31 1460,50 1261,19 0,9975 </td <td>259,00</td> <td>2,449</td> <td>1,5209</td> <td>0,49101</td> <td>135,75</td> <td>1444,15</td> <td>1308,40</td> <td>0,7595</td> <td>5,8113</td>	259,00	2,449	1,5209	0,49101	135,75	1444,15	1308,40	0,7595	5,8113
281,00 2,662 1,5270 0,45388 144,79 1446,65 1301,87 0,744 5,762 282,00 2,774 1,5301 0,49659 149,31 1447,89 1295,58 0,8114 5,7678 284,00 3,009 1,5363 0,40435 158,37 1450,31 1291,94 0,8428 5,7254 286,00 3,260 1,5426 0,37495 167,44 1452,68 1285,23 0,8798 5,7115 287,00 3,392 1,5458 0,36122 171,93 1453,84 1281,85 0,9806 5,6670 271,00 3,861 1,5555 0,32354 185,63 1457,24 1271,61 0,9474 5,6643 273,00 4,171 1,5654 0,22052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,412 1,5684 0,28043 203,88 1461,56 1257,68 1,0411 5,6042 275,00 4,599 1,5722 0,27076 208,46 12462,61<	260,00	2,553	1,5240	0,47200	140,27	1445,41	1305,14	0,7769	5,7967
282,00 2,774 1,5312 0,43659 149,31 1447,89 1298,58 0,814 5,7536 283,00 2,890 1,5332 0,40435 158,37 1450,31 1291,94 0,8457 5,7394 265,00 3,133 1,5384 0,38331 162,90 1451,50 1288,60 0,8628 5,7254 266,00 3,260 1,5426 0,37495 167,44 1452,66 1288,185 0,9868 5,6977 268,00 3,627 1,5520 0,33354 181,08 1456,12 1275,46 0,9137 5,6841 289,00 3,667 1,5522 0,33554 181,08 1458,34 1288,16 0,9045 5,6304 271,00 3,811 1,5558 0,32354 181,08 1458,34 1264,68 0,9085 5,6304 273,00 4,270 1,5648 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,392 1,5680 0,22103 1463,63 1250,6	261,00	2,662	1,5270	0,45388	144,79	1446,65	1301,87	0,7942	5,7822
283,00 2,890 1,5332 0,42010 153,84 1449,10 1295,27 0,8286 5,7394 265,00 3,133 1,5394 0,38931 162,90 1451,50 1288,60 0,8628 5,7254 266,00 3,260 1,5458 0,36122 171,98 1453,84 1281,85 0,8988 5,6977 268,00 3,527 1,5490 0,34810 176,53 1454,99 1278,46 0,9137 5,6841 270,00 3,861 1,5555 0,3254 185,63 1457,24 1271,61 0,9474 5,6670 271,00 3,860 1,5684 0,23055 190,19 1458,34 1268,16 0,9641 5,6304 273,00 4,270 1,5644 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,422 1,5664 0,29052 123,03 1463,63 1226,16 1,00472 5,5784 277,00 4,599 1,5722 0,27076 208,46 12424,0	262,00	2,774	1,5301	0,43659	149,31	1447,89	1298,58	0,8114	5,7678
224,00 3,009 1,533 0,40435 158,37 1450,31 1291,94 0,8628 5,7254 2265,00 3,260 1,5426 0,37495 167,44 1452,68 1281,85 0,8628 5,6977 2266,00 3,627 1,5426 0,36122 171,98 1453,84 1281,85 0,8988 5,6977 2266,00 3,667 1,5522 0,33554 181,08 1456,12 1275,04 0,9306 5,6705 270,00 3,811 1,5558 0,32354 181,08 1457,24 1271,16 0,9474 5,6637 271,00 3,960 1,5588 0,3105 190,191 1458,34 1268,16 0,9084 5,6304 273,00 4,270 1,5648 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,22051 127,161 1464,65 1247,30 1,6037 5,5664 275,00 4,571 1,5860 0,22807 231,38 1467	263,00	2,890	1,5332	0,42010	153,84	1449,10	1295,27	0,8286	5,7536
266,00 3,153 1,5426 0,37495 167,44 145,268 1286,80 0,8628 5,7115 267,00 3,392 1,5458 0,37495 167,44 1452,68 1285,23 0,8798 5,6707 268,00 3,527 1,5490 0,34810 176,53 1454,99 1278,46 0,9306 5,6705 270,00 3,811 1,5555 0,33554 181,08 1456,12 1275,04 0,9306 5,6705 271,00 3,960 1,5588 0,31205 190,19 1458,34 1286,15 0,9414 5,6570 271,00 4,131 1,5621 0,27076 208,46 1462,61 1254,15 1,0037 5,5676 275,00 4,771 1,5756 0,26149 213,03 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,25261 217,61 1464,65 1243,45 1,0637 5,5656 278,00 5,130 1,5825 0,22897 231,38 1467,59	264,00	3,009	1,5363	0,40435	158,37	1450,31	1291,94	0,8457	5,7394
266,00 3,920 1,5426 0,37495 167,44 1452,65 1265,23 0,8795 5,6977 266,00 3,527 1,5490 0,34810 176,53 1454,99 1278,46 0,9137 5,6841 266,00 3,667 1,5522 0,33254 185,63 1457,24 1271,61 0,9474 5,65705 271,00 3,960 1,5588 0,31205 190,19 1458,34 1268,15 0,9641 5,6437 272,00 4,113 1,5621 0,30105 194,75 1459,43 1264,18 0,9088 5,6304 273,00 4,270 1,5654 0,2052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,28043 203,84 1462,61 1257,68 1,0141 5,6042 275,00 4,599 1,5722 0,27076 208,46 1462,61 1243,45 1,0803 5,50512 276,00 4,711 1,5756 0,22490 222,20 1465,6	265,00	3,133	1,5394	0,38931	162,90	1451,50	1288,60	0,8628	5,7254
268,00 3,527 1,5490 0,30122 17,950 1435,04 1201,05 0,9306 5,6705 270,00 3,667 1,5522 0,33554 181,08 1456,12 1275,04 0,9306 5,6705 271,00 3,861 1,5585 0,321205 190,19 1458,34 1286,15 0,9414 5,6847 272,00 4,113 1,5621 0,30105 194,75 1459,43 1264,68 0,9808 5,6304 273,00 4,270 1,5684 0,28043 203,88 1461,56 1257,68 1,0141 5,6042 275,00 4,591 1,5722 0,27076 208,46 1462,61 1241,15 1,0307 5,5912 276,00 4,771 1,5756 0,26149 213,03 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,22507 231,38 1467,59 123,841 1,0637 5,5656 278,00 5,317 1,5860 0,23591 226,79 1466,6	266,00	3,260	1,5426	0,3/495	15/,44	1452,68	1285,23	0,8798	5,7115
268,00 3,667 1,5520 0,3354 181,08 1456,12 127,504 0,9306 5,6705 270,00 3,811 1,5555 0,3354 181,08 1456,12 127,504 0,9306 5,6705 271,00 3,960 1,5588 0,31205 190,19 1458,34 1268,15 0,9414 5,6437 272,00 4,270 1,5654 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,28043 203,88 1461,56 1257,68 1,0141 5,6042 275,00 4,771 1,5756 0,26149 213,03 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,25261 217,61 1464,65 1243,45 1,0807 5,5529 279,00 5,317 1,5860 0,22053 235,98 1468,54 1232,61 1,1128 5,5278 281,00 5,910 1,5865 0,22053 245,18 1470,39 </td <td>267,00</td> <td>3,392</td> <td>1,5456</td> <td>0,36122</td> <td>176.52</td> <td>1453,84</td> <td>1201,05</td> <td>0,0900</td> <td>5,6977</td>	267,00	3,392	1,5456	0,36122	176.52	1453,84	1201,05	0,0900	5,6977
2270,00 3,811 1,555 0,32354 185,63 1457,24 1273,04 0,9474 5,6570 271,00 3,960 1,5588 0,31205 190,19 1458,34 1268,15 0,9474 5,6374 272,00 4,113 1,5621 0,30105 194,75 1459,43 1264,68 0,9808 5,6304 273,00 4,270 1,5654 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,28043 203,88 1461,56 1254,15 1,0307 5,5912 276,00 4,771 1,5756 0,22149 212,03 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,25261 217,61 1465,64 1243,45 1,0607 5,5529 279,00 5,317 1,5860 0,22807 231,38 1467,59 1236,21 1,1128 5,5278 281,00 5,707 1,5930 0,22053 235,98 1468,54	260,00	3,527	1,5490	0,34610	191.09	1454,99	1275.04	0,9137	5,0041
271,00 3,960 1,5588 0,31205 190,19 1458,34 1268,15 0,9641 5,6437 272,00 4,113 1,5621 0,31205 194,75 1458,34 1268,15 0,9975 5,6172 274,00 4,432 1,5684 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,28043 203,88 1461,56 1257,68 1,0141 5,6042 275,00 4,599 1,5722 0,27076 208,46 1462,61 1254,15 1,0307 5,5912 276,00 4,771 1,5756 0,22102 1465,64 1243,45 1,0801 5,5529 279,00 5,317 1,5860 0,223591 226,79 1465,64 1232,56 1,1128 5,5784 281,00 5,7071 1,5930 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6039 <td< td=""><td>209,00</td><td>3,667</td><td>1,5555</td><td>0,33354</td><td>185.63</td><td>1456,12</td><td>1275,04</td><td>0,9306</td><td>5,6705</td></td<>	209,00	3,667	1,5555	0,33354	185.63	1456,12	1275,04	0,9306	5,6705
272,00 4,113 1,562 0,30105 194,75 1459,43 1264,68 0,9808 5,6304 273,00 4,270 1,5654 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,28043 203,88 1461,56 1257,68 1,0141 5,6042 275,00 4,771 1,5756 0,26149 213,03 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,225261 217,61 1464,65 1243,45 1,0801 5,5529 279,00 5,310 1,5825 0,22807 231,38 1467,59 1236,21 1,1128 5,5529 280,00 5,509 1,5895 0,22807 231,38 1467,59 1236,21 1,1453 5,5031 283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,615 5,4908 284,00 6,333 1,6039 0,19326 254,41 1472,17 1217,77 1,1937 5,4665 286,00 7,249 1,	271.00	3,960	1 5588	0.31205	190 19	1458.34	1268 15	0.9641	5 6437
273,00 4,270 1,5654 0,29052 199,31 1460,50 1261,19 0,9975 5,6172 274,00 4,432 1,5688 0,28043 203,88 1461,56 1257,68 1,0141 5,6042 275,00 4,599 1,5722 0,27076 208,46 1462,61 1254,15 1,0307 5,5912 276,00 4,771 1,5756 0,2211 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,25261 217,61 1464,65 1247,03 1,0637 5,5656 278,00 5,130 1,5825 0,24409 222,01 1485,64 1232,56 1,128 5,5278 281,00 5,707 1,5930 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,21330 240,58 1470,39 1225,21 1,1615 5,4908 284,00 6,533 1,6075 0,19326 254,41 1472,17 1217,77<	272.00	4,113	1,5621	0.30105	194.75	1459.43	1264.68	0.9808	5,6304
274,00 4,432 1,5688 0,28043 203,88 1461,56 1257,68 1,0141 5,6042 275,00 4,599 1,5722 0,27076 208,46 1462,61 1254,15 1,0307 5,5912 276,00 4,771 1,5756 0,26149 213,03 1463,63 1250,60 1,0472 5,5784 277,00 5,310 1,5825 0,24409 222,20 1465,64 1243,45 1,0801 5,5529 279,00 5,317 1,5860 0,23591 226,79 1466,62 1239,84 1,0964 5,5403 281,00 5,707 1,5930 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,21330 240,58 1469,47 1228,89 1,4153 5,5031 284,00 6,353 1,6079 0,19368 249,79 1471,29 1221,50 1,1776 5,4786 285,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4545 288,00 7,493 1	273.00	4.270	1,5654	0.29052	199.31	1460,50	1261.19	0,9975	5,6172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274.00	4,432	1.5688	0.28043	203.88	1461.56	1257.68	1.0141	5,6042
276,00 4,771 1,5756 0,26149 213,03 1463,63 1250,60 1,0472 5,5784 277,00 4,948 1,5790 0,25261 217,61 1464,65 1247,03 1,0637 5,5566 278,00 5,130 1,5825 0,24409 222,20 1465,64 1243,45 1,0061 5,5529 279,00 5,5191 1,5860 0,23591 226,79 1466,64 1243,45 1,0064 5,5403 280,00 5,509 1,5860 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,21330 240,58 1469,47 1228,89 1,1453 5,5031 284,00 6,533 1,6075 0,19326 254,41 1472,17 1217,67 1,1776 5,4766 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4426 288,00 7,493 1,6225 0,16997 272,91 1475,5	275,00	4,599	1,5722	0.27076	208,46	1462,61	1254,15	1,0307	5,5912
277,00 4,948 1,5790 0,25261 217,61 1464,65 1247,03 1,0637 5,5656 278,00 5,130 1,5825 0,24409 222,20 1465,64 1243,45 1,0801 5,5529 279,00 5,517 1,5805 0,22807 231,38 1467,59 1236,21 1,1128 5,5278 281,00 5,707 1,5930 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,21330 240,58 1469,47 1228,89 1,1453 5,5031 284,00 6,333 1,6039 0,19968 249,79 1471,29 1221,50 1,1776 5,4786 285,00 6,553 1,6075 0,19326 254,41 1472,97 1217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4426 288,00 7,493 1,6225 0,16997 272,91 1477,12	276,00	4,771	1,5756	0,26149	213,03	1463,63	1250,60	1,0472	5,5784
278,00 5,130 1,5825 0,24409 222,20 1465,64 1243,45 1,0801 5,5529 279,00 5,317 1,5860 0,23591 226,79 1466,62 1239,84 1,0964 5,5403 280,00 5,509 1,5895 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,21330 240,58 1468,47 1228,89 1,1453 5,5031 283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6075 0,19326 254,41 1472,17 121,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1210,24 1,2275 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4038 290,00 7,433 1,6225 0,16997 272,91 1475,54<	277,00	4,948	1,5790	0,25261	217,61	1464,65	1247,03	1,0637	5,5656
279,00 5,317 1,5860 0,23591 226,79 1466,62 1239,84 1,0964 5,5403 280,00 5,509 1,5895 0,22053 231,38 1467,59 1236,21 1,1128 5,5278 281,00 5,707 1,5966 0,2130 240,58 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,2130 240,58 1468,47 1228,89 1,1453 5,5031 283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6075 0,19326 254,41 1472,17 1217,77 1,1937 5,4655 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4073 290,00 7,743 1,6263 0,16468 277,55 1476,34 </td <td>278,00</td> <td>5,130</td> <td>1,5825</td> <td>0,24409</td> <td>222,20</td> <td>1465,64</td> <td>1243,45</td> <td>1,0801</td> <td>5,5529</td>	278,00	5,130	1,5825	0,24409	222,20	1465,64	1243,45	1,0801	5,5529
280,00 5,509 1,5895 0,22807 231,38 1467,59 1236,21 1,1128 5,5278 281,00 5,707 1,5930 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6039 0,19968 249,79 1471,29 1221,50 1,1776 5,4786 285,00 6,553 1,6075 0,19326 254,41 1472,17 1217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4545 287,00 7,011 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4008 289,00 7,443 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,14648 277,55 1476,34	279,00	5,317	1,5860	0,23591	226,79	1466,62	1239,84	1,0964	5,5403
281,00 5,707 1,5930 0,22053 235,98 1468,54 1232,56 1,1290 5,5154 282,00 5,910 1,5966 0,21330 240,58 1469,47 1228,89 1,1453 5,5031 283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6075 0,19326 254,41 1472,17 1,217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4455 287,00 7,011 1,6150 0,18116 263,65 1473,89 1210,24 1,2257 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4308 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 8,533 1,6341 0,15470 286,84 1477,8	280,00	5,509	1,5895	0,22807	231,38	1467,59	1236,21	1,1128	5,5278
282,00 5,910 1,5966 0,21330 240,58 1469,47 1228,89 1,1453 5,5031 283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6039 0,19968 249,79 1471,29 1221,50 1,1776 5,4786 285,00 6,553 1,6075 0,19326 254,41 1472,17 1,217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4308 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,15468 277,55 1476,63 1187,14 1,3209 5,3726 291,00 8,633 1,6340 0,14543 296,15 1479,3	281,00	5,707	1,5930	0,22053	235,98	1468,54	1232,56	1,1290	5,5154
283,00 6,119 1,6002 0,20635 245,18 1470,39 1225,21 1,1615 5,4908 284,00 6,333 1,6039 0,19968 249,79 1471,29 1221,50 1,1776 5,4786 285,00 6,553 1,6075 0,19326 254,41 1472,17 1217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4545 287,00 7,011 1,6160 0,18116 263,65 1473,89 1210,24 1,2257 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 120,645 1,2417 5,4308 289,00 7,493 1,6225 0,1697 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,16488 277,55 1476,34 1198,79 1,2735 5,4073 291,00 8,000 1,6302 0,15960 282,19 1477,12<	282,00	5,910	1,5966	0,21330	240,58	1469,47	1228,89	1,1453	5,5031
284,00 6,333 1,6039 0,19968 249,79 14/1,29 1221,50 1,1776 5,4786 285,00 6,553 1,6075 0,19326 254,41 1472,17 1217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,89 1210,24 1,2257 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4308 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,16468 277,55 1476,34 1198,79 1,2735 5,4073 291,00 8,000 1,6302 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3441 293,00 8,809 1,6460 0,14105 300,81 1480,07	283,00	6,119	1,6002	0,20635	245,18	1470,39	1225,21	1,1615	5,4908
285,00 6,553 1,6075 0,19326 254,41 1472,17 1217,77 1,1937 5,4665 286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4545 287,00 7,011 1,6150 0,18116 263,65 1473,89 1210,24 1,2257 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4308 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3841 293,00 8,533 1,6380 0,14998 291,49 1478,63 1187,14 1,3209 5,3726 294,00 8,809 1,6420 0,14543 296,15 1479,36	284,00	6,333	1,6039	0,19968	249,79	14/1,29	1221,50	1,1776	5,4/86
286,00 6,779 1,6112 0,18709 259,02 1473,04 1214,01 1,2097 5,4545 287,00 7,011 1,6150 0,18116 263,65 1473,89 1210,24 1,2257 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4308 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3841 293,00 8,533 1,6380 0,14998 291,49 1478,63 1187,14 1,3209 5,3726 294,00 8,809 1,6420 0,14543 296,15 1479,36 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07	285,00	6,553	1,60/5	0,19326	254,41	14/2,1/	1217,77	1,1937	5,4665
207,00 7,011 1,0130 0,1116 203,05 1473,05 1210,24 1,2237 5,4426 288,00 7,249 1,6187 0,17546 268,28 1474,72 1206,45 1,2417 5,4308 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3841 293,00 8,533 1,6380 0,14998 291,49 1478,63 1183,21 1,3056 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43<	286,00	7,011	1,0112	0,18/09	259,02	1473,04	1214,01	1,2097	5,4545
289,00 7,243 1,6167 0,17340 272,91 1475,54 1203,43 1,2417 5,4300 289,00 7,493 1,6225 0,16997 272,91 1475,54 1202,63 1,2576 5,4190 290,00 7,743 1,6263 0,16468 277,55 1476,34 1198,79 1,2735 5,4073 291,00 8,000 1,6302 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3841 293,00 8,533 1,6380 0,14998 291,49 1478,63 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43	288.00	7 2/9	1,6197	0,10110	263,00	1473,09	1210,24	1 2/17	5,4420
290,00 7,743 1,6263 0,16468 277,55 1476,34 1198,79 1,2735 5,4073 291,00 8,000 1,6302 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6340 0,14998 291,49 1476,63 1187,14 1,3209 5,3726 294,00 8,809 1,6420 0,14543 296,15 1479,36 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12863 314,84 1482,09	289.00	7 493	1 6225	0 16997	272 91	1475 54	1202,63	1 2576	5 4190
291,00 8,000 1,6302 0,15960 282,19 1477,12 1194,93 1,2893 5,3956 292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3841 293,00 8,533 1,6380 0,14998 291,49 1478,63 1187,14 1,3209 5,3726 294,00 8,809 1,6420 0,14543 296,15 1479,36 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12863 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,7	290.00	7 743	1,6263	0.16468	277.55	1476.34	1198 79	1 2735	5 4073
292,00 8,263 1,6341 0,15470 286,84 1477,88 1191,05 1,3051 5,3841 293,00 8,533 1,6380 0,14998 291,49 1478,63 1187,14 1,3209 5,3726 294,00 8,809 1,6420 0,14543 296,15 1479,36 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,2939 300,00 10,615 1,6666 0,11786 328,91 1483,	291.00	8.000	1,6302	0.15960	282.19	1477.12	1194.93	1,2893	5,3956
293,00 8,533 1,6380 0,14998 291,49 1478,63 1187,14 1,3209 5,3726 294,00 8,809 1,6420 0,14543 296,15 1479,36 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2828 302,00 11,276 1,6751 0,11146 333,62 1484	292.00	8.263	1,6341	0.15470	286.84	1477.88	1191.05	1.3051	5.3841
294,00 8,809 1,6420 0,14543 296,15 1479,36 1183,21 1,3366 5,3611 295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 148	293.00	8.533	1,6380	0.14998	291.49	1478.63	1187,14	1,3209	5,3726
295,00 9,093 1,6460 0,14105 300,81 1480,07 1179,26 1,3523 5,3498 296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,1117 338,33 148	294,00	8,809	1,6420	0,14543	296,15	1479,36	1183,21	1,3366	5,3611
296,00 9,383 1,6500 0,13683 305,48 1480,76 1175,28 1,3679 5,3385 297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11177 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1	295,00	9,093	1,6460	0,14105	300,81	1480,07	1179,26	1,3523	5,3498
297,00 9,680 1,6541 0,13276 310,15 1481,43 1171,28 1,3835 5,3272 298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11177 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77	296,00	9,383	1,6500	0,13683	305,48	1480,76	1175,28	1,3679	5,3385
298,00 9,984 1,6582 0,12883 314,84 1482,09 1167,25 1,3991 5,3160 299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11177 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 <td< td=""><td>297,00</td><td>9,680</td><td>1,6541</td><td>0,13276</td><td>310,15</td><td>1481,43</td><td>1171,28</td><td>1,3835</td><td>5,3272</td></td<>	297,00	9,680	1,6541	0,13276	310,15	1481,43	1171,28	1,3835	5,3272
299,00 10,296 1,6624 0,12504 319,52 1482,73 1163,20 1,4146 5,3049 300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11117 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 <t< td=""><td>298,00</td><td>9,984</td><td>1,6582</td><td>0,12883</td><td>314,84</td><td>1482,09</td><td>1167,25</td><td>1,3991</td><td>5,3160</td></t<>	298,00	9,984	1,6582	0,12883	314,84	1482,09	1167,25	1,3991	5,3160
300,00 10,615 1,6666 0,12139 324,21 1483,34 1159,13 1,4301 5,2939 301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11786 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11117 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 1487,12 1129,87 1,5376 5,2179	299,00	10,296	1,6624	0,12504	319,52	1482,73	1163,20	1,4146	5,3049
301,00 10,942 1,6708 0,11786 328,91 1483,94 1155,03 1,4455 5,2828 302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11117 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 1487,12 1129,87 1,5376 5,2179	300,00	10,615	1,6666	0,12139	324,21	1483,34	1159,13	1,4301	5,2939
302,00 11,276 1,6751 0,11446 333,62 1484,52 1150,90 1,4610 5,2719 303,00 11,617 1,6794 0,11117 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 1487,12 1129.87 1,5376 5,2179	301,00	10,942	1,6708	0,11786	328,91	1483,94	1155,03	1,4455	5,2828
303,00 11,67 1,67,94 0,11117 338,33 1485,08 1146,75 1,4763 5,2610 304,00 11,967 1,6837 0,10799 343,05 1485,62 1142,57 1,4917 5,2502 305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 1487,12 1129.87 1,5376 5,2179	302,00	11,276	1,6/51	0,11446	333,62	1484,52	1150,90	1,4610	5,2/19
305,00 12,324 1,6881 0,10493 347,77 1486,14 1138,36 1,5070 5,2394 306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 1487,12 1129.87 1,5376 5,2179	303,00	11,617	1,6/94	0,11117	338,33	1485,08	1146,75	1,4/63	5,2610
306,00 12,690 1,6926 0,10196 352,51 1486,64 1134,13 1,5223 5,2286 307,00 13,064 1,6971 0,09910 357,25 1487,12 1129.87 1,5376 5,2179	304,00	12 904	1,003/	0,10/99	343,05	1405,02	1139.90	1,4917	5,2302
307,00 13,064 1,6971 0,09910 357,25 1487.12 1129.87 1,5376 5.2179	306.00	12,024	1,6026	0 10196	352 51	1486.64	1134 12	1,5070	5 2286
	307.00	13,064	1.6971	0.09910	357.25	1487.12	1129.87	1,5376	5.2179

Diagramme Entropique (R717 Ammoniac)

Diagramme Enthalpique (R717 Ammoniac)

Table of saturated values for: R718, H2O, Water

T °C	p Bar	v _l dm³/kg	v _g m³/kg	h₁ kJ/kg	h _g kJ/kg	R kJ/kg
-2.00	0.0052	0.9999	241.64497	-337.78	2497.32	2835.10
-1.00	0.0056	0.9999	223.15471	-335.69	2499.16	2834.85
0.00	0.0061	0.9999	206.19903	-333.53	2501.01	2834.54
1.00	0.0066	0.9999	192.58682	4.02	2502.85	2498.83
2.00	0.0071	0.9999	179.89900	8.10	2504.70	2496.60
3.00	0.0076	1.0000	168.14255	12.18	2506.54	2494.36
4.00	0.0081	1.0000	157.23952	16.32	2508.38	2492.06
5.00	0.0087	1.0001	147.12802	20.43	2510.22	2489.80
6.00	0.0093	1.0002	137.74241	24.54	2512.06	2487.53
7.00	0.0100	1.0002	129.02565	20.00	2515.90	2400.20
9.00	0.0115	1.0003	113 39164	36.96	2517.58	2480.62
10.00	0.0123	1.0005	106.38525	41.10	2519.42	2478.32
11.00	0.0131	1.0007	99.86368	45.24	2521.26	2476.02
12.00	0.0140	1.0008	93.79012	49.39	2523.09	2473.70
13.00	0.0150	1.0009	88.12892	53.60	2524.93	2471.33
14.00	0.0160	1.0011	82.85274	57.76	2526.76	2469.00
15.00	0.0171	1.0013	77.93121	61.92	2528.59	2466.67
16.00	0.0182	1.0014	73.33811	66.10	2530.42	2464.33
17.00	0.0194	1.0016	69.04792	70.32	2532.25	2461.93
18.00	0.0206	1.0018	65.04127	74.50	2534.08	2459.58
20.00	0.0220	1.0020	57 79/18	70.00 82.87	2535.91	2457.25
20.00	0.0234	1.0022	54 51755	87.06	2539.56	2452 50
22.00	0.0243	1.0024	51 44510	91.51	2541.39	2449 88
23.00	0.0281	1.0029	48.57273	95.71	2543.21	2447.50
24.00	0.0298	1.0031	45.88141	99.92	2545.03	2445.11
25.00	0.0317	1.0034	43.35856	104.13	2546.85	2442.72
26.00	0.0336	1.0036	40.99251	108.35	2548.67	2440.32
27.00	0.0357	1.0039	38.77250	112.56	2550.48	2437.92
28.00	0.0378	1.0042	36.68857	116.78	2552.30	2435.52
29.00	0.0401	1.0044	34.73147	121.00	2554.11	2433.12
30.00	0.0425	1.0047	32.89268	125.22	2555.92	2430.71
31.00	0.0450	1.0050	31.16427	129.44	2557.73	2428.30
32.00	0.0476	1.0053	29.53690	133.66	2559.54	2423.88
34.00	0.0503	1.0057	26.57055	142 11	2563 15	2423.47
35.00	0.0563	1.0063	25 21539	146.33	2564.96	2418 63
36.00	0.0595	1.0067	23.93883	150.56	2566.76	2416.20
37.00	0.0628	1.0070	22.73582	154.78	2568.56	2413.78
38.00	0.0663	1.0074	21.60164	159.01	2570.35	2411.35
39.00	0.0700	1.0077	20.53193	163.23	2572.15	2408.92
40.00	0.0738	1.0081	19.52260	167.46	2573.94	2406.48
41.00	0.0779	1.0085	18.56988	171.68	2575.73	2404.05
42.00	0.0821	1.0089	17.67022	175.91	2577.52	2401.61
43.00	0.0865	1.0093	16.82034	180.13	2579.30	2399.17
44.00	0.0911	1.0097	16.01/1/	184.36	2581.09	2396.73
45.00	0.0959	1.0101	10.20700	100.00	2002.07	2394.29
47.00	0.1010	1.0109	13 86027	192.00	2586 42	2389.40
48.00	0.1117	1.0114	13.21719	201.25	2588.20	2386.95
49.00	0.1175	1.0118	12.60831	205.47	2589.97	2384.50
50.00	0.1235	1.0123	12.03159	209.69	2591.74	2382.05
51.00	0.1298	1.0127	11.48514	213.91	2593.50	2379.59
52.00	0.1363	1.0132	10.96719	218.13	2595.27	2377.14
53.00	0.1431	1.0137	10.47606	222.35	2597.03	2374.68
54.00	0.1502	1.0141	10.01022	226.56	2598.78	2372.22
55.00	0.1576	1.0146	9.56820	230.78	2600.54	2369.76
56.00	0.1653	1.0151	9.14863	234.99	2602.29	2367.30
57.00	0.1755	1.0156	0./5025	239.21	2004.04	2364.83