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Introduction

Complex analysis is a profound and elegant branch of mathematics that explores func-
tions of complex variables. At its heart lies the idea that functions can behave in
strikingly rich ways when their inputs are allowed to move beyond the real number line
and into the complex plane.

From its origins in solving polynomial equations to its applications in physics, engi-
neering, and number theory, complex analysis offers tools that are both theoretical and
practical. Concepts such as holomorphic functions, contour integration, and conformal
mappings reveal not just new methods of solving problems, but also new ways of seeing
mathematical structures.

This handout provides a structured introduction to the fundamental concepts of com-
plex analysis. Beginning with a review of complex numbers, it gradually builds up to
core topics such as differentiability, analyticity, and the foundational Cauchy-Riemann
equations. Through these themes, students will gain insight into the elegant struc-
ture and far-reaching applications that make complex analysis a central pillar of higher
mathematics.

The course is designed for students in mathematics and the sciences who are being
introduced to complex variable theory for the first time. It is particularly well-suited
for second-year undergraduate students enrolled in the fourth semester of a Bachelor of
Science and Technology (L2S4) program. Students from other disciplines or preparatory
classes will also find the content good, with clear phrasing.

To keep the focus clear and practical, we present key results and computational tech-
niques without formal proofs. The goal is to offer an efficient pathway to understanding
and application. The material is organized as follows:

InChapter 1, we introduce fundamental definitions and properties of complex numbers
and functions. This includes an overview of complex arithmetic and the basic concepts
that underpin complex analysis. We then explore the notion of holomorphic functions,
highlighting their key properties and significance.

Chapter 2 focuses on power series and their convergence. We examine how holo-
morphic functions can be expressed as power series within their radius of convergence,
establishing a deep connection between analyticity and holomorphy.
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In Chapter 3, we study Cauchy’s theorem and its powerful implications for complex
integration. This includes applications to curvilinear integrals and the formulation of
Cauchy’s integral formula.

Chapter 4 is dedicated to important theorems and applications that stem from Cauchy’s
theory. These include Liouville’s theorem, Rouche’s theorem, and the residue theorem
essential tools for evaluating complex integrals and understanding the behavior of func-
tions in the complex plane.

The final chapter, Chapter 5, introduces harmonic functions and explores their close
relationship with holomorphic functions. We investigate how these real-valued functions
arise naturally from the real and imaginary parts of complex analytic functions.

By the end of this handout, students will have acquired both a theoretical foundation
and practical tools for further exploration in complex analysis and its applications.
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Chapter 1

Holomorphic functions.
Cauchy-Riemann equations

1.1 Some Definitions and Properties

1.1.1 Complex Numbers

Definition 1.1. A complex number is any expression of the form

z = x+ iy, x, y ∈ R (1.1)

with i defined by the relation i2 = −1.

Notation:

• We denote by C the set of complex
numbers.

• x is called the real part of z and is
denoted by Re(z)

• y is called the imaginary part of z and
is denoted by Im(z).

Remark 1.1. This representation (1.1) is known as the algebraic form.

Example 1.1. We have

• z1 = 1 + i ∈ C, then we have Re(z1) = Im(z1) = 1

• z2 = cosα + i sinα ∈ C, with α ∈ R, we have Re(z2) = cosα and Im(z2) = sinα
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Definition 1.2. (The conjugate)
The complex conjugate of z = x+ iy is de-
fined by

z = x− iy,

It is easy to verify that, for all complex num-
bers z and w 6= 0

¯̄z = z, z + w = z̄ + w̄, zw = z × w,

(
z

w

)
=
z

w
. (1.2)

and
z + z = 2Re (z) , z − z = 2iIm (z) , zz = x2 + y2. (1.3)

Note also that

• If Im (z) = 0 =⇒ z = z, then z is real.

• If Re (z) = 0 =⇒ z = −z, then z is pure imaginary.

Exercise. Prove the previous properties (1.2) and (1.3).

1.1.2 The modulus and argument

Definition 1.3. (The modulus)
Let z = x+ iy, the non-negative number noted by |z| with

|z| =
√
x2 + y2

is called the absolute value or modulus of z.

Example 1.2. Let z = 1− i, then we have |1− i| =
√

12 + (−1)2 =
√

2.

We have the following properties, for all complex numbers z and w 6= 0,

|z| = |−z| = |z| , |zw| = |z| × |w|

∣∣∣∣∣ zw
∣∣∣∣∣ =
|z|
|w|

. (1.4)

and
zz = |z|2 , |z + w| ≤ |z|+ |w| (called the triangle inequality) (1.5)
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Exercise. Prove the previous properties (1.4) and (1.5).

The plane with a direct orthogonal coordinate sys-
tem

(
O,
−→
i ,
−→
j
)
is called a complex plane. The com-

plex number z = x + iy is represented by the point
M with coordinates (x, y) as shown in the figure. We
say that M is the image of z , or that z is the affix
of M . In addition, the length OM is the modulus of
z (|z| = OM).

Definition 1.4. (The argument)
Let z be a nonzero complex number. The measure
θ of the oriented angle

(−→
i ,
−−→
OM

)
is called an argu-

ment of z, denoted by arg (z)

Remark 1.2. If θ is a an argument of z then θ + 2kπ likewise an argument of z with
k ∈ Z. Therefore, the argument of a complex number is not unique.Denoted by Arg (z)
the principal value of the arg (z) function to take values in the interval ]−π, π], so

arg (z) = Arg (z) + 2kπ, k ∈ Z.

Example 1.3. For example arg (i) =
π

2
+ 2kπ, generally we have

arg (iy) =
π

2
+ 2kπ If y > 0

and

arg (iy) = −
π

2
+ 2kπ If y < 0

For all complex numbers z and w 6= 0, we have the following properties

arg (zw) = arg (z) + arg (w) , arg

(
z

w

)
= arg (z)− arg (w)

1.1.3 The trigonometric and exponential form

Let z be a complex number represented by the point M with coordinates (x, y) and the
polar coordinates (r, θ), we know that{

x = r cos θ

y = r sin θ

Hence we can write z = x+ iy = r (cos θ + i sin θ).
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Definition 1.5. The trigonometric form of a complex number z is

z = r (cos θ + i sin θ)

where r is the modulus of z, and θ the argument of z with −π < θ ≤ π.

Definition 1.6. The exponential form (polar form) of a complex number z is

z = reiθ

where r is the modulus of z, and θ the argument of z with −π < θ ≤ π.

Example 1.4. Write the following complex numbers in trigonometric and exponential
form:

a) z = i b) z = −
√

3 + i

Solution. We have

a) we know that r = |i| = 1 and arg (i) =
π

2
+ 2kπ, so we have

z = i = cos
π

2
+ i sin

π

2
= e

i
π

2

b) To write the number in trigonometric form, we need r and θ

r =
∣∣−√3 + i

∣∣ =
√

4 = 2,
cos θ =

x

r
=
−
√

3

2

sin θ =
y

r
=

1

2

=⇒ θ =
5π

6

Then z = −
√

3 + i = 2

(
cos

5π

6
+ i sin

5π

6

)
= 2e

i
5π

6 .

Euler’s formula

Let α ∈ R, we have {
eiα = cosα + i sinα

e−iα = cosα− i sinα
(1.6)
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1.1.4 Roots of Complex Numbers

Let a = r (cos θ + i sin θ). The nth root of a is the complex number z solution to the
equation zn = a. They are:

zk = n
√
r

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
(1.7)

where k = 0, 1, ..., n− 1.

Example 1.5. Find all square roots of i

Solution. The trigonometric form of i is i = cos
π

2
+ i sin

π

2
. Then, we use the formula

(1.7) where r = 1, θ =
π

2
, n = 2, with k ∈ {0, 1}. So the square roots of i are:

z0 =
√

1

(
cos

π/2

2
+ i sin

π/2

2

)
= cos

π

4
+ i sin

π

4
=

√
2

2
+ i

√
2

2

z1 =
√

1

(
cos

π/2 + 2π

2
+ i sin

π/2 + 2π

2

)
= cos

5π

4
+ i sin

5π

4
= −
√

2

2
− i
√

2

2

1.2 Elementary functions

1.2.1 The exponential function

Definition 1.7. We define the exponential of a complex number z ; z = x+iy; x, y ∈ R,
by

f : C −→ C∗
z 7−→ f(z) = ez = ex cos y + iex sin y;

It results from the definition

Proposition 1.1. We have

1. Re(ez) = ex cos y and Im(ez) = ex sin y

2. |ez| = ex, and arg(ez) = y + 2kπ; k ∈ Z.

3. ez1+z2 = ez1ez2 ; ∀z1, z2 ∈ C
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1.2.2 Trigonometric and Hyperbolic functions

From Euler’s formula, we define the cosine, sine and tangent functions as follows:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i

And tan z =
sin z

cos z
with z 6=

π

2
+ kπ; k ∈ Z.

Remark 1.3. Most of the properties of trigonometric functions in the real case remain
valid in the complex case. Such as:

1. cos2 z + sin2 z = 1

2. cos (z ± ω) = cos z cosω ∓ sin z sinω

3. sin (z ± ω) = sin z cosω ± cos z sinω

Hyperbolic functions are also defined from ez as

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2

tanh z =
sinh z

cosh z
with z 6= (π

2
+ kπ)i; k ∈ Z.

Remark 1.4. Hyperbolic functions in the complex case has a same properties in the real
case. Such as:

1. cosh2 z − sinh2 z = 1

2. cosh (z ± ω) = coth z cothω ± sinh z sinhω

3. sinh (z ± ω) = sinh z coshω ± cosh z sinhω

Proposition 1.2. Let z ∈ C, we have

cos (iz) = cosh z, sin (iz) = i sinh z

cosh (iz) = cos z, sinh (iz) = i sin z

Example 1.6. Solve the following equations:

1) 2 cos z + 3e−iz = 2
√

3 2) 2 sinh z − 5e−z = −1

Solution. We have

1) 2 cos z + 3e−iz = 2
√

3 =⇒ 2

(
eiz + e−iz

2

)
+ 3e−iz = 2

√
3 =⇒eiz + 4e−iz = 2

√
3

×eiz
=⇒e2iz − 2

√
3eiz + 4 = 0
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Let’s ask eiz = M ;we obtain:

M2 − 2
√

3M + 4 = 0 =⇒ ∆ = 12− 16 = −4 = (2i)2.

M1 =
√

3 + i =⇒ eiz =
√

3 + i =⇒ iz = log(
√

3 + i) = ln 2 + i
(π

6
+ 2kπ

)
,

M2 =
√

3− i =⇒ eiz =
√

3− i =⇒ iz = log
(√

3− i
)

= ln 2 + i
(
− π

6
+ 2kπ

)
.

Then:

iz = ln 2 + i
(
± π

6
+ 2kπ

)
=⇒ zk = ±π

6
+ 2kπ − i ln 2; k ∈ Z.

2) 2 sinh z − 5e−z = −1 =⇒ 2

(
ez − e−z

2

)
− 5e−z = −1 =⇒ez − 6e−z = −1

×eiz
=⇒e2z + ez − 6 = 0

Let’s ask

eiz = t;we obtain:

t2 + t− 6 = 0 =⇒ ∆ = 1 + 24 = 25 = (5)2.

t1 = 2 =⇒ ez = 2 =⇒ z = log(2) = ln 2 + i
(

0 + 2kπ
)
,

t2 = −3 =⇒ ez = −3 =⇒ iz = log
(
− 3
)

= ln 3 + i
(
π + 2kπ

)
.

So:

z1 = ln 2 + i2kπ and z2 = ln 3 + i
(

2k + 1
)
π.; k ∈ Z.

1.2.3 The Logarithm function

Definition 1.8. Let z ∈ C∗, The complex logarithm of a complex number z is given
by:

log z = ln |z|+ i arg z = ln r + i (θ + 2kπ) ; k ∈ Z

where |z| = r and arg z = θ + 2kπ; k ∈ Z, with −π < θ ≤ π.

Example 1.7. Calculate the following complex numbers:

a) log (1 + i) b) log (−1)

Solution. We have

a)We find that |1 + i| =
√

2, and arg (1 + i) =
π

4
+ 2kπ, then

log (1 + i) = ln
√

2 + i

(
π

4
+ 2kπ

)
; k ∈ Z.

b) log (−1) = ln |−1|+ i arg (−1) = ln 1+i(π + 2kπ) = iπ (2k + 1) ; k ∈ Z.
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1.3 Holomorphic functions. Cauchy-Riemann equa-
tions

Let z0 ∈ C, and r > 0. The open disc D (z0, r) of radius r centered at z0 is the set of
all complex numbers defined as

D (z0, r) = {z ∈ C : |z − z0| < r}

The closed disc D(z0, r) of radius r centered at z0 is defined by

D (z0, r) = {z ∈ C : |z − z0| ≤ r}

Let Ω ⊂ C be a set, a point z0 is an interior point of Ω if there exists r > 0 such that
D (z0, r) ⊂ Ω.

A set Ω is open if every point in it is an interior point.

Definition 1.9. Let Ω be an open set in C and f : Ω −→ C. The function f is a
holomorphic at the point z0 ∈ Ω if

f (z0 + h)− f (z0)

h

has a limit when h −→ 0.

The limit of the quotient, when it exists, is denoted by f ′(z0), and is called the derivative
of f at z0:

f
′
(z0) = lim

h−→0

f (z0 + h)− f (z0)

h

Definition 1.10. The function f is said to be holomorphic on Ω if f is holomorphic
at every point of Ω.

Example 1.8. Let f (z) = z2, and z0 ∈ C. We have

lim
h−→0

f (z0 + h)− f (z0)

h
= lim
h−→0

(z0 + h)2 − z2
0

h
= lim
h−→0

(2z0 + h) = 2z0

Therefore, f is holomorphic at every point of C, with f ′(z) = 2z

Proposition 1.3. If f and g are holomorphic in Ω, then:
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1. αf + βg is holomorphic in Ω and (αf + βg)
′
= αf

′
+ βg

′ , where α, β ∈ C.

2. fg is holomorphic in Ω and (fg)
′
= f

′
g + fg

′ .

3. If g(z0) 6= 0, then f/g is holomorphic at z0 and(
f

g

)′
=
f
′
g − fg′

g2

Remark 1.5. The functions ez, cos z, sin z,cosh z, sinh z and any polynomial are holo-
morphic in C.

Theorem 1.1. Let f : Ω −→ C where f (z) = P (x, y) + iQ (x, y)

with Re (f) = P (x, y) and Im (f) = Q (x; y). Then:

f is holomorphic in Ω if and only if the following equations are satisfied

∂P

∂x
=
∂Q

∂y
; and

∂P

∂y
= −

∂Q

∂x
(1.8)

These equations (1.8) are called the Cauchy-Riemann equations.

Proof. By hypothesis, f is differentiable on z0 , so f ′(z0) exists. To prove Cauchy-
Riemann equations. We will consider two different directions for towards z0 and we will
use the fact that the limit of

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

is the same in all directions.

The following approach the real axis (∆y = 0):

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆x→0

f(z0 + ∆x)− f(z0)

∆x

= lim
∆x→0

P (x0 + ∆x, y0)− P (x0, y0)

∆x
+ i lim

∆x→0

Q(x0 + ∆x, y0)−Q(x0, y0)

∆x

= =
∂P

∂x
(x0, y0) + i

∂Q

∂x
(x0, y0)

The following approach to the imaginary axis gives (∆x = 0):

13



lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆y→0

f(z0 + i∆y)− f(z0)

i∆y

= lim
∆y→0

P (x0, y0 + ∆y)− P (x0, y0)

i∆y
+ i lim

∆y→0

Q(x0, y0 + ∆y)−Q(x0, y0)

i∆y

= =
∂Q

∂y
(x0, y0)− i∂P

∂y
(x0, y0)

Since the function is differentiable, the two expressions must be equal:

∂P

∂x
+ i

∂Q

∂x
=
∂Q

∂y
− i∂P

∂y

Then
∂P

∂x
=
∂Q

∂y
; and

∂P

∂y
= −

∂Q

∂x

Hence the Cauchy-Riemann conditions.

Example 1.9. Show that the Cauchy-Riemann equations are satisfied for the functions

a) f (z) = ez

Let z = x+ iy, we have

f (z) = ez = ex+iy = ex cos y + iex sin y =⇒ P (x, y) = ex cos y, andQ (x, y) = ex sin y
∂P

∂x
= ex cos y

∂Q

∂y
= ex cos y

⇒
∂P

∂x
=
∂Q

∂y


∂P

∂y
= −ez sin y

∂Q

∂x
= ez sin y

⇒
∂P

∂y
= −

∂Q

∂x

The Cauchy-Riemann equations are satisfied then f is holomorphic in C.

b) f (z) = z

we have f (z) = z = x− iy =⇒ P (x, y) = x, andQ (x, y) = −y
∂P

∂x
= 1

∂Q

∂y
= −1

⇒
∂P

∂x
6=
∂Q

∂y

The Cauchy-Riemann equations are not satisfied then f is not holomorphic in C.
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Proposition 1.4. If f = P + iQ is holomorphic in Ω then we have

f
′
(z) =

∂P

∂x
+ i

∂Q

∂x
=
∂Q

∂y
− i

∂P

∂y

Example 1.10. a) Verify the Cauchy-Riemann equations for the function

f(z) =
1

z
; z 6= 0.

b) Calculate f ′(z)

Solution. a) we have

P (x, y) =
x

x2 + y2
;Q (x, y) =

− y
x2 + y2

and
∂P

∂x
=
∂Q

∂y
=

y2 − x2

(x2 + y2)2;

∂P

∂y
= −

∂Q

∂x
= −

2xy

(x2 + y2)2;

Then f is holomorphic in C∗

b) The derivative is

f
′
(z) =

∂P

∂x
+ i

∂Q

∂x
=
y2 − x2 + i2xy

(x2 + y2)2

=− x2 − 2ixy − y2

(zz)2

=
z2

(zz)2 = − 1

z2

15



1.4 EXERCISES

Exercise 1.1. Find the values of

(1 + 2i)2 ,
5

−3 + 4i
,

(
2 + i

3− 2i

)2

, (1 + i)n + (1− i)n

Exercise 1.2. Write the following complex numbers in algebraic form.

1)
(1 + i)9

(1− i)7 2)
1 + αi

2α + (α2 − 1) i
; α ∈ R

Exercise 1.3. If z = x+ iy (x and y real), find the real and imaginary parts of

z4,
1

z
,

1

z2
,

z − 1

z + 1

Exercise 1.4. Verify by calculation that the values of
z

z2 + 1

for z = x+ iy and z = x− iy are conjugate.

Exercise 1.5. Write the following complex numbers in trigonometric, and exponential
form.

1− i
√

3,
1 + i

√
3

1− i
;

(√
3 + i

)6

Exercise 1.6. Compute

√
−i,

√
1 + i, 4

√
−1

Exercise 1.7. Show that ez = ez for all z in C, and deduce that

cos z = cos z, sin z = sin z.

Exercise 1.8. Find the values of

log
(
1− i

√
2
)
, sin i, cos i, tan(1 + i), 2i, ii.

Exercise 1.9. Solve in C; the following equations:

1) 2 cos z − e−iz = 1 + 2i 2) cos z = 3 + eiz

3) cos z = i sin z 4) sin z = i sinh z

16



Exercise 1.10. Solve in C; the following equations:

1) 2 cos z + i sin z = 1− i 2) sinh z = (1 + i) cosh z

3) cos z = cosh z 4) sin z = cosh z

Exercise 1.11. Let z = x+ iy where x and y are two real numbers and let the function

f(z) = z2 + sin(iz)

1) Find the real and imaginary parts of the function f

2) Show that f is holomorphic in C

Exercise 1.12. Let z = x+ iy where x et y are two reals and let the function

f(z) = ax+ iy + iez

1) Write f(z) in the form P (x; y) + iQ(x; y)

2) Determine the constant a so that the function f(z) is holomorphic.

Exercise 1.13. I) Verify the Cauchy-Riemann equations for the functions

a) f(z) = iz2 + 2z;

b) f(z) =
z + i

2z − 3i
. when z 6=

3i

2

II) Calculate f ′ (z) by two methods.

17



Chapter 2

Power series. Radius of convergence.
Disc of convergence. Power series
expansion. Analytic functions.

2.1 Power series

Definition 2.1. A power series in the complex variable z is a series of the form

∞∑
n=0

anz
n = a0 + a1z + a2z

2 + · · ·+ anz
n + · · ·

a0, a1, a2, . . . an, . . . called coefficients of the series.

Example 2.1. The geometric power series
∞∑
n=0

zn = 1 + z + z2 + · · ·+ zn + · · ·

is a power series, with an = 1 for all n ∈ N. It converges when |z| < 1 and diverges
when |z| > 1.

In fact, we have
∞∑
n=0

zn =
1

1− z
; when |z| < 1.

2.2 Radius of convergence

Theorem 2.1. Given a power series
∞∑
n=0

anz
n, there exists 0 ≤ R ≤ +∞ such that:

18



1. If |z| < R the series converges absolutely.

2. If |z| > R the series diverges.

The number R is called the radius of convergence of the power series.

Proof. Let z ∈ C be such that |z| < R. Choose w ∈ C such that |z| < |w| < R and

such that
∞∑
n=0

anw
n converges.

It follows that |anwn| −→ 0 as n −→ ∞ Thus |anwn| is a bounded sequence; that is,
there exists K > 0 such that |anwn| < K for all n Let q = |z| / |w| As |z| < |w| we have
that q < 1 Now

|anzn| = |anwn|

∣∣∣∣∣ zw
∣∣∣∣∣
n

< Kqn

for all n ∈ N Hence
∞∑
n=0

|anzn| onverges by comparison with the geometric series. Since

absolute convergence implies convergence, we are done. It follows immediately from
the definition of R that the series diverges whenever |z| > R. Indeed, if |z| < R the
series converges.

Remark 2.1. In the case |z| = R there is no general statement about the series, as one
can have either convergence or divergence

Proposition 2.1. Let
∞∑
n=0

anz
n be a power series with radius of convergence R.

If


lim

n→+∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = l

lim
n→+∞

n
√
an = l

then R =
1

l

Example 2.2. Determine the radius of convergence R of the power series

1)
∞∑
n=1

zn

n
2)

∞∑
n=0

nzn

2n

Solution. 1)
∞∑
n=1

zn

n

we have an =
1

n
=⇒ an+1 =

1

n+ 1

19



lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim
n→∞

n

n+ 1
= 1

Then the radius of convergence of the power series is R = 1

2)
∞∑
n=0

nzn

2n

we have an =
n

2n
=⇒ an+1 =

n+ 1

2n+1

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1

2

(
n+ 1

n

)
=

1

2

Then the radius of convergence of the power series is R = 2

2.3 Disc of convergence

Definition 2.2. The set

D =

{
z ∈ C : the power series

∞∑
n=0

anz
n converges

}

is called the disc of convergence of the series.

Remark 2.2. In particular, we have:

R = 0 =⇒ D = {0}

R =∞ =⇒ D = C

20



Example 2.3. Determine the radius of convergence R and the disc of convergence D
of the power series

1)
∞∑
n=1

zn

n2
2)

∞∑
n=0

zn

n!

Solution. 1)
∞∑
n=1

zn

n2

- Radius of convergence R:

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim
n→∞

n2

(n+ 1)2 = 1 =⇒ R = 1

- Disc of convergence D:

As R = 1 then, the series is converges when |z| < 1, and diverges when |z| > 1.

If |z| = 1, with un =
zn

n2
we have:

|z| = 1 =⇒ |un| =

∣∣∣∣∣znn2

∣∣∣∣∣ =
1

n2
is converges ( Riemann series with α = 2 > 1 )

then the series is converges absolutely therefore, they are converges.

So the disc of convergence is D = D (0, 1) = {z ∈ C : with |z| ≤ 1}

2)
∞∑
n=0

zn

n!

- Radius of convergence R:

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0 =⇒ R =∞

- Disc of convergence D: as R =∞ then D = C.

2.4 Power series expansion

Definition 2.3. Let f : Ω −→ C, we say that f has a power series expansion at a point
z0 ∈ Ω if there exists R > 0 such that:

f(z) =
∞∑
n=0

an(z − z0)n ∀ z ∈ D (z0, R)

;
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Example 2.4. We know That
∞∑
n=0

zn =
1

1− z
; when |z| < 1.

Then the function f(z) =
1

1− z
has a power series expansion ∀ ∈ D(0, 1)

Theorem 2.2. The power series f(z) =
∞∑
n=0

anz
n defines a holomorphic function inside

its disc of convergence.

• The derivative of f is also a power series obtained by differentiating term by term
the series for f , that is

f
′
(z) =

∞∑
n=1

nanz
n−1

Moreover, f ′ has the same radius of convergence as f .

• The integration of f is also a power series has the same radius of convergence as
f , that is

z∫
0

f (ω) dω =

z∫
0

∞∑
n=0

anω
ndω =

∞∑
n=0

an

n+ 1
zn+1

Example 2.5. Write the power series expansion for the following functions:

1) f(z) =
1

1 + z
2) g(z) =

1

1 + z2
3) h(z) =

1

(1− z)2 4) k(z) = ln (1 + z)

Solution. We have
1

1− z
=
∞∑
n=0

zn; when |z| < 1 (2.1)

1) f(z) =
1

1 + z
=

1

1− (−z)
=
∞∑
n=0

(−z)n ; when |−z| < 1

=
∞∑
n=0

(−1)nzn; when |z| < 1

2) g(z) =
1

1 + z2
=

1

1− (−z2)
=
∞∑
n=0

(
−z2

)n
; when

∣∣−z2
∣∣ < 1

=
∞∑
n=0

(−1)nz2n; when |z| < 1
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3) h(z) =
1

(1− z)2

we deduce, by derivative term by term in (2.1), that

h(z) =
1

(1− z)2 =
d

dz

(
1

1− z

)
=

d

dz

(
∞∑
n=0

zn

)
; when |z| < 1.

=
∞∑
n=1

nzn−1 when |z| < 1.

4) k(z) = ln (1 + z)==

z∫
0

1

1 + ω
dω=

z∫
0

(
∞∑
n=0

(−1)nωn

)
dω

=
∞∑
n=0

(−1)n

n+ 1
zn+1, when |z| < 1.

Proposition 2.2. Let f(z) =
∞∑
n=0

anz
n, be a power series whose convergence radius is

R. Then the function f(z) has derivatives of all orders, and these derivatives can be
obtained by differentiating the series term by term. The derivative series all have the
same convergence radius R, and a

an =
f (n)(0)

n!
; n = 0, 1, 2, . . . (2.2)

where f (n)(z) is the derivative of order n of f(z).

Remark 2.3. The formula (2.2) is called the Taylor series coefficients.

Example 2.6. Write the power series expansion for the following functions:

1) f(z) = ez 2) g(z) = (1 + z)α ; α ∈ R

Solution. We have

1) f(z) = ez

Here we can apply Proposition 2.5. We obtain the following

we have f (n)(z) = ez =⇒ f (n)(0) = 1 then

ez =
∞∑
n=0

zn

n!
∀z ∈ C (2.3)
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2) g(z) = (1 + z)α

The Taylor series coefficients are given by:

an =
g(n)(0)

n!

Let’s compute the derivatives of g(z):

1. g′(z) = α(1 + z)α−1 =⇒ g′(0) = α

2. g′′(z) = α(α− 1)(1 + z)α−2 =⇒ g′′(0) = α(α− 1)

3. n-th derivative:

g(n)(z) = α(α− 1)(α− 2) · · · (α− n+ 1)(1 + z)α−n

g(n)(0) = α(α− 1)(α− 2) · · · (α− n+ 1)

The coefficient an is:

an =
g(n)(0)

n!
=
α(α− 1)(α− 2) · · · (α− n+ 1)

n!

Thus, the Taylor series expansion is:

(1 + z)α =
∞∑
n=0

α(α− 1)(α− 2) · · · (α− n+ 1)

n!
zn

Convergence (Radius of Convergence)

We notice that: ∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣α− nn+ 1

∣∣∣∣
has a limit of 1 when n tends towards +∞ . Therefore the radius of convergence of the
series is R = 1.

Special Cases:

1. When α = −1:
an = (−1)n

1

1 + z
=
∞∑
n=0

(−1)nzn (Geometric Series)
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2. When α = 1
2
(Square Root):

a1 =
1

2
, a2 =

1
2
·
(
−1

2

)
2!

= −1

8
, etc.

√
1 + z = 1 +

1

2
z − 1

8
z2 +

1

16
z3 − · · ·

Example 2.7. Write the power series expansion for the following functions:

1) f(z) = cos z 2) g(z) = sin z 3) h(z) = cosh z 4) k(z) = sinh z

Solution. 1) g(z) = cos z 2) h(z) = sin z

By using Euler’s formula: eiα = cosα + i sinα and (2.3) we have:

eiα =
∞∑
n=0

(iα)n

n!
=
∞∑
n=0

in

n!
αn

=
∞∑
k=0

i2k

(2k)!
α2k+

∞∑
k=0

i2k+1

(2k + 1)!
α2k+1

=
∞∑
k=0

(−1)k

(2k)!
α2k + i

∞∑
k=0

(−1)k

(2k + 1)!
α2k+1

Then 
cosα =

∞∑
k=0

(−1)k

(2k)!
α2k

sinα =
∞∑
k=0

(−1)k

(2k + 1)!
α2k+1

In the general case where z ∈ C, we find


cos z =

∞∑
n=0

(−1)n

(2n)!
z2n

sin z =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1
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3) h(z) = cosh z 4) k(z) = sinh z

We know that: cos (iz) = cosh z, then

cosh z = cos iz=
∞∑
n=0

(−1)n

(2n)!
(iz)2n

=
∞∑
n=0

(−1)n

(2n)!
(i)2n(z)2n

=
∞∑
n=0

z2n

(2n)!

In the same way and by using the formula sin iz = i sinh z, we find

sinh z =
sin iz

i
=

1

i

∞∑
n=0

(−1)n

(2n+ 1)!
(iz)2n+1

=
1

i

∞∑
n=0

(−1)n (i)2n+1

(2n+ 1)!
z2n+1

=
∞∑
n=0

z2n+1

(2n+ 1)!

2.5 Analytic functions

Definition 2.4. A function f defined on an open set Ω is said to be analytic at a point
z0 ∈ Ω if there exists a power series

∑
an(z − z0)n centered at z0, with positive radius

of convergence R, such that

f(z) =
∞∑
n=0

an(z−z0)n ∀ z ∈ D(z0, R)

If f has a power series expansion at every point in Ω, we say that f is analytic on Ω.
Example 2.8. We have

1. Any polynomial of degree n,

f(z) = a0 + a1z + ...+ anz
n

where a0, a1, ..., an ∈ C, is analytic at all points z ∈ C.

2. A rational function f(z) = P (z)/Q(z) where P (z) and Q(z) are polynomials of
degrees p and q, is analytic everywhere, except when Q(z) = 0.

3. The functions ez , cos(z) and sin(z) are analytic everywhere.

4. The function log(z) is analytic everywhere except at z = 0.
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2.5.1 Properties of analytic functions

Proposition 2.3. If the functions f and g are analytic at point z0, then

1. the functions f(z) + g(z) and f(z)g(z) are analytic at point z0;

2. the function f(z)/g(z) is analytic at point z0 provided g(z0) 6= 0.

3. the function (f ◦ g) (z) is analytic at point z0.

Example 2.9. the functions:

1. f(z) = ez + 2z2 − 1 is analytic in C. ( the sum of two analytical functions )

2. g(z) = tan z is analytic in C−
{π

2
+ kπ

}
where k ∈ Z.

3. h(z) = ecos z is analytic in C. ( The decomposition of two analytical functions )

Proposition 2.4. If

f(z) =
∞∑
n=0

an(z−z0)n

is convergent in D(z0, R) for some R > 0, then f : D(z0, R) −→ C is continuous. In
particular, analytic functions are continuous.

2.5.2 Identity theorem for analytic functions

Corollary 2.1. Suppose f(z) =
∞∑
n=0

anz
n is a convergent power series and (zn)n∈N is a

sequence of nonzero complex numbers converging to 0, such that f(zn) = 0 for all n.
Then ak = 0 for every k.

Recall that in a metric space X a cluster point (or sometimes limit point) of a set E is
a point a ∈ E such that D (a, ε) \ {a} contains points of E for all ε.

Theorem 2.3. (Identity theorem) Let D ⊂ C be open and connected. If f : D −→ C
and g : D −→ C are analytic functions that are equal on a set Ω ⊂ D and Ω has a
cluster point in D then f(z) = g(z) for all z ∈ D.

Proof. Without loss of generality suppose Ω is the set of all points z ∈ D such that
f(z) = g(z). Note that Ω must be closed as f and g are continuous.
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Suppose Ω has a cluster point. Without loss of generality assume that 0 is this cluster
point. Near we have the expansions

f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

which converge in some ball D (0, r). Therefore the series

0 = f(z)− g(z) = f(z) =
∞∑
n=0

(an − bn) zn

converges in D (0, r) As 0 is a cluster point of Ω, there is a sequence of nonzero points
(zn)n∈N such that f(zn) − g(zn) = 0 Hence, by the corollary above an = bn for all n.
Therefore, D (0, r) ⊂ Ω.

Thus the set of cluster points of Ω is open. The set of cluster points of Ω is also closed:
A limit of cluster points of Ω is in Ω as it is closed, and it is clearly a cluster point of
Ω. As D is connected, the set of cluster points of Ω is equal to D, or in other words
Ω = D.

2.6 EXERCISES

Exercise 2.1. Find the radius of convergence R and the disc of convergence D of the
following power series:
∞∑
n=1

n3zn,
∞∑
n=1

2n

n!
zn,

∞∑
n=1

2n

n2
zn,

∞∑
n=1

n3

3n
zn,

∞∑
n=1

n3zn,
∞∑
n=1

zn

lnn
.

Exercise 2.2. Find the radius of convergence R of the following power series:
∞∑
n=1

inzn,
∞∑
n=2

(1 + ni) zn.

Exercise 2.3. Find the radius of convergence R of the following power series:
∞∑
n=0

n(−1)nzn
∞∑
n=0

sh n

ch n
zn

∞∑
n=1

(
ln
n2 + a

n2

)
zn; a > 0

∞∑
n=0

e−shnzn
∞∑
n=0

n!

(a+ 1)(a+ 2) . . . (a+ n)
zn; a > 0

Exercise 2.4. Write the power series expansion for the following functions:

1) f(z) =
1

2− z
2) g(z) =

1

3 + 2z
3) h(z) =

− 1

(1 + z)2 4) k(z) = arctan z
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Chapter 3

Cauchy’s theory

3.1 Curvilinear Integral

Definition 3.1. A curve C connecting z0 and z1 is defined by a continuous and differ-
entiable function z (t) : [t0; t1] −→ C such that z(t0) = z0 and z(t1) = z1.

Remark 3.1. The opposite curve C− is the
curve with the reverse orientation.

Example 3.1. The line segment from z0 (
the point A) to z1 ( the point B) is a curve
C can be parametrised by

z (t) = (1− t)z0 + tz1 with t ∈ [0, 1]
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Definition 3.2. A path γ is a union of curves: γ =
n
∪
i=1

Ci.

The path γ is said to be closed if its origin coincides with its end. γ (z0) = γ (z1).

Example 3.2. The circle C (z0, r) is a closed path can be parametrised by

z (θ) = z0 + reiθ with θ ∈ [0, 2π]

Definition 3.3. Let f : D −→ C be a continuous function on D simply connected,
and γ ⊂ D a path defined by the equation

z = z(t), a ≤ t ≤ b. We defined the integral of f along γ by

∫
γ

f(z)dz =

b∫
a

f(z(t)).z
′
(t)dt.

Example 3.3. Compute

1)
∫
γ

zdz, where γ is the directed line segment from 0 to 1 + i.

2)
∫
γ

zdz, where γ is the circle |z − i| = 2

Solution. We have

1)
∫
γ

zdz

The directed line segment [0, 1 + i] is defined by the equation

z (t) = (1− t)× 0 + t (1 + i) = (1 + i) t ; with t ∈ [0, 1]
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γ

0

z = 1 + i

i

1

Then ∫
γ

zdz =

1∫
0

z(t).z
′
(t)dt =

1∫
0

(1 + i)2 tdt = (1 + i)2

[
t2

2

]1

0

=
(1 + i)2

2
= i.

2)
∫
γ

zdz

The path γ is the circle C (i, 2) defined by

z (θ) = z0 + reiθ = i+ 2eiθ with θ ∈ [0, 2π]

γ

i

0 1
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So ∫
γ

zdz =

2π∫
0

z(θ).z
′
(θ)dθ=

2π∫
0

(
−i+ 2e−iθ

) (
2ieiθ

)
dθ

=2

2π∫
0

(
eiθ + 2i

)
dθ

=2
[
−ieiθ + 2iθ

]2π
0

= 8iπ

Proposition 3.1. The curvilinear Integral of continuous functions over path γ satisfies
the following properties:

• It is linear, that is, if α, β ∈ C, then∫
γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z)dz + β

∫
γ

f(z)dz.

• If γ− is γ with the reverse orientation, then∫
γ−

f(z)dz = −
∫
γ

f(z)dz.

• If γ = γ1 + γ2 + · · ·+ γn (a subdivision of the path γ ), then∫
γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz + · · ·+
∫
γn

f(z)dz

Example 3.4. Let γ be the path that is the triangle with vertices 0, 2, and i.

a) Compute
∫
γ

|z|2 dz,
∫
γ

(Re(z) + Im(z))dz,

b) Deduce the following integrals∫
γ

(|z|2 − 2Re(z)− 2Im(z))dz,

∫
γ−

3 |z|2 dz

Solution. a) We have γ = γ1 + γ2 + γ3
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1) γ1 is the directed line segment [0, 2] is defined by the equation

z1 (t) = (1− t)× 0 + t× 2 = 2t ; with t ∈ [0, 1]

2) γ2 is the directed line segment [2, i] is defined by the equation

z2 (t) = (1− t)× 2 + t× i = 2− 2t+ it; with t ∈ [0, 1]

3) γ3 is the directed line segment [i, 0] is defined by the equation

z3 (t) = (1− t)× i+ t× 0 = i(1− t) ; with t ∈ [0, 1]

So ∫
γ

|z|2 dz=

∫
γ1

|z|2 dz +

∫
γ2

|z|2 dz +

∫
γ3

|z|2 dz

=

1∫
0

(2t)22dt+

1∫
0

[
(2− 2t)2 + t2

]
(−2 + i)dt+

1∫
0

(1− t)2(−i)dt

=8

1∫
0

t2dt+ (−2 + i)

1∫
0

(
5t2 − 8t+ 4

)
dt− i

1∫
0

(t2 − 2t+ 1)dt

=−
2

3
+ 2i
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∫
γ

(Re(z) + Im(z)) dz=

∫
γ1

(Re(z) + Im(z)) dz +

∫
γ2

(Re(z) + Im(z)) dz +

∫
γ3

(Re(z) + Im(z)) dz

=

1∫
0

2t2dt+

1∫
0

(2− 2t+ t) (−2 + i)dt+

1∫
0

(1− t)(−i)dt

=4

1∫
0

tdt+ (−2 + i)

1∫
0

(2− t) dt− i
1∫
0

(1− t)dt

=− 1 + i

b) By using the properties of the curvilinear Integral, we find∫
γ

(|z|2 − 2Re(z)− 2Im(z))dz=

∫
γ

|z|2 dz − 2

∫
γ

(Re(z) + Im(z))dz

=−
2

3
+ 2i− 2(−1 + i)

=
4

3∫
γ−

3 |z|2 dz=−
∫
γ

3 |z|2 dz

=− 3

∫
γ

|z|2 dz

=− 3(−
2

3
+ 2i) = 2− 6i

3.2 Cauchy’s Theorem

Theorem 3.1. Let γ ⊂ D be a closed path, and f : D −→ Ca holomorphic (analytic)
function in Int(γ). Then ∫

γ

f(z)dz = 0.

Example 3.5. Compute
∫
γ

z2dz, where γ is the circle |z| = 1
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Solution. From Cauchy’s Theorem we have

The path γ is the circle C (0, 1) so it is
closed, and the function f(z) = z2 is holo-
morphic (a polynomial) in C. Then∫

γ

z2dz = 0

γi

0 1

We verify this by direct computation.

The path γ is the circle C (0, 1) defined by

z (θ) = z0 + reiθ = eiθ with θ ∈ [0, 2π]

And ∫
γ

z2dz =

2π∫
0

z2 (θ) z
′
(θ) dθ=

2π∫
0

e2iθieiθdθ

=

2π∫
0

ie3iθdθ

=

[
e3iθ

3

]2π

0

=
ei6π

3
−

1

3
= 0

3.3 Cauchy’s Integral Formula

Theorem 3.2. Let γ be a closed path and let f be holomorphic (analytic) in an open
domain containing γ. Then for every point a in Int(γ)∫

γ

f(z)

z − a
dz = 2πif(a)

Example 3.6. Calculate integrals using Cauchy’s integral formula

1)
∫
|z|=2

ez

z − i
dz 2)

∫
|z|=3

cosπz

z2−3z + 2
dz 3)

∫
|z−1|=2

z

(z − i)(z + 3i)
dz
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Solution. We have

1)
∫
|z|=2

eiz

z + i
dz

We have the function f(z) = eiz is holomorphic in C (f ′ (z) = ieiz), and the path γ is
closed ( a circle C (0, 2) )

In addition
|a| = |−i| = 1 < 2 =⇒ a ∈ Int (γ)

Then ∫
|z|=2

eiz

z + i
dz = 2πif(−i) = 2πiei(−i) = 2πie

2)
∫
|z|=3

cos πz

z2−3z + 2
dz

We have z2−3z + 2 = 0 =⇒ z1 = 1 or z2 = 2 and{
|z1| = |1| = 1 < 3 =⇒ z1 ∈ Int (γ)

|z2| = |2| = 2 < 3 =⇒ z2 ∈ Int (γ)

So we have to decompose
1

z2−3z + 2
into two simple elements

1

z2−3z + 2
=

1

(z − 1) (z − 2)
=

1

z − 2
−

1

z − 1

Then ∫
|z|=3

cos πz

z2−3z + 2
dz=

∫
|z|=3

(
cosπz

z − 2
−

cos πz

z − 1

)
dz

=

∫
|z|=3

cosπz

z − 2
dz −

∫
|z|=3

cos πz

z − 1
dz

The function f(z) = cos πz is holomorphic in C, so∫
|z|=3

cosπz

z2−3z + 2
dz=2πi [cos 2π − cos π]

=4πi
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3)
∫

|z−1|=2

z

(z − i)(z + 3i)
dz

There are two singularities a0 = i and a1 = −3i. It remains to verify whether:

a0, a1 ∈ Int(γ)

{
|i− 1| =

√
2 < 2 =⇒ i ∈ Int(γ).

| − 3i− 1| =
√

10 > 2 =⇒ −3i /∈ Int(γ).

Thus, the function f(z) =
z

z + 3i
is holomorphic in Int(γ) because −3i /∈ Int(γ), and

the path γ is closed since γ = C(1, 2).∫
γ

z

(z − i)(z + 3i)
dz=

∫
γ

z/(z + 3i)

z − i
dz

=2πif(i)

=2πi

(
i

4i

)
=
π

2
i.

Theorem 3.3. Let γ be a closed path and let f be holomorphic (analytic) in an open
domain containing γ.

Then for every point a in Int(γ)∫
γ

f(z)

(z − a)n+1dz = 2πi
f (n)(a)

n!
(3.1)

Example 3.7. Compute ∫
|z|=1

esin z

z3
dz

Solution. By using the formula (3.1) we have

the function f(z) = esin z is holomorphic in int(γ) because Because it is a composition of
two functions, holomorphic , and the path γ is closed since γ = C(0, 1), with 0 ∈ Int(γ).
Then ∫

|z|=1

esin z

z3
dz = 2πi

f
′′
(0)

2!
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where
f(z) = esin z =⇒f ′(z) = esin z cos z

=⇒f ′′(z) = esin z
(
cos2 z − sin z

)
Thus f ′′(0) = 1, and so ∫

|z|=1

esin z

z3
dz = πi.

3.4 EXERCISES

Exercise 3.1. Compute

1)
∫
γ

Re (z) dz, where γ is the directed line segment from 1 + i to 3i.

2)
∫
γ

Im (z) dz, where γ is the triangle with vertices 0, 1 + i, 4i.

3)
∫
γ

zzdz, where γ is the circle |z| = 2

4)
∫
γ

z2dz, where γ is the It is the semi-circle |z + 1| = 2 from 1 to −3

5)
∫
γ

1

1 + z2
dz, where γ is the It is quarter circle |z| = 2 from 2 to 2i

Exercise 3.2. Calculate integrals using Cauchy’s integral formula

1)
∫
|z|=3

eπz

z − 2i
dz, 2)

∫
|z|=3

cosπz

z2 + 5z − 6
dz, 3)

∫
|z|=2

eiz

z2 + 1
dz.

4)
∫

|z+1|=2

z

z (z − i)
dz, 5)

∫
|z|=1

z2

2z − i
dz.
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Exercise 3.3. Calculate integrals

1)
∫
|z|=2

eiz

(z − i)2dz, 2)
∫
|z|=1

cos πz

(z − 1/2)4dz, 3)
∫

|z+i|=2

eiπz

(z − 1)3dz.

Exercise 3.4. Let f be the following function

f(z) =
ez

(z − 1) (z + 3)2

1- Determine the residues of f at each of its poles.

2- Deduce the following integrals∫
|z|= 1

2

ez

(z − 1) (z + 3)2dz and
∫
|z|=4

ez

(z − 1) (z + 3)2dz
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Chapter 4

Applications

4.1 Equivalence between holomorphy and analyticity.

We know that a real-valued function with a power series expansion around 0 is infinitely
differentiable, so we will show that this result is still valid for functions of a complex
variable

Theorem 4.1. Let f(z) =
∞∑
n=0

anz
n, with radius of convergence R.

• f is a holomorphic function inside its disc of convergence.

• The derivative of f is also a power series obtained by differentiating term by term
the series for f , that is

f
′
(z) =

∞∑
n=1

nanz
n−1

Moreover, f ′ has the same radius of convergence as f .

Example 4.1. We know that the function

∞∑
n=0

zn =
1

1− z
; when |z| < 1

Then the function f(z) =
1

1− z
is holomorphic in Int (D (0, 1)).
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4.2 Maximum theorem.

Theorem 4.2. (Open Mapping Theorem).
If f is holomorphic and non-constant in a region Ω, then it is open (i.e., f maps open
sets to open sets).

Corollary 4.1. Every holomorphic application is an open application

Theorem 4.3. (The principle of maximum)
Let Ω be a domain and f ∈ H(Ω) be non-constant. Then |f | does not attain its maxi-
mum value in Ω.

Proof. Suppose that |f | reaches its maximum at a ∈ Ω. i.e

|f(a)| = max
z∈Ω
|f(z)| > 0

Since f is holomorphic and not constant, it is an open application, from which there
exists δ > 0 such that the disk D (f(a); δ) ⊂ f(Ω).

Let

ω = (1 +
δ

2 |f(a)|
)f(a)

Then ω ∈ D (f(a); δ) and consequently there exists z ∈ Ω such that ω = f(z) and on
the other hand, |f(z)| = |ω| > |f(a)|, which is absurd.

Example 4.2. Let
f(z) = z2 + 1

be a function defined on the closed disk

D(0, 2) = {z ∈ C | |z| ≤ 2}.

The function f(z) = z2 + 1 is a polynomial, meaning it is holomorphic on C, including
the closed disk D(0, 2).

Evaluate |f(z)| on the boundary

On the boundary |z| = 2, write z = 2eiθ. Then:

f(z) = (2eiθ)2 + 1 = 4e2iθ + 1

|f(z)| = |4e2iθ + 1|
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Compute:

|f(z)|2 = |4e2iθ + 1|2

= (4e2iθ + 1)(4e−2iθ + 1)

= 16 + 4e2iθ + 4e−2iθ + 1

= 17 + 8 cos(2θ)

Therefore,
|f(z)| =

√
17 + 8 cos(2θ)

The maximum of cos(2θ) is 1, so:

max |f(z)| =
√

17 + 8 · 1 =
√

25 = 5

Interior of the disk

At the center z = 0, we have:

f(0) = 1 ⇒ |f(0)| = 1 < 5

Then

|f(z)| cannot reach its maximum in D(0, 2), which confirms the Maximum Theorem.
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4.3 Liouville’s theorem.

Theorem 4.4. (Liouville’s theorem)
if f is holomorphic (analytic) on C and |f | ≤M then f is constant.

Proof. Let f holomorphic (analytic) on C, then f is a power series expansion

f(z) =
+∞∑
n=0

anz
n

We have the Cauchy inequalities for the coefficients of the series:

|ak| ≤
1

2πrk
sup {|f(z)| : |a| = r}

Since here f(z) ≤M for all z, letting r −→ +∞, we obtain

ak = 0; ∀k ≥ 1

Then f(z) = a0, is constant.

4.4 Rouche’s theorem.

Definition 4.1. A curve is a subset of R2 of the form γ = γ(x) : x ∈ [0, 1] , where
γ : [0, 1]→ R2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0)
and γ(1) are called the endpoints of curve γ. A curve is closed if its first and last points
are the same. A curve is simple if it has no repeated points except possibly first = last.
A closed simple curve is called a Jordan-curve.

Example 4.3. Line segments between A,B ∈ R2, circular arcs, Bezier-curves without
self-intersection, etc...

Theorem 4.5. (Rouche’s theorem) Let f, g : U −→ C analytic on U ⊂ C open,
γ : I → U a Jordan curve with Int(γ) ⊂ U . Assume f has no zero on γ(I) and

|f(z)− g(z)| ≤ |g(z)| , ∀z ∈ γ(I).

Then f and g have the same number of zeros inside γ, counting multiplicities.

Example 4.4. Let f(z) = 1+2z+7z2 +3z5 . Show that f has exactly two roots inside
the unit disc.

Answer: Apply Rouché’s theorem to g(z) = 7z2 and (f − g)(z) = 1 + 2z + 3z5 .
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4.5 Residue theorem.

4.5.1 The Poles

Definition 4.2. Let f(z) =
g(z)

(z − a)m
with g(a) 6= 0

The point a is called a pole of order m of f .

Remark 4.1. we have:

1. If m = 1 then a is a simple pole.

2. If m = 1 then a is a double pole.

3. If m = 1 then a is a triple pole.

Example 4.5. Determine the poles of the following functions

1) f(z) =
1

(z + 2) (z − 3)
2) g(z) =

cosπz

z2 (z + 1)
3) h(z) =

ez (z + 2)

(z2 − 4)3

Solution. We have

1) The function f has a simple pole at −2 and 3.

2) The function g has a simple pole at −1 and a double pole at 0.

3) h(z) =
ez (z + 2)

(z2 − 4)3 =
ez

(z + 2)2 (z − 2)3. Then the function h has a double pole at −2

and a triple pole at 2.

4.5.2 The residues

Definition 4.3. Let γ be a path. The residue of f in a is a complex number that
verifies:

Res (f, a) =
1

2πi

∫
γ

f(z)dz

with a ∈ Int (γ).

If f(z) =
g(z)

(z − a)m
with g(a) 6= 0, then

Res (f, a) =
1

(m− 1)!
lim
z→a

[(z − a)m f(z)]
(m−1)
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If m = 1 then Res (f, a) = lim
z→a

(z − a) f(z) = g(a)

If m = 2 then Res (f, a) = lim
z→a

(
(z − a)2 f(z)

)′
= g

′
(a)

If m = 3 then Res (f, a) = lim
z→a

1

2

(
(z − a)3 f(z)

)′′
=
g
′′
(a)

2

Example 4.6. Calculate the residues of the following functions

1) f(z) =
z3

z − i
2) g(z) =

z cos πz

(z + 1)2 3) h(z) =
ez

(z − 2)3

Solution. We have

1) The function f has a simple pole at i, then

Res(f, i) = lim
z→i

(z − i) f(z) = i3 = −i

2) The function g has a double pole at −1, so

Res (f,−1) = lim
z→−1

(
(z + 1)2 f(z)

)′
= lim

z→−1
(z cosπz)

′
= −1

3) The function h has a triple pole at 2, then

Res (f, 2) = lim
z→2

1

2

(
(z − 2)3 f(z)

)′′
=
e2

2

Theorem 4.6. (Residue Theorem) Let f : Ω −→ C, a holomorphic function in
Ω except at a finite number of points a0, a1, a2, . . . , an, and γ ⊂ Ω a closed path. If
a0, a1, a2, . . . , an ∈ Int (γ) then∫

γ

f(z)dz = 2πi
n∑
k=1

Res (f, ak)

Example 4.7. Evaluate the integrals:

∫
γ

z + 1

z (z − 1)2dz; with γ : |z| = 2
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Solution 4.1. The function f(z) =
z + 1

z (z − 1)2 has a simple pole at 0 and a double pole

at 1.

we have{
|0| = 0 < 2 =⇒ 0 ∈ Int (γ)

|1| = 1 < 2 =⇒ 1 ∈ Int (γ)

Then ∫
γ

z + 1

z (z − 1)2dz = 2πi (Res (f, 0) +Res (f, 1))

Res (f, 0) = lim
z→0

(z − 0) f(z) = lim
z→0

z + 1

(z − 1)2 = 1

Res (f, 1) = lim
z→1

(
(z − 1)2 f(z)

)′
= lim

z→1

− 1

z2
= −1

Then ∫
γ

z + 1

z (z − 1)2dz = 2πi (1− 1) = 0

4.6 Calculation of integrals using the residue method.

4.6.1 Integrals of the form

2π∫
0

R (cos θ, sin θ) dθ

All integrals of the form
2π∫
0

R (cos θ, sin θ) dθ (4.1)

where the integrated is a rational function of cos θ and sin θ can be easily evaluated by
means of residues. It is very natural to make the substitution z = eiθ which immediately
transforms (4.1) into the line integral

∫
|z|=1

R

[
1

2

(
z +

1

z

)
,

1

2i

(
z −

1

z

)]
dz

iz

with dθ =
dz

iz
, cos θ =

1

2

(
z +

1

z

)
and sinθ =

1

2i

(
z −

1

z

)
.
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It remains only to determine the residues which correspond to the poles of the integrated
inside the unit circle.

Example 4.8. Evaluate the following integrals by the method of residues:

1)
2π∫
0

dθ

5− 4 cos θ
, 2)

2π∫
0

sin2 θ

5 + 4 cos θ
dθ

Solution. we have

1)
2π∫
0

dθ

5− 4 cos θ

2π∫
0

dθ

5− 4 cos θ
=

∫
|z.|=1

1

5− 4 (z + z−1)

dz

iz
=

2

i

∫
|z|=1

1

−4z2 + 10z − 4
dz =

2

i

∫
γ

f(z)dz

where f(z) =
1

−4z2 + 10z − 4
, and γ is the circle |z| = 1.

−4z2 + 10z − 4 = 0 =⇒ ∆ = 36 =⇒


z1 =

− 10 + 6

−8
=

1

2

z2 =
− 10− 6

−8
= 2

Then the function f(z) =
1

−4 (z − 2) (z − 1/2)
have 2 and

1

2
a tow simple pole.

Only the pole
1

2
∈ Int (γ) (

∣∣∣∣∣12
∣∣∣∣∣ =

1

2
< 1 ). So we need to calculate the residue of f in

1

2

Res

(
f,

1

2

)
= lim

z→
1

2

(
z −

1

2

)
f(z) = lim

z→
1

2

1

−4 (z − 2)
=

1

6
.

Then
2π∫
0

dθ

5− 4 cos θ
=

2

i

∫
γ

f(z)dz

=
2

i

(
2πiRes

(
f,

1

2

))

=
2π

3
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2)
2π∫
0

sin2 θ

5 + 4 cos θ
dθ

2π∫
0

sin2 θ

5 + 4 cos θ
dθ =

∫
|z|=1

(1/2i (z − z−1))
2

5 + 4/2 (z + z−1)

dz

iz
=
− 1

4i

∫
|z|=1

(z2 − 1)
2

z2 (2z2 + 5z + 2)
dz =

− 1

4i

∫
|z|=1

f(z)dz

with f(z) =
(z2 − 1)

2

z2 (2z2 + 5z + 2)

we have 2z2 + 5z + 2 = 0 =⇒ z = −
1

2
or z = −2

So f(z) =
(z2 − 1)

2

z2 (2z2 + 5z + 2)
= f(z) =

(z2 − 1)
2

2z2

(
z +

1

2

)
(z + 2)

has a double pole at z = 0

and simple poles at z = −
1

2
and z = −2.

Of these, only the poles at z = 0 and z = −
1

2
lie inside the unit disk. So we need to

calculate the residue of f in −
1

2
and 0.

For z = 0

Res (f, 0) = lim
z→0

(
z2f(z)

)′
= lim

z→0

 (z2 − 1)
2

2

(
z +

1

2

)
(z + 2)


′

= −
5

4

For z = −
1

2

Res

(
f,−

1

2

)
= lim

z→−
1

2

(
z +

1

2

)
f(z) = lim

z→−
1

2

(z2 − 1)
2

2z2 (z + 2)
=

3

4
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Then
2π∫
0

sin2 θ

5 + 4 cos θ
dθ=

− 1

4i

∫
γ

f(z)dz

=
− 1

4i

[
2πi

(
Res (f, 0) +Res

(
f,−

1

2

))]

=
π

4

4.6.2 Integrals of the form

+∞∫
−∞

R (x) dx

An integral of the form
+∞∫
−∞

R (x) dx

converges if and only if in the rational function R(x) =
P (x)

Q(x)
the degree of the denom-

inator is at least two units higher than the degree of the numerator, and if no pole lies
on the real axis. Let us further assume that we have:

degQ ≥ 2 + degP

we have
+∞∫
−∞

R (x) dx = 2πi
n∑
k=1

Res (f, ak)

the ak being the zeros of Q; with Im (ak) > 0.

Example 4.9. Evaluate the following integrals by the method of residues:

1)
+∞∫
−∞

1

x2 + 4
dx, 2)

+∞∫
−∞

1

(x2 + 1)2dx

Solution. We have

1)
+∞∫
−∞

1

x2 + 4
dx
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Let f(z) =
1

z2 + 4
=⇒ P (z) = 1, Q(z) = z2 + 4

we have degQ = 2 ≥ degP + 2 = 2, The roots of Q are 2i and −2i. Only pole 2i has
a strictly positive imaginary part.

So we need to calculate the residue in 2i

Res (f, 2i) = lim
z→2i

(z − 2i) f(z) = lim
z→2i

1

z + 2i
=

1

4i

Then
+∞∫
−∞

1

x2 + 4
dx = 2πiRes (f, 2i) =

π

2

2)
+∞∫
−∞

1

(x2 + 1)2dx

Let f(z) =
1

(z2 + 1)2 =⇒ P (z) = 1, Q(z) = (z2 + 1)
2

we have degQ = 4 ≥ degP + 2 = 2, The roots of Q are i and −i. Only pole i has a
strictly positive imaginary part which is a double pole.

So we need to calculate the residue in 2i

Res (f, i) = lim
z→i

(
(z − i)2 f(z)

)′
= lim

z→i

(
1

(z + i)2

)′
=

1

4i

Then
+∞∫
−∞

1

(x2 + 1)2dx = 2πiRes (f, i) =
π

2

4.6.3 Integrals of the form

+∞∫
−∞

R (x) eiαxdx

Let R(x) =
p(x)

Q(x)
whose deminator Q(x) does not have real roots and

deg(Q(x)) ≥ deg(P (x)) + 1

. The calculation of the simple integral
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+∞∫
−∞

R(x)eiαxdx

will be done according to the sign of the parameter α:

1) If α > 0, then
+∞∫
−∞

R(x)eiαxdx = 2πi
n∑
k=1

Res(R(z)eiαz, ak)

where ak being the zeros of Q; with Im (ak) > 0.

2) If α < 0, then
+∞∫
−∞

R(x)eiαxdx = −2πi
n∑
k=1

Res(R(z)eiαz, bk)

where bk being the zeros of Q; with Im (bk) < 0.

Example 4.10. Evaluate the following integral
+∞∫
−∞

cosx

x2 + 1
dx

Solution. Let the integral
+∞∫
−∞

eix

x2 + 1
dx

We have
+∞∫
−∞

eix

x2 + 1
dx =

+∞∫
−∞

cosx+ i sinx

x2 + 1
dx =

+∞∫
−∞

cosx

x2 + 1
dx+ i

+∞∫
−∞

sinx

x2 + 1
dx

From this we notice
+∞∫
−∞

eix

x2 + 1
dx = Re

+∞∫
−∞

eix

x2 + 1
dx


Let R(z) =

1

z2 + 1
, The roots of R(z) are i and −i. Only pole i has a strictly positive

imaginary part which is a simple pole. Then

+∞∫
−∞

eix

x2 + 1
dx =

+∞∫
−∞

R(x)eixdx = 2πiRes
(
R(z)eiz, i

)
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We have

Res
(
R(z)eiz, i

)
= lim

z→i
(z − i) eiz

z2 + 1
= lim

z→i

eiz

z + i
=

1

2ie

Then
+∞∫
−∞

eix

x2 + 1
dx = 2πi

1

2ie
=
π

e

Finally
+∞∫
−∞

eix

x2 + 1
dx =

π

e
.

4.7 EXERCISES

Exercise 4.1. Find the poles and residues of the following functions:

1) f(z) =
1

z2 + 5z + 6
2) g(z) =

1

(z2 − 1)2 3) h(z) =
(z − i) ez

z2 (z2 + 1)3

Exercise 4.2. Evaluate the following integrals by the method of residues:

1)
2π∫
0

dθ

5 + 3 sin θ
2)

2π∫
0

dθ

(2 + cos θ)2 3)
2π∫
0

dθ

13 + 5 sin θ
4)

2π∫
0

sin θ

5 + sin θ
dθ

Exercise 4.3. Evaluate the following integrals by the method of residues:

1)
+∞∫
−∞

1

x6 + 1
dx 2)

+∞∫
−∞

x2

(x2 + a2) (x2 + b2)
dx 3)

+∞∫
−∞

1

(x2 + 1)3dx

Exercise 4.4. 1) Evaluate the following integral

+∞∫
−∞

xeiπx

x2 + 2x+ 5
dx

2) Deduce the integrals

+∞∫
−∞

x cos(πx)

x2 + 2x+ 5
dx

+∞∫
−∞

x sin(πx)

x2 + 2x+ 5
dx
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Chapter 5

Harmonic Functions

5.1 Harmonic Functions

Definition 5.1. Let U be an open subset of R2. A function ψ : U −→ R is called
harmonic if

• ψ has continuous second order partial derivatives in U ;

• ψ satisfies Laplace’s equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

Example 5.1. Let ψ : R2 −→ R be a function defined by

ψ(x, y) = x3 − 3xy2 − 2xy + 2

We easily see that
∂ψ

∂x
= 3x2 − 3y2 − 2

∂ψ

∂y
= −6xy − 2x

=⇒


∂2ψ

∂x2
= 6x

∂2ψ

∂y2
= −6x

=⇒
∂2ψ

∂x2
+
∂2ψ

∂y2
= 6x− 6x = 0

Then ψ is harmonic in R2

Theorem 5.1. Let f be holomorphic in an open set Ω, with real and imaginary parts
P and Q. Then both P and Q are harmonic in Ω.
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Proof. We are supposing that P,Q : R2 −→ R are such that

f(z) = P (x, y) + iQ (x, y)

Since f is holomorphic, and by the Cauchy-Riemann equations we have

∂2P

∂x2
=

∂

∂x

(
∂P

∂x

)
=

∂

∂x

(
∂Q

∂y

)
=

∂

∂y

(
∂Q

∂x

)
=

∂

∂y

(
−
∂P

∂y

)
= −

∂2P

∂y2

Then
∂2P

∂x2
+
∂2P

∂y2
= 0.

and similarly

∂2Q

∂x2
=

∂

∂x

(
∂Q

∂x

)
=

∂

∂x

(
−
∂P

∂y

)
= −

∂

∂y

(
∂P

∂x

)
= −

∂

∂y

(
∂Q

∂y

)
= −

∂2Q

∂y2

So
∂2Q

∂x2
+
∂2Q

∂y2
= 0.

Thus both P and Q are harmonic functions.

Theorem 5.2. Let Ω be an open disc, and suppose that P : Ω −→ R is harmonic.
Then there exists a complex function f , holomorphic in Ω, such that P = Ref .

Remark 5.1. The function Q = Imf , which is also harmonic, is called a harmonic
conugate for P .

Example 5.2. Verify that P is harmonic, and determine a function Q such that f =
P + iQ is holomorphic with f (0, 0) = 2 + 3i.

1) P (x, y) = x3 − 3xy2 − 2y + 2

2) P (x, y) = y3 − 3x2y + x2 − y2 + 2

Solution. 1) P (x, y) = x3 − 3xy2 − 2y + 2

We have
∂P

∂x
= 3x2 − 3y2

∂P

∂y
= −6xy − 2

=⇒


∂2P

∂x2
= 6x

∂2P

∂y2
= −6x

Then
∂2P

∂x2
+
∂2P

∂y2
= 6x− 6x = 0 and P is harmonic function.
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We are supposing that f = P + iQ is holomorphic then
∂P

∂x
=
∂Q

∂y
. . . . . . (1)

∂P

∂y
= −

∂Q

∂x
. . . . . . (2)

By integration in (1) we deduce that:

Q (x, y) =

∫ (
3x2 − 3y2

)
dy = 3x2y − y3 + ϕ (x)

By using (2) we have

−6xy − 2 = −
(

6xy + ϕ
′
(x)
)

=⇒ ϕ
′
(x) = 2 =⇒ ϕ (x) = 2x+ k

Then
Q (x, y) = 3x2y − y3 + 2x+ k

From f (0, 0) = 2 + 3i by solving, we find k = 3

Finally
Q (x, y) = 3x2y − y3 + 2x+ 3

Observe that
f(z) = x3 − 3xy2 − 2y + 2 + i

(
3x2y − y3 + 2x+ 3

)
To express f as a function of z, we define: x = z and y = 0. Then we get

f(z) = z3 + 2iz + 2 + 3i

2) P (x, y) = y3 − 3x2y + x2 − y2 + 2

We have
∂P

∂x
= −6xy + 2x

∂P

∂y
= 3y2 − 3x2 − 2y

=⇒


∂2P

∂x2
= −6y + 2

∂2P

∂y2
= 6y − 2

Then
∂2P

∂x2
+
∂2P

∂y2
= −6y + 2− (6y − 2) = 0 and P is harmonic function.

We are supposing that f = P + iQ is holomorphic then
∂P

∂x
=
∂Q

∂y
. . . . . . (1)

∂P

∂y
= −

∂Q

∂x
. . . . . . (2)
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By integration in (1) we deduce that:

Q (x, y) =

∫
(−6xy + 2x) dy = −3xy2 + 2xy + ϕ (x)

By using (2) we have

3y2 − 3x2 − 2y = −
(
−3y2 + 2y + ϕ

′
(x)
)

=⇒ ϕ
′
(x) = 3x2 =⇒ ϕ (x) = x3 + k

Then
Q (x, y) = −3xy2 + 2xy + x3 + k

From f (0, 0) = 2 + 3i by solving, we find k = 3

Finally
Q (x, y) = x3 − 3xy2 + 2xy + 3

Observe that

f(z) = y3 − 3x2y + x2 − y2 + 2 + i
(
x3 − 3xy2 + 2xy + 3

)
To express f as a function of z, we define: x = z and y = 0. Then we get

f(z) = iz3 + z2 + 2 + 3i

5.2 EXERCISES

Exercise 5.1. Verify that the following functions P are harmonic

1) P (x, y) = 5x2−5y2 − 3y + 1; x, y ∈ R
2) P (x, y) = −y3 + 3x2y + 7x+ 1; x, y ∈ R
3) P (x, y) = ex

2−y2cos(2xy)

Exercise 5.2. Prove that v is a harmonic conjugate of u if and only −u is a harmonic
conjugate of v.

Exercise 5.3. Verify that the following functions u are harmonic, and determine a
function v such that u+ iv is a holomorphc function.

1. u(x, y) = x(1 + 2y)

2. u(x, y) = excosy

3. u(x, y) = x−
y

x2 + y2
.
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Chapter 6

Exams

6.1 Exam 2022

Ibn Khaldoun University of Tiaret - Faculty of Applied Sciences
Department of Science and Technology.

Exercise 01

Let z = x+ iy where x, y ∈ R and consider the function:

f(z) = e−y cosx+ ie−y sinx.

1. Show that f is holomorphic using the Cauchy-Riemann conditions.

2. Compute the modulus and argument of f(z).

3. Express f(z) as a function of z.

Exercise 02

Solve in C the following equation:

2 cosh z − 3e−z = −1
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Exercise 03

Let P (x, y) = x4 + y4 − 6x2y2 − 5y + 1.

1. Show that P is harmonic on R2.

2. Find the function Q such that f is a holomorphic function on C given in algebraic
form by

f(z) = f(x+ iy) = P (x, y) + iQ(x, y),

where z = x+ iy, P = Re(f) and Q = Im(f).

3. Express f(z) as a function of z such that f(0, 0) = 1− 2i.

4. Compute f ′(z) using two methods.

Exercise 04

Compute the following integrals using Cauchy’s integral formula:

1.
∫
C

cosπz

z + 1
4

dz where C is the circle |z| = 1.

2.
∫
C

eiπz

z2 + 5z + 6
dz where C is the circle |z − i| = 3.

Solution

Exercise 01

Let P (x, y) = e−y cosx and Q(x, y) = e−y sinx. Thus, P = <(f), Q = =(f).

1. Show that f is holomorphic on C:

∂P

∂x
= −e−y sinx,

∂Q

∂y
= −e−y sinx⇒ ∂P

∂x
=
∂Q

∂y

∂P

∂y
= −e−y cosx,

∂Q

∂x
= e−y cosx⇒ ∂P

∂y
= −∂Q

∂x

So f satisfies the Cauchy-Riemann equations.
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2. (a) The modulus of f :

|f(z)| =
√
P 2 +Q2 =

√
e−2y(cos2 x+ sin2 x) = e−y

(b) The argument of f :

cos θ =
e−y cosx

e−y
= cosx, sin θ =

e−y sinx

e−y
= sinx⇒ arg(f) = x+2kπ, k ∈ Z

3. The expression of f(z):

f(z) = e−y cosx+ ie−y sinx = cos z + i sin z = eiz

Exercise 02

Solve the equation 2 cosh z − 3e−z = −1:

2 cosh z − 3e−z = −1⇒ 2

(
ez + e−z

2

)
− 3e−z = −1⇒ ez − 2e−z = −1

Multiply both sides by ez:
e2z + ez − 2 = 0

Let M = ez, then:
M2 +M − 2 = 0⇒ ∆ = 1 + 8 = 9

So
M = 1⇒ z = ln 1 + i2kπ = i2kπ

M = −2⇒ z = ln |2|+ i(π + 2kπ) = ln 2 + i(2k + 1)π

Or:
zk = i2kπ or zk = ln 2 + i(2k + 1)π, k ∈ Z

Exercise 03

1. Let P (x, y) = x4 + y4 − 6x2y2 − 5y + 1:

∂P

∂x
= 4x3 − 12xy2,

∂2P

∂x2
= 12x2 − 12y2

∂P

∂y
= 4y3 − 12x2y − 5,

∂2P

∂y2
= 12y2 − 12x2

⇒ ∂2P

∂x2
+
∂2P

∂y2
= 0⇒ P is harmonic on R2
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2. Since f is holomorphic on C, the pair (P,Q) satisfies the Cauchy-Riemann con-
ditions:

∂P

∂x
=
∂Q

∂y
, (1)

∂P

∂y
= −∂Q

∂x
, (2)

From (1):
∂Q

∂y
= 4x3−12xy2 ⇒ Q(x, y) =

∫
(4x3−12xy2) dy = 4x3y−4xy3+C(x)

From (2):
∂P

∂y
= −∂Q

∂x
⇒ 4y3 − 12x2y − 5 = −(12x2y − 4y3 + C ′(x))⇒ C ′(x) =

5⇒ C(x) = 5x+ c

Final expression: Q(x, y) = 4x3y − 4xy3 + 5x+ c

3. Since f(0, 0) = 1− 2i⇒ P (0, 0) + iQ(0, 0) = 1 + ic = 1− 2i⇒ c = −2

Therefore:

f(z) = x4 + y4 − 6x2y2 − 5y + 1 + i(4x3y − 4xy3 + 5x− 2) = z4 + 5iz + 1− 2i

4. Derivative of f :

Method 1:
f ′(z) = 4z3 + 5i

Method 2:

f ′(z) =
∂P

∂x
+ i

∂Q

∂x
= 4x3 − 12xy2 + i(12x2y − 4y3 + 5) = 4z3 + 5i

Exercise 0.4

1. Evaluate
∫
C

cos(πz)

z + 1
4

dz

The function f(z) = cos(πz) is holomorphic inside C, which is the circle C(0, 1).
Since | − 1

4
| < 1, the point is inside C.∫

C

cos(πz)

z + 1
4

dz = 2πi cos
(
−π

4

)
= πi
√

2

2. Evaluate
∫
C

eiπz

z2 + 5z + 6
dz

Factor the denominator: z2 + 5z + 6 = (z + 2)(z + 3)

Singularities at z = −2,−3
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Check if: −2, −3
?
∈ C(i, 3)

|−2− i| =
√

5 < 3, |−3− i| =
√

10 > 3

Only z = −2 ∈ int(C)

Method 1:∫
C

eiπz

(z + 2)(z + 3)
dz =

∫
C

eiπz/(z + 3)

z + 2
dz = 2πi · e

−2iπ

1
= 2πi

Method 2: Partial Fractions:

1

(z + 2)(z + 3)
=

1

z + 2
− 1

z + 3

Thus: ∫
C

eiπz

z2 + 5z + 6
dz =

∫
C

eiπz

z + 2
dz −

∫
C

eiπz

z + 3
dz = 2πie−2πi − 0 = 2πi

6.2 Exam 2023

Ibn Khaldoun University of Tiaret - Faculty of Applied Sciences
Department of Science and Technology.

Exercise 01

Let z = x+ iy, where x, y ∈ R, and consider the function:

f(z) = e−iz

1. Write f(z) in algebraic form: P (x, y) + iQ(x, y)

2. Show that f is holomorphic on C using two methods.

3. Compute the modulus and argument of f(z).

4. Solve in C the following equations:

ez = i cos z = i sin z
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Exercise 02

Let
P (x, y) = x3 − 3xy2 − 7y + 2

1. Show that this function P is harmonic on R2.

2. Find the function Q(x, y) such that f(z) = P (x, y) + iQ(x, y) is holomorphic on
C, where z = x+ iy, P = <(f), and Q = =(f).

3. Express f(z) in terms of z, given that f(0, 0) = 2 + 5i.

4. Compute f ′(z) using two different methods.

Exercise 03

Let:
f(z) =

1

(2 + i)z2 + 6iz − 2 + i

1. Determine the poles of f .

2. Compute the following integral using the residue theorem:

I =

∫ 2π

0

1

3 + cos θ + 2 sin θ
dθ

Solution

Exercise 01

Let z = x+ iy, where x, y ∈ R.

1.
f(z) = e−i(x+iy) = eye−ix = ey[cos(x)− i sin(x)] = ey cos(x)− iey sin(x)

Hence:

<(f) = P (x, y) = ey cos(x), =(f) = Q(x, y) = −ey sin(x)
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2. Prove that f is holomorphic on C:
Method 1:

f ′(z) = −ie−iz ∀z ∈ C

Method 2: Cauchy-Riemann Conditions

∂P

∂x
= −ey sin(x),

∂Q

∂y
= −ey sin(x)⇒ ∂P

∂x
=
∂Q

∂y

∂P

∂y
= ey cos(x),

∂Q

∂x
= −ey cos(x)⇒ ∂P

∂y
= −∂Q

∂x

3. Modulus:

|f(z)| =
√
P 2 +Q2 =

√
e2y[cos2(x) + sin2(x)] = ey

Argument:

cos θ =
ey cosx

ey
= cosx, sin θ =

−ey sinx

ey
= − sinx⇒ arg(f) = −x+2kπ, k ∈ Z

4. Solve in C:

(a) ez = i⇒ z = ln(i) = ln 1 + i(π
2

+ 2kπ) = i(π
2

+ 2kπ), k ∈ Z
(b) cos z = i sin z ⇒

eiz + e−iz

2
= i · e

iz − e−iz

2i
⇒ 2e−iz = 0

Contradiction: e−iz 6= 0 ∀z ∈ C⇒ No solution.

Exercise 02

Let P (x, y) = x3 − 3xy2 − 7y + 2

1. Show that P is harmonic on R2:

∂2P

∂x2
= 6x,

∂2P

∂y2
= −6x⇒ ∆P = 0⇒ P is harmonic
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2. Since f is holomorphic on C, the pair (P,Q) satisfies the Cauchy-Riemann con-
ditions:

∂P

∂x
=
∂Q

∂y
,

∂P

∂y
= −∂Q

∂x

From the first:

∂Q

∂y
= 3x2 − 3y2 ⇒ Q(x, y) =

∫
(3x2 − 3y2)dy = 3x2y − y3 + C(x)

From the second:

∂P

∂y
= −6xy − 7 = − (6xy + C ′(x))⇒ C ′(x) = 7⇒ C(x) = 7x+ c

So:
Q(x, y) = −y3 + 3x2y + 7x+ c

3. Given: f(0, 0) = 2 + 5i⇒ c = 5

Final expression:

f(z) = x3 − 3xy2 − 7y + 2 + i(−y3 + 3x2y + 7x+ 5) = z3 + 7iz + 2 + 5i

4. Derivative of f :

Method 1:
f ′(z) = 3z2 + 7i

Method 2:

f ′(z) =
∂P

∂x
+ i

∂Q

∂x
= 3x2 − 3y2 + i(6xy + 7) = 3z2 + 7i

Exercise 03

1. Find the poles of f(z) =
1

(2 + i)z2 + 6iz − 2 + i

Solve the quadratic:

(2+i)z2+6iz−2+i = 0⇒ ∆ = (−6i)2−4(2+i)(−2+i) = −36+20 = −16 = (4i)2

Roots:
z0 =

−6i+ 4i

2(2 + i)
=
−i

2 + i
, z1 =

−6i− 4i

2(2 + i)
=
−5i

2 + i
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2. Let z = eiθ, then:

cos θ =
z + z−1

2
, sin θ =

z − z−1

2i
, dθ =

dz

iz

I =

∫ 2π

0

1

3 + cos θ + 2 sin θ
dθ =

∫
C

1

3 +
z + z−1

2
+ 2 · z − z

−1

2i

· dz
iz

Simplifies to:

I = 2

∫
C

1

(2 + i)z2 + 6iz − 2 + i
dz = 2

∫
C

f(z)dz

Only the pole z0 = −i
2+i

is inside the unit circle because:∣∣∣∣ −i2 + i

∣∣∣∣ =
1√
5
< 1

Compute the residue at z0:

Res(f, z0) = lim
z→z0

(z − z0)f(z) =
1

(2 + i)(z0 − z1)
=

1

4i

Final result:
I = 2 · 2πi · 1

4i
= π

6.3 Make-up Exam 2023

Ibn Khaldoun University of Tiaret - Faculty of Applied Sciences
Department of Science and Technology.

Exercise 01: Let z = x+ iy where x, y ∈ R, and consider the function:

f(z) = cos(iz)

1) Express f(z) in algebraic form: P (x, y) + iQ(x, y).

2) Show that f is holomorphic on C using the Cauchy-Riemann conditions.
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3) Find all values of z such that f(z) is real.

4) Solve the following equation in C:

f(z) = i

Exercise 02: Let
P (x, y) = x2 − y2 − 2xy − 2x+ 3y + 5

1) Prove that this function P is harmonic on R2.

2) Find the function Q such that f is a holomorphic function on C given in algebraic
form:

f(z) = f(x+ iy) = P (x, y) + iQ(x, y)

where z = x+ iy, P = <(f), and Q = =(f).

3) Express f(z) as a function of z such that f(0, 0) = 5 + 2i.

4) Compute f ′(z) using two different methods.

Exercise 03: Let
f(z) =

z2

z4 + 3z2 + 2

1) Determine the poles of f .

2) Calculate the following integral using the residue theorem:

I =

∫ +∞

−∞

x2

x4 + 3x2 + 2
dx

Solution

Exercise 01

Let z = x+ iy where x, y ∈ R.

1. Algebraic form of f(z):

f(z) = cos(iz) = cos(ix− y) = cosh x cos y + i sinhx sin y

⇒ Re(f) = P (x, y) = cosh x cos y and Im(f) = Q(x, y) = sinh x sin y
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2. Show f is holomorphic on C:
∂P

∂x
= sinhx cos y =

∂Q

∂y
∂P

∂y
= − coshx sin y = −∂Q

∂x

The Cauchy-Riemann conditions are satisfied, so f is holomorphic.

3. Find z such that f(z) is real:

Im(f) = 0⇒ sinhx sin y = 0⇒ x = 0 or y = kπ, k ∈ Z

Solutions:
z = iy or z = x+ ikπ, x, y ∈ R, k ∈ Z

4. Solve f(z) = i:

f(z) = i =⇒ cos(iz) = i=⇒
e−z + ez

2
= i

=⇒e2z − 2iez + 1 = 0
M=ez
=⇒ M2 − 2iM + 1 = 0

∆ = −4− 4 = −8 = (i2
√

2)2{
M1 = (1 +

√
2)i =⇒ ez = (1 +

√
2)i =⇒ z = log((1 +

√
2)i)

M2 = (1−
√

2)i =⇒ ez = (1−
√

2)i =⇒ z = log((1−
√

2)i)

Then zk = ln(1 +
√

2) + i(
π

2
+ 2kπ) and zk = ln(

√
2− 1) + i(−

π

2
+ 2kπ); k ∈ Z

Exercise 02

Let P (x, y) = x2 − y2 − 2xy − 2x+ 3y + 5.

1. Show P is harmonic on R2:
∂P

∂x
= 2x− 2y − 2

∂2P

∂x2
= 2

et


∂P

∂y
= −2y − 2x+ 3

∂2P

∂y2
= −2

=⇒
∂2P

∂x2
+
∂2P

∂y2
= 0 =⇒ P is harmonic in R2
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2. Find Q such that f = P + iQ is holomorphic:

we have 
∂P

∂x
=
∂Q

∂y
· · · · · · (01)

∂P

∂y
= −

∂Q

∂x
· · · · · (02)

From (1) we have
∂Q

∂y
= 2x− 2y − 2, then:

Q(x, y) =

∫
(2x− 2y − 2) dy = 2xy − y2 − 2y + C(x).

From (2):

(2) =⇒ −2y−2x+3 = −(2y+C ′(x))⇐⇒ C ′(x) = 2x−3 =⇒ C(x) = x2−3x+c.

Finally: Q(x, y) = x2 − y2 + 2xy − 3x− 2y + c ; c ∈ R..

3. Express f(z) in terms of z:

we have

f(0, 0) = P (0, 0) + iQ(0, 0) =⇒ 5 + ic = 5 + 2i =⇒ c = 2

Then
f(z) = (1 + i)z2 − (2 + 3i)z + 5 + 2i

4. Compute f ′(z) by two methods:

• Direct differentiation: f ′(z) = 2(1 + i)z − 2− 3i

• Using Cauchy-Riemann:

f ′(z) =
∂P

∂x
+ i

∂Q

∂x
=2x− 2y − 2 + i(2x− 3)

=2z − 2 + i(2z − 3) = 2(1 + i)z − 2− 3i

Exercise 03

f(z) =
z2

z4 + 3z2 + 2
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1. Poles of f :

En posant z2 = t on obtient :

z4 + 3z2 + 2 = 0 =⇒ t2 + 3t+ 2 = 0 =⇒ ∆ = 9− 8 = 1{
t1 = −1

t2 = −2
=⇒

{
z2 = −1

z2 = −2
=⇒

{
z0 = i ou z1 = −i
z2 = i

√
2 ou z3 = −i

√
2

2. Calculate the integral using residue theorem:

The function f(z) has 4 simple poles i, −i, i
√

2, et −i
√

2

we have P (z) = z2 and Q(z) = z4 + 3z2 + 2 with degQ− degP = 4− 2 ≥ 2

f(z) =
z2

(z + i)(z − i)(z + i
√

2)(z − i
√

2)

Only poles i and i
√

2 have a strictly positive imaginary part.

Then we need to calculate the residue at i and i
√

2

Res(f, i) =lim
z→i

(z − i)f(z)

=lim
z→i

z2

(z + i)(z + i
√

2)(z − i
√

2)
=
− 1

2i

Res(f, i
√

2) = lim
z→i
√

2
(z − i

√
2)f(z)

= lim
z→i
√

2

z2

(z + i)(z − i)(z + i
√

2)
=

1

i
√

2

Then :

I =

∫ +∞

−∞

x2

x4 + 3x2 + 2
dx=2πi

[
Res(f, i) +Res(f, i

√
2)
]

=2πi

(
− 1

2i
+

1

i
√

2

)

=
2−
√

2√
2

π = (
√

2− 1)π
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