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Preface 

This course, Control of Linear Systems, is designed for third-year undergraduate students in 

Electrical Engineering. It follows the official program established by the Ministry of Higher 

Education, which is divided into two main parts: 

• The first part covers the modeling and representation of linear systems, providing the 

fundamental tools needed to describe dynamic behavior, such as transfer functions, 

Laplace transforms, and state-space representations. 

• The second part focuses on the analysis of linear systems, including stability, 

frequency response, time-domain analysis, and feedback control techniques. 

The course offers an introduction to linear control theory, aiming to give students a strong 

foundation for more advanced studies and practical applications in control engineering. 

To support learning, the course includes numerous exercises, each accompanied by detailed 

solutions. 

I hope this course helps students develop a solid understanding of linear control principles and 

prepares them for future academic and professional challenges. 
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1.1 Introduction   

This section provides context for the course, introduces the preliminary definitions for the 

study, highlights the key points that will be addressed later, and helps build your intuition 

about control theory. 

1.2 Definitions:  

Control Engineering: The branch of science and engineering concerned with the design and 

application of systems that operate autonomously without human intervention. 

We can break down the key elements of this definition as follows: 

1. Scientific Principles: This indicates that control engineering involves theoretical 

work to: 

• Develop a mathematical model of a system. 

• Analyze its behavior based on the model. 

• Design a control strategy using the model. 

2. System Design and Implementation: This refers to the practical aspects, which may 

involve fields like electronics, computer engineering, and related disciplines. 

3. Autonomous Operation: This emphasizes the concept of automated systems, which: 

• Improve performance and user convenience (e.g., climate control, power 

steering). 

• Enhance safety (e.g., autopilot, ABS braking). 

1.3  Why we need a control engineering:  

The demand for control engineers has skyrocketed with the rise of automation and digital 

industrial technologies. This has created many career opportunities across a diverse array of 

industries. Controls engineers are indispensable across a range of verticals, including but not 

limited to:  

• Manufacturing: Robotic systems, industrial machinery, and process control 

technologies.  
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• Renewable Energy: Solar and wind energy systems that require sophisticated controls 

for efficiency and power grid integration.  

• Defense and Aerospace: Guidance systems for aircraft and spacecraft, and control 

systems for unmanned vehicles.  

• Biomedical Engineering: Medical devices, prosthetics, and imaging equipment that 

demand precise control for safe and effective operation.  

• Automotive: Antilock Braking Systems (ABS), cruise control, and other high-tech 

vehicle systems 

The Bureau of Labor Statistics projects a 6% job growth rate for control engineers through 

2030, much faster than the average for all occupations and salaries typically reach six figures 

early in the career. 

1.4  System concept 

In control systems engineering, the concept of a system is fundamental. Its definition closely 

aligns with the classical one in physics. Generally, a system is an entity that interacts with its 

environment, producing various dynamic behaviors. Certain external physical quantities 

influence the system; these are referred to as inputs. Conversely, other quantities are generated 

by the system and affect its surroundings; these are known as outputs. Input signals are typically 

denoted by u, while output signals are represented by y. A system’s inputs can generally be 

manipulated. However, some inputs are beyond direct control and cannot be altered. These are 

called disturbances and are commonly denoted by d. 

 

  

 

  Figure 1: system with inputs and outputs 

In practice, a system can represent a mechanical, electronic, or chemical device, and it is 

usually straightforward to distinguish it from its environment as well as to define its inputs 

and outputs. 
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For example: 

• In mechanical systems, inputs can be a force or torque, while outputs might be 

velocity or torque. 

• In electrical systems, inputs could be voltage or current, with corresponding outputs 

being voltage or current. 

• In chemical systems, an input might be the concentration of a reactant, while an output 

could be the concentration of the final product. 

Typical disturbances include factors such as aerodynamic drag in mechanical systems, 

electrical noise in electronic circuits, or unaccounted impurities in chemical processes. 

4.1.1 Linear system : 

A linear system in control theory is a system that satisfies the principles of superposition and 

homogeneity. This means that the system's response to a combination of inputs is the sum of 

the individual responses to each input, scaled accordingly. 

Formally, a system is linear if it obeys the following two properties:  

•  Superposition (Additivity): If an input u1(t)  produces an output y1(t), and an input u2(t) 

produces an output y2(t), then the response to the combined input u1(t)+u2(t) is: 

y(t)=y1(t)+y2(t)                                                                                               (1.1) 

•  Homogeneity (Scaling): If an input u(t) produces an output y(t), then for any scalar 

α\alphaα, the response to the scaled input α u(t)  is: 

y(t)=αy(t)                                                                                                        (1.2) 

4.1.2 Dynamic system 

A dynamic system is a system in which the relationship between inputs and outputs is 

described by differential equations. This means that the system's behavior evolves over time 

based on its internal state and external inputs. 

In control theory, dynamic systems can be classified into: 

• Continuous-time systems, where the evolution is governed by ordinary or partial 

differential equations. 
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• Discrete-time systems, where the system dynamics are described by difference 

equations 

4.1.3 Linear time-invariant system  

A Linear Time-Invariant (LTI) system is a system that satisfies two key properties: 

1. Linearity: The system adheres to the principles of superposition and scaling, meaning 

that the output for a weighted sum of inputs is the weighted sum of the outputs for 

each individual input. 

2. Time-Invariance: The system's behavior and characteristics do not change over time. 

In other words, if the input is shifted in time, the output will also shift by the same 

amount without any change in its form or structure. 

 

 

                                  Figure 2: Time invariant system 

 Remark: An LTI system is a system whose mathematical model is governed by differential 

equations with constant coefficients. 

1.5 Feedback concept :  

 Feedback is a process in which a portion of a system's output is returned to its input to 

regulate its behavior. In control systems, feedback is used to improve stability, accuracy, and 

performance by continuously correcting errors between the desired output and the actual 

output. 

Example: Necessity of a Closed-Loop System 

Consider the problem of maintaining a car’s speed: 

• Open-Loop Control (Without Feedback): Suppose a driver wants to maintain a 

speed of 60 km/h and sets the throttle to a fixed position. However, external factors 

LTI system  
0( )u t t−  0( )y t t−  
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such as road incline, wind resistance, and vehicle load can cause speed variations, 

making it difficult to maintain exactly 60 km/h. 

• Closed-Loop Control (With Feedback): In cruise control, a speed sensor 

continuously measures the car’s actual speed and compares it to the desired speed 

(setpoint). If there is a deviation, the system automatically adjusts the throttle to 

correct the speed, ensuring that the vehicle stays at 60 km/h despite disturbances. 

 

Figure 3: open-loop Vs closed loop 

 From this example, we can understand the importance of the feedback loop. In control 

systems, feedback enables two essential functions: 

1. Tracking: Ensuring that the system’s outputs follow given reference signals as closely 

as possible. 

2. Regulation: Minimizing the effect of disturbances on the system’s outputs to maintain 

stability and performance. 

In both cases, certain performance criteria are often required, such as: 

• Stability – Making sure the system remains controlled and doesn’t behave 

unpredictably. 

• Response Time – How fast the system reacts to changes. 

• Smooth Output – Avoiding unnecessary oscillations or fluctuations. 

• Accuracy – Keeping the output as close as possible to the desired value. 



Chapter 1: Introduction to linear control system  

6 
 

These aspects will be discussed in more detail in the following chapters. 

1.6 Structure of Closed-Loop System (feedback system) 

 

Figure 4: basic structure of closed-loop control system  

A typical closed-loop control system  consists of the following key components: 

1. Reference Input  The desired value or setpoint that the system should follow. 

2. Controller – Processes the error signal and generates a control action to minimize the 

deviation from the reference. This could be a PID controller, state-space controller, 

etc. 

3. Plant – The system being controlled, such as a motor, robotic arm, or any dynamic 

system. 

4. Sensor (Measurement System) – Measures the actual output of the system. 

5. Feedback Loop – Compares the actual output with the reference and adjusts the 

control action accordingly. 

Working Principle 

1. The reference input (r(t)) is compared with the actual output (y(t)) to compute the 

error signal. 

2. The controller processes the error and generates a control signal. 

3. The actuator (or plant) responds to the control signal and produces an output. 

4. The sensor measures the actual output and sends feedback to the controller. 

5. The process continues until the output closely matches the reference, ensuring stability 

and precision. 
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This closed-loop structure allows the system to track setpoints accurately and reject 

disturbances, making it essential in automation, robotics, and industrial control applications. 

This structure is very intuitive because it mirrors human behavior in everyday actions. For 

example, when you reach for an object, your brain (controller) sends signals to your muscles 

(actuator) to move your hand. Your eyes (sensor) continuously monitor the movement and 

provide feedback, allowing your brain to adjust your motion in real time. If the object is 

farther than expected, your brain automatically corrects the movement until you successfully 

grasp it. 

1.7 Methodology in Control Systems 

In control engineering, the methodology generally follows several key steps: 

1. Specification (Requirement Analysis): 

The control engineer must fully understand the problem and its specifications. This 

includes clearly defining the system, identifying its inputs and outputs, and setting 

performance objectives (e.g., stability, speed, accuracy). 

2. Modeling: 

The next step is to describe the system’s behavior (open-loop system) using physical 

laws. This results in algebraic and differential equations, which are then reformulated 

into a standard control system model, such as a transfer function or state-space 

representation. 

3. Analysis: 

Using control techniques, the system’s performance is evaluated based on stability, 

response time, oscillations, and accuracy. This step helps determine whether the 

system meets the desired specifications. 

4. Controller Design (Synthesis): 

The final step is to design a control law—an intelligent feedback mechanism that 

ensures the closed-loop system achieves the desired performance, if possible. 

Remark: In this course, we will focus only on the modeling and analysis phases  
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2.1 Introduction :  

Modeling is a fundamental step in control system analysis. It involves describing the system's 

behavior using mathematical equations and transforming them into standard representations 

used in control theory. 

2.2 Modeling or Equation Formulation 

To model a system, we must establish the relationships between input and output variables 

using the fundamental laws of the relevant domains (mechanical, electrical, thermal, etc.). 

Mechanics: Newton's Laws as: 

2

2

x
F m

t


=


  

Electricity: Kirchhoff's Laws as; 0iV =  and n outI I=   

Note: All physical models are generally governed by ordinary differential equations (ODEs) 

or partial differential equations (PDEs). 

Example 2.1: RC Circuit 

Consider the RC circuit shown in Figure 2.1, where the input is denoted by Ve(t) (the applied 

voltage), and the output is Vs(t) (the voltage across the capacitor). 

 

               Ve                                                 Vs          

 

                                                   Figure 2.1: RC circuit 

We always aim to determine the differential equation that directly relates the output to the input. To 

do this, we apply Kirchhoff's laws—specifically, Kirchhoff’s Voltage Law (KVL)—to the circuit. 

( )
0 ( ) ( ) ( ) 0.   

( ) ( ) 1 1
( ) ( ) ( )

s
i e s

s s
e s s e

dV t
V V t Ri t V t i C

dt

dV t dV t
V RC V t V t V t

dt dt RC RC

=  − − = =

= +  + =


                                    (2.1) 

This first-order ordinary differential equation describes the model of the system, whose variables are 

the input Ve and the output Vs. 

Système  
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Example 2.2: Consider a separately excited DC motor, where the input is the armature voltage and the 

output is the rotational speed. 

 

Figure 2.2: separately excited DC motor 

u : power supply voltage  ,  i : stator current , R : stator resistor  , L : inductance of the stator , 

e : electromotive force  ,  J : moment of inertia, f : viscous friction coefficient, et   : angular 

velocity (rotational speed), Tem ; electromechanical torque. 

We aim to derive the direct differential equation that links the input to the output. 

The model of the separately excited DC motor (DCM) is described by the following equations 

Electrical Equation (Armature Circuit): 

di
L Ri e u

dt
+ + =                                                                                        (2.2) 

Mechanical Equation (Rotational Dynamics): 

em

d
J T f

dt


= −                                                                                        (2.3) 

Electromechanical Equations 

 ,  and      eme K T Ki=  =                                                                         (2.4)  

Where k is constant  

Let’s now derive the differential equation that directly relates the input to the output.  

Form equation (2.2) : 

1
( )

di di
L Ri e u u Ri e

dt dt L
+ + =  = − −                                                      (2.5) 

By differentiating the equation (2.3), we obtain :  
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2 2

2 2

2

2

2 2

2

                                   ( )

                                   

                                  

em

em

dTd d d d di
J f J f K

dt dt dt dt dt dt

d d K
J f u Ri e

dt dt L

d d K R K
J f u T

dt dt L L L

J

   
= −  + =

 
 + = − −

 
 + = − − 


2 2

2
( )

d d K R d K
f u J f

dt dt L L dt L

  
+ = − +  − 

 (2.6) 

By rearranging the terms, we obtain 

2
2

2
( ) ( )

d d
JL fL RJ K Rf Ku

dt dt

 
+ + + +  =                                                     (2.7) 

This differential equation represents the model of the DC machine, governed by a second-

order ordinary differential equation that directly relates the input to the output. In control 

theory, the solution to this type of differential equation involves a simple and effective tool, 

namely the Laplace transform.  

2.3 Laplace Transform:  

Each physical quantity is described by a time-domain signal (as a function of time). Note that 

in this course, only causal functions are considered. 

A causal function is defined as: 
( )       0

( )
0            0     

f t t
f t

t

=
= 


                              (2.8) 

Any causal function can be subjected to a transformation called the Laplace transform, 

denoted as £, and is defined as follows:  

 
0

( ) ( ) ( ) stf t F s f t e dt

+

−→ =  .                                                                       (2.9) 

 Where F(s) is called the Laplace transform of the function f(t) where s is the complex 

Laplace operator 

2.3.1 Properties of the Laplace Transform 

 1. Linearity : 
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1 2 1 2( ) ( ) ( ) ( )f t kf t F s kF s+ → +                                                                      (2.10) 

2. Derivation theorem  

2

( ) 1 2 ( 1)

( ) ( ) (0)

( ) ( ) (0) (0)

( ) ( ) (0) (0) ......... ( )n n n n n

f t sF s f

f t s F s sf f

f t s F s s f s f f t

•

•• •

•
− − −

→ −

→ − −

→ − − + +

                      (2.11) 

3. Integration theorem   

0

0

( )
( )

t F s
f t dt

s



→                                                                                  (2.12) 

4. Theorem of Time Delay 

( ) ( ) sf t F s e  −− →                                                                               (2.13) 

5. Initial Value Theorem 

0

lim ( ) lim ( )
t t

f t sF s
→ →+

=
                                                                             (2.14)    

6. Final  Value Theorem 

0

lim ( ) lim ( )
t t

f t sF s
→+ →

=                                                                              (2.15) 

7. Frequency Shift Theorem 

( ) ( )tf t e F s → +                                                                              (2.16) 

2.3.2 Laplace Transform of Common Signals 

Let the table summarize the Laplace transform of important signals (typically test signals) in 

control systems. 

Signal : f(t), t>=0 Laplace Transform 

Dirac Impulsion 

1    si 0
( )

0    si 0

t
f t

t

=
= 


 

 

 

1 

 
Step signal 

1    si 0
( )

0    si 0

t
f t

t


= 


 

 

1

s
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Ramp 
( )f t t=  2

1

s
 

ate−  1

s a+
 

ate  1

s a−
 

atte  

2

1

( )s a
 

q att e  

1

!

( )q

q

s a +  

sin( )t  
2 2s



+
 

cos( )t  
2 2

s

s +
 

sin( )ate t−  

2 2( )s a



+ +
 

cos( )ate t−  

2 2( )

s a

s a 

+

+ +
 

Table 2.1: Laplace transform table 

2.4 Concept of the Transfer Function 

The transfer function is the Laplace transform of the system’s differential equation that relates 

the input to the output. In other words, it is the ratio of the output to the input after applying 

the Laplace transform to the system's differential equation. 

Example 2.3: R-C Circuit 

The system's differential equation is:  
( ) 1 1

( ) ( )s
s e

dV t
V t V t

dt RC RC
+ =                        (2.17) 

By applying the Laplace transform to this model, we obtain:      

                                 (2.18) 

Thus, the transfer function of the R-C circuit is: 

( ) 1/
( )

( ) 1/

c

e

V s RC
G s

V s s RC
= =

+
                                                                                         (2.19) 

1 1 1 1
( ) ( ) ( ) ( )( ) ( )c c e c esV s V s V s V s s V s

RC RC RC RC
+ =  + =
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Example 2.4: The Direct Current (DC) Machine  

Based on the model of the DC machine given in equation (2.7), the transfer function of the 

system can be expressed as: 

2 2

( )
( )

( ) ( )

s K
G s

U s JLs fL RJ s K fR


= =

+ + + +
                                                                       (2.20) 

In general, consider a linear time-invariant (LTI) system described by the following 

differential equation: 

1 1

1 1 0 1 1 01 1

( ) ( ) ( ) ( ) ( ) ( )
............ ( ) ............. ( )

n n m m

n n m mn n m m

d y t d y t dy t d e t d e t de t
a a a a y t b b b b e t

dt dt dt dt dt dt

− −

− −− −
+ + + + = + + + +  

 
Where the coefficients are constant. The Laplace transform of this differential equation is: 

1 1

1 1 0 1 1 0( ) ( ) ............ ( ) ( ) ( ) ( ) ............. ( ) ( )n n m m

n n m ma s Y s a s Y s a sY s a Y s b s E s b s E s b sE s b E s− −

− −+ + + + = + + + +    

(2.22) 

Therefore, the transfer function of the system is: 

1

1 1 0

1

1 1 0

........( )
( )

( ) .........

m m

m m

n n

n n

b s b s b s bY s
G s

E s a s a s a s a

−

−

−

−

+ + + +
= =

+ + + +
                                                                         (2.23) 

Remark: n is the order of the system. 

The transfer function can be expressed in a factored form as follows: 

1 2 1

1 2 1

( )( )............( )( )( )
( )

( ) ( )( ).............( )( )

m m

n n

s z s z s z s zY s
G s

E s s p s p s p s p

−

−

− − − −
= =

− − − −
                                                         (2.24) 

Where the  
iz  are the zeros of the system, and the 

ip  are the poles of the system. 

2.5 Concept of Causality: 

A linear time-invariant system whose transfer function is of the form of equation (2.23) is said 

to be causal if n m . The transfer function is considered proper n m , the transfer function is 

strictly proper. Note that most physical systems are strictly proper. 

2.6 Inverse Laplace Transform 

Starting with a transfer function F(s) it is possible to determine f(t) by evaluating the integral 

in the complex plane as follows: 
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1
( ) ( ) ( )

2

c j
st

c j
F s f t F s e ds

j

+ 

− 
→ =                                                                   (2.25) 

With c being a real constant. Note that, in practice, this expression is not commonly used. 

Typically, in control systems, f(t) is calculated from F(s) using partial fraction expansion. 

2.7 Partial Fraction Expansion : 

Let the transfer function F(s) of order n be of the following general form: 

1 2 1

1 2 1

( )( )............( )( )( )
( )

( ) ( )( ).............( )( )

m m

n n

s z s z s z s zY s
G s

E s s p s p s p s p

−

−

− − − −
= =

− − − −
,  where n>m  

This function can be decomposed into partial fractions of the following form: 
( )

i

i

A

s p−
 

Depending on the nature of the poles, three cases are distinguished: 

2.7.1 Case of Distinct Real Poles 

In this case, the function F(s) can be written as : 

 
1 2

1 2

( ) ........
( ) ( ) ( )

n

n

AA A
F s

s p s p s p
= + + +

− − −
                                                    (2.26) 

The constants 
iA are called residues . Where: 

 ( ). ( )
i

i i s p
A s p F s

=
= −                                                                                         (2.27) 

The inverse transform of the equation (2.26) is :  

1 2

1 2( ) ...... np tp t p t

nf t Ae A e A e= + + +                                                                     (2.28)         

Example 2.5:    Let the transfer function be: 

1 22
( )

( 2)( 1) 1 2

A A
G s

s s s s
= = +

+ + + +
    The poles are: 

1 21, 2p p= − = − .Therefore : 

1 1

2 2

( 1) ( ) 1

( 2) ( ) 1

s

s

A s G s

A s G s

=−

=−

= + =

= + = −
  So 

1 1
( )

1 2
G s

s s
= −

+ +
 

The inverse Laplace transform is written as: 
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2( ) t tg t e e− −= +  

 2.7.2 Case of Complex Poles 

Let the transfer function be: 
1 2

1 2

( ) ........
( ) ( ) ( )

n

n

AA A
F s

s p s p s p
= + + +

− − −
 where the poles are 

complex. The residues are calculated in the same way as in the case of distinct real poles, with 

the difference that the residues are also complex, taking the form: 
i i iA j = +  

Example 2.6:       
1 2

2

2
( )

( 4) 2 2

A A
G s

s s j s j
= = +

+ − +
. The  poles are  

1 22 , 2p j p j= − =  

1 2

2 2

1
( 2 ) ( )

2

1
( 2 ) ( )

2

s j

s j

A s j G s j

A s j G s j

=

=−

= − = −

= + =

   so  :  
1 1

( )
2 2 2 2

j j
G s

s j s j
= − +

− +
 

The inverse Laplace transform is written as: 

2 21 1
( )

2 2

jt jtg t je je−= − +  

2.7.3 Case of Double Poles: 

Let the transfer function be:  

1 2 3

( )
( )

( ) ( )( ).........( )r

n

N s
F s

s p s p s p s p
=

− − − −
                                                                (2.29) 

 where the pole 
1p  is a double pole, and the other poles are either real or complex. 

The partial expansion  of the equation 2.29 is  

1 2

2
21 1 1

( ) .......
( ) ( ) ( ) ( )

n
ir r r

r
i i

AA A A
F s

s p s p s p s p=

= + + +
− − − −

                                                   (2.30) 

The residues are calculated as follows: 

( ). ( )
i

i i s p
A s p F s

=
= −                                                                                                                      

(2.31) 

                                                                                                 (2.32) 

 
1

1( ) . ( )r

r s p
A s p F s

=
= −
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1
1 1( ) . ( )r

r s p
A s p F s

s
− =

  = −
  

                                                                                        (2.33) 

1

2

2 12

1
( ) . ( )

2!

r

r s p
A s p F s

s
− =

  = −
  

                                                                                    (2.34) 

In general, 

1
1

1
( ) . ( )

!

i
r

r i i s p
A s p F s

i s
− =

  = −
  

                                                                                                

(2.35) 

The inverse Laplace transform is written as follows: 

1 1 1

1

1 2

2

( ) ......
( 1)!

i

r n
p tp t p t p t

r r r i

i

t
f t A e A te A e Ae

r

−

=

= + + + +
−

                                              (2.36) 

Example 2.7: 

Let the transfer function be: 

1 2

2 2
( )

( 1) 1 ( 1)

A As
G s

s s s
= = +

+ + +
, Therefore :  

 

                                                                                  (2.37) 

 

So , g(t) is :  

( ) t tg t e te− −= −                                                                                                         (2.38) 

2.8 Solving a Problem Using the Transfer Function 

Consider a system whose model is a linear time-invariant differential equation. The 

determination of the output should follow these steps: 

1. Calculate the transfer function from the differential equation. 
( )

( )
( )

Y s
G s

E s
=  

2. Determine E(s) from the Laplace transform table. 

3. Decompose ( ) ( ) ( )Y s G s E S=  into partial fractions. 

4. Deduce y(t) from the Laplace transform table. 

2.9 Exercises  

2

2 1

2

1 1

( 1) ( ) 1

( 1) ( ) 1

s

s

A s G s

A s G s
s

=−

=−

= + = −

  = + =
 



Chapter 2: Modeling – From Differential Equations to Transfer Functions 

17 
 

Exercise 2.1: Direct Calculation of the Laplace Transform 

1. What is the condition for functions  (or signals) ( )f t  to be causal? 

2. Calculate the Laplace transform of the following functions: 

( ) ( ),   ( ) ,   ( ) sin( ),   ( ) cos( ),  ( ) ,   ( ) sin( )at atf t Au t f t bt f t t f t t f t e f t e t  − −= = = = = =  

 

Exercise 2.2: Calculation of the Laplace Transform of a Real Pulse 

We consider a pulse of width T  and height A (see Figure 2.3). 

- s(t) = A for 0 t T   and 

- s(t) = 0 otherwise. 

1. Is this signal s(t) causal? Justify your answer. 

2. Calculate the Laplace transform of this signal. 

 

Figure 2.3: Real Pulse. 

 

Exercise 2.3: Calculation of a Simple Transfer Function 

We consider a system governed by the following differential equation: 

3 2

3 2
3 3 ( ) 2 ( )

d y d y dy de
y t e t

dt dt dt dt
+ + + = +  

1. Is this system linear? Justify your answer. 

2. What are the inputs and outputs of this system? 

3. What is the order of this system? 

4. Represent this system as a simple input-output block diagram. 

5. Determine the initial conditions necessary to calculate the transfer function of the system. 

6. Calculate the transfer function of this system and determine its poles and zeros. 

Exercise 2.4: Equation of an Electrical System 
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We consider the electrical circuit shown in Figure 2. An input signal u(t) corresponding to a 

step voltage from 0 to 5 V is applied to the system. 

1. Is the system causal?  

2. Determine the differential equation linking the input u(t) to the output voltage v(t). 

3. Derive the system’s transfer function and its poles and zeros based on the system’s 

parameters. 

4. Do the system’s parameters affect the poles and zeros? (Can the poles and zeros of the 

system be modified by changing the circuit parameters?) 

 

Figure 2.4: The Electrical Circuit. 

Exercise 2.5: Direct Calculation of the Inverse Laplace Transform 

• What condition must the transfer function satisfy for partial expansion to be possible? 

• Compute the inverse Laplace transform of the following functions.  

2

2
( )

4

s
G s

s
=

+
    , 2 2

5
( )

( 2)( 4 3)
G s

s s s
=

+ − +
,  3 2

1
( )

( 3) ( 4 3)( 2)

s
G s

s s s s

+
=

− + + +
 

Exercise 2.6 

Consider the electrical circuit shown in Figure 2.5, with R=1K , L= 10mH, C=6  F. An 

input signal v(t).  The input signal v(t) is a step voltage ranging from 0 to 5V  

• Derive the differential equation that relates the input voltage v(t) to the output 

voltage vc(t). 

• Determine the system’s transfer function 

• Compute the output response vc(t). 
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Figure 2.5: R-L-C circuit  

Exercise  2.8 : 

Consider the electrical circuit shown in Figure 2, where R=10 , L= 1mH. 

 

 

 

 

 

                                                                                                      v(t) 

 

 

 

Figure.2.6: L-R Circuit 

 

• Determine the system’s transfer function. 

• Calculate the output voltage v(t) when the input signal is u(t)=sin(10t) 

 

2.10 Exercises solutions  

 Exercise 2.1: Direct Calculation of the Laplace Transform 

1. The condition for functions  (or signals) ( )f t  to be causal is 
( )    t 0

( )
0          t<0

f t
f t


= 


 

2. The Laplace transform of the following functions: 

a. Step function ( ) ( )f t Au t=  

0 0

0

0

( ) ( ) ( ) ( )

                                 ( ) 1.

1
                                 ( )

st st

st

st

F s f t e dt F s Au t e dt

F s A e dt

A
F s A e

s s

+ +
− −

+
−

+

−

=  =

 =

 
 = − = 

 

 

                                    (2.39) 

b. The ramp function : ( )f t bt=  

0 0
( ) ( ) ( )st stF s f t e dt F s bte dt

+ +
− −=  =                                                  (2.40) 

R 

L 

u 

(t) 
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Applying integration by part : 
'

'

                    

1
            st st

u bt u b

v e v e
s

− −

= =

= − =
 

0
0

2

0 0

2 2

( ) ( )

                            ( )

1 1
                           ( ) 0+

st st st

st st

t b
F s bte dt F s b e e dt

s s

t b
F s b e e

s s

F s
s s

+
+

− − −

+ +

− −

=  = − − −

 
 = − +  

 

 = =

 

                                    (2.41) 

c. The exponential function   ( ) atf t e−=  

 

0 0

( )

0

( )

0

( ) ( ) ( )

                                 ( )

1 1
                                 ( )

( )

st at st

a s t

a s t

F s f t e dt F s e e dt

F s e dt

F s e
s a s a

+ +
− − −

+
− +

+

− +

=  =

 =

 
 = − = 

+ + 

 

                      (2.42)   

d. The sine and the cosine functions   ( ) sin( ),   ( ) cos( )f t t f t t = =  

In this case, we will use the Euler formula for sine and cosine  such as :   

sin( )
2

cos( )
2

j t j t

j t j t

e e
t

j

e e
t

 

 





−

−

−
=

+
=

                                                                                  (2.43) 

Therefore  

0 0 0

( ) ( )

0

(

( ) ( ) ( ) sin( ) ( )
2

1
                                 ( ) ( )

2

1 1
                                 ( ) (

2 ( )

j t j t
st st st

s j t s j t

s

e e
F s f t e dt F s t e dt F s e dt

j

F s e e dt
j

F s e
j s j

 

 





−
+ + +

− − −

+
− − − +

−

 −
=  =  =  

 

 = −

 = −
−

  



) ( )

0

2 2

1
) ( )

( )

1 1 1
                               ( ) ( ) ( )

2 ( ) ( )

j t s j te
s j

F s
j s j s j s

 





  

+

− − + 
− − 

+ 

 
 = − = 

− + + 

(2.44) 
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0 0 0

( ) ( )

0

(

( ) ( ) ( ) cos( ) ( )
2

1
                                 ( ) ( )

2

1 1
                                 ( ) (

2 ( )

j t j t
st st st

s j t s j t

s j

e e
F s f t e dt F s t e dt F s e dt

F s e e dt

F s e
s j

 

 







−
+ + +

− − −

+
− − − +

− −

 +
=  =  =  

 

 = +

 = −
−

  



) ( )

0

2 2

1
) ( )

( )

1 1 1
                               ( ) ( ) ( )

2 ( ) ( )

t s j te
s j

s
F s

s j s j s





  

+

− + 
+ − 

+ 

 
 = + = 

− + + 

(2.45) 

e.  The function ( ) sin( )atf t e t−=  

0 0

( )

0

( ) ( )

0

( ) ( ) ( ) sin( )

                                  ( )
2

1
                                 ( ) ( )

2

st a st

j t j t
s a t

s a j t s a j t

F s f t e dt F s t e e dt

e e
F s e dt

j

F s e e dt
j

 

 


+ +

− − −

−
+

− +

+
− + − − + +

=  =

 −
 =  

 

 = −

 





                           (2.46) 

( ) ( )

0

2 2

1 1 1
                                ( ) ( ) ( )

2 ( ) ( )

1 1 1
                               ( ) ( ) ( )

2 ( ) ( ) ( )

s a j t s a j tF s e e
j s j s j

F s
j s a j s a j s a

 

 



  

+

− + − − + + 
 = − − − 

− + 

 
 = − = 

+ − + + + + 

 

Exercise 2.2 

1. The signal s(t) is causal. It can verify the causality properties such as :  

           
( ) 0  when  t 0

( )
0            when  t<0

s t
s t

 
= 


 

2. The Laplace transform of this signal. The signal of Figure 2.3 can be decomposed as 

follows:  

1 2( ) ( ) ( )s t s t s t= −  ( See the figure 2.7) 

  

Figure 2.7: decomposition of s(t) 
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Using the time delay theorem  ( ) ( ) sf t F s e  −− →     , we can obtain :   

1 2( ) ( ) ( ) (1 )Ts TsS s S s S s
A A A

e e
s s s

− −= − = − = −                                                                  (2.47) 

Exercise 2.3: Calculation of a Simple Transfer Function 

We consider a system governed by the following differential equation: 

3 2

3 2
3 3 ( ) 2 ( )

d y d y dy de
y t e t

dt dt dt dt
+ + + = +                                                                                (2.48) 

1. The system is linear because the coefficients are constants  and the linearity properties can 

be verified (superposition and homogeneity ) 

2. The input is e(t) and the output is  y(t) 

3. The order of this system is : 3 

4. Representation of the system as a simple input-output block diagram. 

e(t)                                                y(t)          

 

5. The initial conditions necessary to calculate the transfer function of the system are : 
' ''(0) 0, (0) 0, (0) 0

(0) 0

y y y

e

= = =

=
 

6. The transfer function of the system: 

3 2

2 1
( )

3 3 1

s
G s

s s s

+
=

+ + +
                                                                                        (2.49) 

The poles are : 

1 2 3 1p p p= = = −  

The zero ; 

1

1

2
z = −   

 Exercise 2.4: Equation of an Electrical System 

 

Figure 2.8: The Electrical Circuit 

1. The system is causal: all real systems are causal   

Système  
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2. The differential equation linking the input u(t) to the output voltage v(t): applying the 

Kiricchoff’s  law , we obtain :   

1

1 2

1 2

1 2

2

1 1 2 2

( )

,

c

c c

c c

i i i

e t Ri v

v Ri v

dv dv
i c i c

dt dt

= +


= +



= +



= =


                                                                                          (2.50) 

Manipulating these equations, it can be written : 

1 2

1 2 2

2 2

2 1

2

1 2

2 1 2 2

2 1

( ) ( )

( ) 2

c c

c c c

c c

c c

c

dv dv
i c c

dt dt

dv dv dv
e t Ri Ri v R c c Rc v

dt dt dt

dv dv
e t Rc v Rc

dt dt


= +




= + + = + + +



= + +


                                       (2.51) 

Therefore the differential equation is : 

2 2

2

2

2

1 2 1 22
( 2 ) ( )

c c

c

d v dv
R c c R c c v e t

dt dt
+ + + =                                                                               (2.52) 

3. The transfer function : 

2

2 2

1 2 1 2

( ) 1
( )

( ) ( 2 ) 1

Vc s
G s

E s R c c s R c c s
= =

+ + +
 

- The poles are : 

2 2

1 2 1 2

1

1 2

( ) 4

2

c c c c
p

Rc c

− + − +
=  and  

2 2

1 2 1 2

2

1 2

( ) 4

2

c c c c
p

Rc c

− + + +
=  

4. Yes, the system’s parameters affect the poles and zeros 

Exercise 2.5:  

1. Let the transfer function be 
1

1 1 0

1

1 1 0

........( )
( )

( ) .........

m m

m m

n n

n n

b s b s b s bY s
G s

E s a s a s a s a

−

−

−

−

+ + + +
= =

+ + + +
, so the 

condition that must satisfy G(s) to be  decomposed is  n m : 

If  n m , 
1

( )
( )

n
i

i i

A
G s

s p=

=
−

 , where pi are poles. 

If n m= , 
1

( )
( )

n
m i

in i

b A
G s

a s p=

= +
−

  
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2. The inverse Laplace transform of : 

a. 
2

2
( )

4

s
G s

s
=

+
                                                                                                         (2.53) 

L’equation (2.53) can be written as : 

2 2 2

4 2
( ) 1 1 2

4 (2)
G s

s s
= − = −

+ +
                                                                                          (2.54) 

From Laplace table transform , the inverse laplace transform of G(s): 

( ) ( ) 2sin(2 )g t t t= −                                                                                             (2.55) 

b. 2 2

5
( )

( 2)( 4 3)
G s

s s s
=

+ − +
                                                                        (2.56) 

The poles of the transfer function of equation (2.56): 

1 2 3 42, 2, 1, 3p j p j p p= = − = =  

L’equation (2.56) can be written as : 

31 2 4( )
( 1) ( 3)( 2) ( 2)

AA A A
G s

s ss j s j
= + + +

− −− +
                                                     (2.57)  

Where    

1
2

2
2

3 1

4 3

( 2) ( ) 0.3030 - 0.0536j

( 2) ( ) 0.3030 + 0.0536j

5
( 1) ( )

6

5
( 3) ( )

22

s j

s j

s

s

A s j G s

A s j G s

A s G s

A s G s

=

=−

=

=

= − =

= + =

−
= − =

= − =

                                                                                             

(2.58) 

The inverse laplace transform of G(s): 

2 2 3

1 2 3 4( ) j t j t t tg t Ae A e A e A e−= + + +                                                                         (2.59) 

c. 3 2

1
( )

( 3) ( 4 3)( 2)

s
G s

s s s s

+
=

− + + +
                                                                   (2.60) 

The poles of the transfer function of equation (2.60): 

1 2 3 4 5 63, 1, 3, 2p p p p p p= = = = − = − = −  

So G(s) can be written as :  

3

1
( )

( 3) ( 3)( 2)
G s

s s s
=

− + +
                                                                                                 (2.61) 
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L’equation (2.61) can be written as : 

3 51 2 4

2 3
( )

( 3) ( 3) ( 3) ( 3) ( 2)

A AA A A
G s

s s s s s
= + + + +

− − − + +
                                                     (2.62)  

Where    

5 2

4 3

3

3 3

3

2

3

2
3 4

1 2

3

1
( 2) ( )

125

1
( 3) ( )

216

1
( 3) ( )

30

( 3) ( ) 0.0122

1
( 3) ( ) 3,7.10

2

s

s

s

s

s

A s G s

A s G s

A s G s

d
A s G s

ds

d
A s G s

ds

=−

=−

=

=

−

=

= + = −

= + =

= − =

 = − = 

 = − = 

                                                                                              

(2.63) 

The inverse Laplace transform of G(s): 

2
3 3 3 2 3

1 2 3 4 5( )
2

t t t t tt
g t Ae A te A e A e A e− −= + + + +                                                             (2.64) 

Exercise 2.6 

a. the differential equation that relates the input voltage v(t) to the output voltage vc(t): 

Applying the Kiricchoff’s  law, we obtain : 

( )
( ) ( ) ( )

( )

L
L c

c
L

di t
v t Ri t L v t

dt

dv t
i C

dt


= + +


 =


                                                                                    (2.65) 

Therefore, we can drive the differential equation: 

  
2 ( ) ( )

( ) ( )c c
c

d v t dv t
LC RC v t v t

dt dt
+ + =                                                                            (2.66) 

b. The transfer function of the system : 

2 2

1 1/
( )

1 ( / ) 1/

LC
G s

LCs RCs s R L s LC
= =

+ + + +
                                                  (2.67) 

c. The output vc(t) 

( )
( ) ( ) ( ) ( )

( )

c
c

V s
G s V s G s V s

V s
=  =                                                                                   (2.68) 
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Where 
5

( )V s
s

=  

Thus : 

2

5 1/
( )

( / ) 1/
c

LC
V s

s s R L s LC
=

+ +
                                                                            (2.69) 

Also, the output can be written as :  

1 2

5 1/
( )

( )( )
c

LC
V s

s s p s p
=

− −
                                                                                    (2.70) 

Where 4 4

1 2-9.9833.10 , -0.0167.10p p= =  

The partial fraction of the output is  

31 2

1 2

( )c

AA A
V s

s s p s p
= + +

− −
                                                                                 (2.71) 

Where  

1

2

1 0

2 1

3 2

( ) 5

( ) ( ) 0.0084

( ) ( ) -5.0067

c s

s p

s p

A sV s

A s p G s

A s p G s

=

=

=

= =

= − =

= − =

                                                                                 (2.72) 

The inverse Laplace transform of the output is  

1 2

1 2( ) 5 p t p t

cv t Ae A e= + +                                                                                                (2.73) 

Exercise  2.8 : 

1. The transfer function: from the circuit of Figure 2.6, we can write : 

( )
( ) ( )

( )
( )

di t
u t L v t

dt

v t
i t

R

= +

=

                                                                                          (2.73) 

The differential equation of the system is : 

( )
( ) ( )

L dv t
u t v t

R dt
= +                                                                                           (2.73) 

So, the transfer function of the system will be : 

3

3 3

( ) 1 1 10
( )

( ) 10 1 10
1

V s
G s

LU s s s
s

R

−
= = = =

+ +
+

                                                      (2.74) 
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2. The output voltage v(t) when the input signal is u(t)=sin(10t); 

We know that: ( ) ( ) ( )V s U s G s= , where in this case 
2

10
( )

100
U s

s
=

+
, 

Thus :  

3 4

2 3 2 3

10 10 10
( )

100 10 ( 100)( 10 )
V s

s s s s
= =

+ + + +
                                                     (2.75) 

The poles of the transfer function of equation (2.75): 

3

1 2 310 , 10, 10p p j p j= − = − =  

The voltage output can be written as :  

31 2

3
( )

( 10 ) ( 10) ( 10)

AA A
V s

s s j s j
= + +

+ + −
                                                            (2.76) 

Where : 

3

3

1 10

2 10

3 10

( 10 ) ( ) 0.01

( 10) ( ) 0.005 0.5j

( 10) ( ) 0.005 0.5j

s

s j

s j

A s V s

A s j V s

A s j V s

=−

=−

=

= + =

= + = +

= − = −

                                                                   (2.77) 

The inverse Laplace transform of the output voltage : 

310 10 10( ) 0.01 (0.005 0.5) (0.005 0.5)t j t j tv t e j e j e− −= + + + −                                 (2.78) 

The equation (2.78) can transformed as follows:  

3
10 10 10 10

10( ) 0.01 2x0.005( ) 2 x 0.5( )
2 2

j t j t j t j t
t e e e e

v t e j j
j

− −
− + +

= + −                       (2.79) 

Using the Euler’s formula (equation 2.43), the output voltage can be : 

310( ) 0.01 0.01cos(10 ) sin(10 )tv t e t t−= + +                                                           (2.80) 

Remark: For a linear system, when the input is a sinusoidal signal, the steady-state output is 

also sinusoidal with the same frequency, but possibly with a different amplitude and phase. 
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3.1 Introduction: 

In control systems engineering, block diagram representation is a fundamental tool used to 

model and visualize the functional relationships between different components of a system. It 

provides a graphical means of representing the flow of signals and the interconnection of 

dynamic elements, where each block denotes a mathematical operation or a system element 

(e.g., transfer function, gain, summation, or integrator). 

3.2 Block Diagram Representation of a Transfer Function 

A transfer function describes the input-output relationship of a linear time-invariant (LTI) 

system in the Laplace domain. To represent this relationship graphically, we use a block 

diagram:  

( )
( ) ( ) ( ). ( )

( )

Y s
G s Y s G s E s

E s
=  =   E(s)                                              Y ( s ) 

3.2.1 Formalism  

a. branch: can be represented by E(s)            :  The branches represent the variables 

b. bloc:   a block represents a transfer function 

 

c. Summing point:   

 

A summing point is a key element used to add or subtract multiple signals. It is typically 

represented by a small circle with one or more input arrows and a single output arrow. 

3.2.2 Block diagram reduction rules:  

To form a control system, the blocks are interconnected according to the system's structure and 

signal flow. The process of simplifying such a system to obtain an overall transfer function is 

known as the Block Diagram Reduction Method.  The block diagram reduction method is a 

powerful technique used to determine the transfer function of a complex control system. It 

simplifies intricate interconnections into an equivalent, simpler representation, allowing for 

easier analysis of system stability and performance characteristics. 

G(s)  

G(s)  
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a. Bloc in cascade: 

 

 

Figure 3.1: blocs in series  

 

b. Blocks in parallel: 

 

 

Figure 3.2: blocs in paralle  

c. Shifting of take-off point  

 
Figure 3.3: shifting of take-off from A to B  

 
Figure 3.4: shifting of take-off from B to A  

d. Shifting of summing point  
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Figure 3.5: shifting of summing point  from A to B  

 

 
Figure 3.6: shifting of summing point  from B to A 

  

e. Canonical Form of a Closed-Loop System 
The canonical (standard) form of such a structure is a fundamental configuration used 

for analysis and design as shown in Figure 3.7 

 
Figure 3.7: the canonical form of a closed-loop system  

G(s) is the transfer function of the forward path (also called the direct path), 

H(s) is the transfer function of the feedback path (also called the return path or feedback 

loop). 

According to the canonical block diagram, we can write: 
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( ) ( ). ( )         ( ) ( )( ( ) ( ))        

( ) ( ). ( )        ( ) ( )( ( ) ( ) ( ))      

( ) ( ) ( )      ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
(1 ( ) ( )) ( ) ( ) ( )

( ) 1 ( ) (

Y s G s E s Y s G s R s B s

B s H s Y s Y s G s R s H s Y s

E s R s B s Y s G s R s G s H s Y s

Y s G s
G s H s Y s G s R s

R s G s H s

=  = −

=  = −

= −  = −

+ =  =
+ )

                            (3.1) 

Example 3.1: Reduce the following block diagram using the block diagram reduction rule 

 

Figure 3.8: block diagram to be simplified  

Step 1: G1 and G2 are connected in parallel, find its equivalent block G1 + G2 

 

Figure 3.9: Step1  

Step 2: Elimination of summing point before G1 + G2 having negative feedback H1 in the 

closed loop system. 

 

Figure 3.10: Step 2  

Step 3: Move the summing point after G4 to before G4 

 

Figure 3.11: Step 3 
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Step 4:  Exchange the position of both the summing point before G4 

 

Figure 3.12: Step 4 

Step 5 : G3 /G4 and (G1 +G2) / (1+G1H1+G2H2) both blocks are connected in parallel  

 

Figure 3.13: Step 5 

Step 6: Eliminate the summing point before G4 has negative feedback in the closed-loop 

system 

 

Figure 3.14: Step 6 

Step 7: Single block diagram representation as shown below. 

 

Figure 3.15: Step 7 

3.3 Case of Multiple Input Systems 

In the case of systems with multiple inputs and one output, block diagrams can become more 

complex, involving several inputs. However, the block diagram reduction method can still be 

applied by handling each input-output relationship individually and systematically reducing the 

interconnections by applying the superposition rule. 

Example 3.2:  Reduce the following block diagram using the block diagram reduction rule 
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Figure 3.16: block diagram with multiple inputs  

By applying the superposition principle, we should follow the following steps :    

a. Step1 : put U=0  

b. Step 2: The system reduces to 

 
Figure 3.17: step2  

c. Step 3: By Equation (3.1 ), the output CR, due to input R is 

 1 2

1 21
R

G G
C R

G G
=

+
                                                                                   (3.2) 

d. Step 4: put  R=0, Put -1into a block, representing the negative feedback effect 

 

 
Figure 3.18: step3  

e. Step 5: By Equation (3.1), the output Cv, due to input U is : 

2

1 21
v

G
C U

G G
=

−
                                                                                     (3.3) 

f. The final output is  

1 2 2

1 2 1 21 1
R v

G G G
C C C R U

G G G G
= + = +

+ −
                                                  (3.4) 

3.4 Exercises  

Exercise 3.1: Block Diagram Representation of a DC Motor 

Consider the separately excited DC motor shown in Figure 3.19, where the input is the supply 

voltage u and the output is the angular velocity  .w 
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Figure 3.19: DC machine 

 

• Represent this system using a block diagram. 

• Determine the transfer function of the system. 

 

Exercise 3.2: Block Diagram Simplification 

Consider the systems represented by the block diagrams in Figure 3.20  

Figure 3.20: Block  diagram 

- Using block diagram transformation rules, compute the transfer function of each 

system. 

Exercise 3.3: Multi-Input Systems 

Consider the system represented by the block diagram in Figure 3.21

 

 

 Figure 3.21: Block diagram of multiple inputs  
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1) Determine the output C as a function of the inputs R, U1, U2.  

3.5  Exercises solution 

Exercise 3.1: Block Diagram Representation of a DC Motor 

Let us consider the DC motor model developed in Chapter 2. For each governing equation, we 

will construct the corresponding block diagram: 

Electrical Equation  

di
L Ri e u

dt
+ + =                                                                                        (3.5) 

The Laplace transform of the equation (3.5) is: 

( ) ( ) ( ) ( )LsI s RI s E s U s+ + =                                                                     (3.6) 

Thus: 

1
( ) ( ( ) ( ))

( )
I s U s E s

Ls R
= −

+
                                                                   (3.7) 

The block diagram of the equation (3.7): 

           U(s)      +                                         I(s) 

           E(s)     - 

 

Mechanical Equation  

em

d
J T f

dt


= −                                                                                        (3.8) 

The Laplace transform of the equation (3.8) is: 

( ) ( ) ( )emJs s f s T s +  =                                                                             (3.9) 

Thus: 

1
( ) ( )ems T s

Js f
 =

+
                                                                                  (3.10) 

The block diagram of the equation (3.10): 

 

1

Ls R+
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                                           Tem(s)                         ( )s  

 

 

Electromechanical Equations 

 ( ) ( )

( ) ( )em em

e K E s K s

T Ki T s KI s

=  = 

=  =
                                                                           (3.11)  

The blocks diagram of the equation (3.13): 

        ( )s                E(s)                                                I(s)              Tem(s) 

 

By assembling all the individual components, the overall block diagram of the DC motor 

system is obtained as follows: 

           U(s)      +                                         I(s)               Tem(s)                      ( )s  

           E(s)     - 

 

  

                                               Figure 3.22: Block diagram of DC motor 

Applying the block transformation rules, the transfer function of the system is : 

1 1

( ) ( )
( )

1 1( )
1

( )

K
s Ls R Js f

G s
U s

K K
Ls R Js f

 + +
= =

+
+ +

                                                                 (3.12) 

Therefore : 

2 2 2

( )
( )

( ) ( )( ) ( )

s K K
G s

U s Ls R Js f K JLs Lf RJ s K Rf


= = =

+ + + + + + +
                    (3.13) 

Notice that all parameters of the function transfer are defined in Chapter 2. 

 

 

 

1

Js f+
 

K  K  

1

Ls R+
 K  

1

Js f+
 

K  
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Exercise 3.2: Block Diagram Simplification 

Applying the block transformation rules to the diagram of the figure 3.20: 

Step 1 : 

   

Step 2: 

Step 3: 

 

Step 4: 
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Step 5:  

Figure 3.23: Block diagram transformation  

Exercise 3.3: Multi-Input Systems 

The output C as a function of the inputs R, U1, U2: 

Since the block diagram in Figure 3.21 includes multiple outputs, we will employ the 

principle of superposition to analyze each output individually, as detailed below: 

a. U1= U2=0 

1 2

1 2 1 2

1
1

G G
C R

G G H H
=

−
                                                                                    (3.14) 

b. R= U2=0 

 2
2 1

1 2 1 21

G
C U

G G H H
=

−
                                                                                  (3.15) 

c. R= U1=0 

1
3 2

1 2 1 21

H
C U

G G H H
=

−
                                                                                   (3.16) 

The output C can be written as: 

1 2 3C C C C= + +
                                                                                                        (3.17) 

1 2 2 1
1 2

1 2 1 2 1 2 1 2 1 2 1 21 1 1

G G G H
C R U U

G G H H G G H H G G H H
= + +

− − −
                                     (3.18) 
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4.1 Introduction  

• The transfer function is used to represent a system by describing the relationship 

between its input and output, typically in a Single Input, Single Output (SISO) 

framework. 

• One limitation of the transfer function approach is that it provides no insight into the 

internal behavior of the system—how internal variables evolve over time. 

• The state-space representation addresses this shortcoming by modeling the dynamics of 

the system’s internal variables, known as state variables, using a set of first-order linear 

differential equations. 

4.2 Definition of a State-Space System 

A state-space system refers to the minimal set of state variables required to completely 

describe the dynamic behavior of a system. 

The standard form of a state-space model consists of a system of first-order ordinary 

differential equations given by the general form: 

1 1

2 2

( ) ( , , )

( ) ( , , )

........

( ) ( , , )n n

x t f t x u

x t f t x u

x t f t x u

•

•

•

=

=

=

                                                                              (4.1) 

Where, xi are the state variables, and u are the inputs 

In the case of Linear Time-Invariant (LTI) systems, the state-space representation takes the 

following standard form: 

x Ax Bu

y Cx Du

•

= +

= +
                                                                                                               (4.2) 

Such as :  

1
1 111 12 1 11 12 1

21 22 2 2 21 22 2 2
2

1 2 1 2

.... ....

.... ....

... ... .... ... ... ... .... ...... ......

.... ....

n r

n r

n n nn r r rrn r

n

x x ua a a b b b

a a a x b b b ux

a a a b b bx u
x

•

•

•

 
       
       
        = +
       
       

      
 

                                     (4.3) 
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1 1 111 12 1 11 12 1

2 21 22 2 2 21 22 2 2

1 2 1 2

.... ....

.... ....

... ... .... ... ... ... .... ...... ... ...

.... ....

m r

n r

m n mn r r rrm m r

y x uc c c d d d

y c c c x d d d u

c c c d d dy x u

        
        
        = +
        
        

       

                                     (4.4) 

Where:  x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, A is the 

system matrix, B is the input matrix, C is the output matrix, D is the feedthrough (or direct 

transmission) matrix. 

Remark 4.1: The number of state variables n in a physical system is equal to the number of 

independent energy storage elements (such as capacitors, inductors, or masses) present in the 

system. 

Remark 4.2: In most physical systems, the feedthrough matrix D is equal to zero, indicating 

that the input does not directly affect the output instantaneously. 

Example4.1: RC Circuit – State-Space Representation 

1
( )

1

s e

e s

s

s

di
Ri V V

di dt L
V Ri L V

dVdt
i

dt C

dV
i C

dt


= − +

= + +  
 =


=

    (4.5) 

By choosing the state variables as 1 2, ,   et s e sx i x V u V y V= = = = , the state space 

representation: 

1 1 2

2 1

1 1

1

R
x x x u

L L L

x x
C

•

•


= − − +


 =


                                                                                            (4.6) 

11

2
2

1
1

1
00

R

xx L L
uL

x
x

C

•

•

 
− −         = +        

     

                                                                                       (4.7) 

1

2

[0 1]
x

y
x

 
=  

 
                                                                                                             (4.8) 
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Hence, we can deduce the state-space matrices as follows: 

1
1

, ,   [0 1],et 0
1

00

R

L L
A B u C DL

C

 
− −   

 = = = = 
  
   

 

Remark 4.3: The state-space representation is not unique; a given system can have multiple 

valid state-space representations that describe the same input-output behavior. 

4.3 Block Diagram of an LTI System Described by State-Space 

Representation: 

The block diagram of the state-space representation of an LTI system is illustrated in the 

following figure: 

 

Figure 4.1: Block diagram of a state-space system. 

4.4 Conversion from State-Space Representation to Transfer Function 

Given the state-space equations for a system: 

x Ax Bu

y Cx Du

•

= +

= +
                                                                                                      (4.9) 

To derive the transfer function G(s) (the system’s input-output relationship in the Laplace 

domain), follow these steps: 

- First, apply the Laplace transform to the state-space equations, assuming zero initial 

conditions 
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                                                     (4.10) 

Multiplying both terms of the equation (4.10) by the matrix C: 

1 1( ) ( ) ( ) ( ) ( ) ( )CX s C sI A BU s Y s C sI A BU s− −= −  = −                                (4.11) 

Thus, the transfer function relating the output to the input is given by: 

1( )
( ) ( )

( )

Y s
G s C sI A B

U s

−= = −                                                                            (4.12) 

4.5 Conversion from Transfer Function to State-Space Representation 

Given the transfer function G(s) of a system, the goal is to derive the corresponding state-

space representation of the system. The transfer function is generally expressed as: 

1

1 1 0

( )
( )

( ) .........n n

n n

Y s k
G s

U s a s a s a s a−

−

= =
+ + + +

                                                     (4.13) 

From the transfer function G(s), we can write: 

1

1 1( )( ......... ) ( )n n

n nY s a s a s a s a kU s−

−+ + + + =                                                                 (4.14) 

Where k is constant. The inverse Laplace transform of the equation (4.14) is :  

( ) ( 1) '

1 1 0( ) ( ) ...... ( ) ( ) ( )n n

n na y t a y t a y t a y t ku t−

−+ + + + =                                                   (4.15) 

By choosing the states variables as : 
' '' ( 1)

1 2 3, , ,............., n

nx y x y x y x y −= = = =      

Thus, the state-space representation can be written as: 

1

( ) ( ) ( )

                         ( ) ( ) ( )

                         ( ) ( ) ( )

x Ax Bu sX s AX s BU s

sI A X s BU s

X s sI A BU s

•

−

= +  = +

− =

= −
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1 2

2 3

1

0 1 1 2 2 3 1

.........

1
( ( ) ....... )

n n

n n n

n

x x

x x

x x

x ku t a x a x a x a x
a

•

•

•

−

•

−

=

=

=

= − − − − −

                                                (4.16) 

The matrix form of the state-space representation: 

1
1

2
2

0 11

0 1 0.... 0 0

0 0 1.... 0 0
( )... ... .... ... .........

.... n
n

nn n n
n

x x

xx
u t

a aa kx aa a ax

•

•

−•

                    = +               − − −       

                           (4.17) 

1

2
[1 0 .... 0]

...

n

x

x
y

x

 
 
 =
 
 
 

                                                                                                        (4.18) 

Example 4.2 : Given the transfer function G(s) such as  

2

1
( )

2 1
G s

s s
=

+ +
                                                                                                       (4.19) 

The state-space representation of this transfer function is determined as follows: 

2

2

( ) 1
( 2 1) ( ) ( )

( ) 2 1

Y s
s s Y s U s

U s s s
=  + + =

+ +
                                                        (4.20) 

The inverse Laplace transform of the equation (4.20) is: 

'' '( ) 2 ( ) ( ) ( )y t y t y t u t+ + =                                                                                      (4.21) 

By choosing the state variables 
'

1 2,x y x y= =  , we obtain: 
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1 2

2 2 12 ( )

x x

x x x u t

•

•

=

= − − +

                                                                                                                (4.22) 

The matrix form of the state-space representation: 

 

1 1

2
2

1

2

0 1 0

1 2 1

1 0

x x
u

x
x

x
y

x

•

•

 
      = +      −    

 

 
=  

 

                                                                                                 (4.23) 

4.6 Characteristic Polynomial and Eigenvalues : 

The characteristic polynomial of a linear system is related to the state matrix A of the system's 

state-space representation. It is defined as the determinant of the matrix A minus a variable s 

multiplied by the identity matrix: 

det( )sI A−                                                                                                           (4.24) 

This polynomial called the characteristic polynomial, is of degree n (where n is the order of 

the system). The eigenvalues are the roots of the characteristic polynomial, i.e., the values of s 

that satisfy the equation: 

det( ) 0sI A− =                                                                                                       (4.25) 

The eigenvalues of matrix A are linked to the stability and dynamic behavior of the system. If 

all the eigenvalues have negative real parts, the system is stable.  

Remark 4.4: The eigenvalues of matrix A are the poles of the system. 
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4.7 Exercises :  

Exercise 4.1: Given the linear system described by the following equations: 

( )1 1 1

2 2
2

( ) ( ) ( )1 0.5 0.5
 ( )   ;  y= 1 0

1    0 ( ) 0 ( )
( )

.

.
x t x t x t

u t
x t x t

x t

 
− −         = +               

 

 

      •  Determine the eigenvalues of this system. 

•  Compute the transfer function relating the input to the output, as well as the poles of the 

system. 

Exercise 4.2: Consider the linear time-invariant system described by the following 

differential equation: 

3 2

3 2

( ) ( ) ( ) ( )
3 3 ( ) 2 ( )

d C t d C t dC t de t
C t e t

dt dt dt dt
+ − − = +  

 

-  Determine the transfer function of this system. 

- Write the state-space representation of the system and provide the matrices A, B, C, 

and D. 

- Compute the characteristic polynomial of A and its eigenvalues (poles). 

Exercise 4.3: Consider the separately excited DC motor shown in Figure 1, where the input 

is the supply voltage u and the output is the position   

 

Figure 4.2: DC machine  

We assume that the state variables of the system are: 

1) i(t): armature current, 

2) Ω(t): angular velocity, 
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3) θ(t): position. 

- Drive the state space model of the system (DC motor) 

- Compute the characteristic polynomial of A and its eigenvalues (poles) 

- R=6.67 , L=0,198 H, J=0,0398, f=0, K=1,281. 

4.8 Exercises solution   

Given the linear system described by the following equations: 

( )1 1 1

2 2
2

( ) ( ) ( )1 0.5 0.5
 ( )   ;  y= 1 0

1    0 ( ) 0 ( )
( )

.

.
x t x t x t

u t
x t x t

x t

 
− −         = +               

 

                                        (4.26) 

a. The eigenvalues of the system are :  

1 0.5
det( ) 0 det ( 1) 0.5 0

1
I A


  



+ 
− =  = + + = 

− 
                                      (4.27) 

The roots (eigenvalues) of the equation (4.27) are : 

1

2

-0.5 + j0.5

-0.5 - j0.5





=


=
                                                                                                  (4.28) 

b. The transfer function relating the input to the output: 

Applying the Laplace transform to the state-space equations (2.26): 

                                    

                                                             (4.29) 

Multiplying both terms of the equation (4.29) by the matrix C: 

1 1( ) ( ) ( ) ( ) ( ) ( )CX s C sI A BU s Y s C sI A BU s− −= −  = −                                      (4.30) 

Thus, the transfer function relating the output to the input is given by: 

1

( ) ( ) ( )

                         ( ) ( ) ( )

                         ( ) ( ) ( )

x Ax Bu sX s AX s BU s

sI A X s BU s

X s sI A BU s

•

−

= +  = +

− =

= −
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1( )
( ) ( )

( )

Y s
G s C sI A B

U s

−= = −                                                                                 (4.31) 

Thus :  

1

( )

1
( )

det(( ))

t

sI AsI A C
sI A

−

−− =
−

                                                                 (4.32) 

The cofactors of the matrix ( )sI A−  are :  

( ) ( )

1 0.5

0.5 1 1 1

T

sI A sI A

s s
C C

s s
− −

−   
=  =   

+ − +   
                                             (4.33) 

So :  

1

2

0.51
( )

1 10.5

s
sI A

ss s

−  
− =  

− ++ +  
                                                              (4.34) 

The transfer function is :  

1

2

0.5
( ) ( )

0.5
G s C sI A B

s s

−= − =
+ +

                                                                              (4.35) 

The poles of the transfer function of equation (4.35) are : 

1

2

-0.5 + j0.5

-0.5 - j0.5

p

p

=


=
                                                                                            (4.36) 

Exercise 4.2: Consider the linear time-invariant system described by the following 

differential equation: 

3 2

3 2

( ) ( ) ( ) ( )
3 3 ( ) 2 ( )

d C t d C t dC t de t
C t e t

dt dt dt dt
+ − − = +                                               (4.37) 

a. The transfer function of equation (4.37): 

3 2

2 1
( )

3 3 1

s
G s

s s s

+
=

+ − −
                                                                            (4.38) 

b. The state-space representation of the system: 
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Let ( )G s  written  as  
( ) ( )

( )
( ) ( )

C s V s
G s

V s E s
=  , where ; 

3 2

( ) 1

( ) 3 3 1

( )
2 1

( )

V s

E s s s s

C s
s

V s


= + − −


 = +


                                                                                      (4.39)  

From the equation (4.39), we can write: 

3 2( )( 3 3 1) ( )V s s s s U s+ − − =                                                                                                 (4.40) 

The inverse Laplace transform of equation (4.40): 

3 2

3 2

( ) ( ) ( )
3 3 ( ) ( )

d v t d v t dv t
v t e t

dt dt dt
+ − − =                                                                  (4.41) 

Let's choose the state variable as :  

2

1 2 3 2

( ) ( )
( ), ,

dv t d v t
x v t x x

dt dt
= = =  

The state equation can be written as :  

1 2

2 3

3 1 2 33 3 ( )

x x

x x

x x x x e t

•

•

•


=


=


 = + − +


                                                                                     (4.42) 

The matrix form of the state-space representation: 

1
1

2 2

3
3

0 1 0 0

0 0 1 0 ( )

1 3 3 1

x
x

x x e t

x
x

•

•

•

 
       
       

= +       
       −      
                                                                           (4.43) 

Where   

0 1 0

0 0 1

1 3 3

A

 
 

=
 
 −        and 

0

0

1

B

 
 

=
 
             

The output can be found as: 

( )
2 1 ( ) (2 1) ( )

( )

C s
s C s s V s

V s
= +  = +                                                                                 (4.44) 
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The inverse transform of equation (4.44) can be written as : 

2 1

( )
( ) 2 ( ) 2

dv t
C t v t x x

dt
= + = +                                                                                            (4.45) 

Therefore, the output is: 

 
1

2

3

( ) 1 2 0

x

C t x

x

 
 

=
 
  

       , D=0                                                                                         (4.46) 

c. The  characteristic polynomial of A and its eigenvalues (poles): 

3 2

1 0

det( ) det 0 1 3 3 1

1 3 3

I A



    



− 
 

−  − = + − − 
 − − + 

                                                   (4.47) 

The eigenvalues are:  

1 2 31, 3.7321,  = = − = − 0.2679 

Exercise 4.3 

a. The state space model of the system (DC motor): From Chapter 2 the equations  of the 

DC motor are :  

,  and      

em

em

di
L Ri e u

dt

d
J T f

dt

e K T Ki

+ + =


= − 

=  =

                                                                                    (4.48) 

Where all parameters are defined in the chapter 2.  

Let’s consider the state variable :  

1 2 3( ), ( ), ( )x i t x t x t= =  =  

From the equations (4.48), the state equation can be written as :  
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1 1 2

2 1 2

3 2

1
( )

1
( )

x Rx kx u
L

x Kx fx
J

x x

•

•

•


= − − +




= −



=


                                                                                           (4.49) 

The matrix form of the state-space representation 

1
1

2 2

3
3

/ / 0 1/

/ / 0 0 ( )

0 1 0 1

x
R L K L x L

x K J f J x u t

x
x

•

•

•

 
  − −     
       

= − +       
             
                                                           (4.50)  

Where   

/ / 0

/ / 0

0 1 0

R L K L

A K J f J

− − 
 

= −
 
  

      and 

1/

0

1

L

B

 
 

=
 
  

    ,  0 0 1C =  

b. The  characteristic polynomial of A and its eigenvalues (poles): 

2
/ / 0

det( ) det / / 0 ( / )( / )

0 1

R L K L
K

I A K J f J f J R L
JL



    



+ 
 

−  − + = + + +
 
 − 

         (4.51) 

The eigenvalues (poles): 

1 2 30, -8.1562, -25.5307  = = =  

    

 

                              

 

                                                   



 

 

 

 

 

 

 

 

 

 

Part 2: Linear Control System Analysis: 

- Chapter 5: Time-Domain Analysis of Linear Systems 

- Chapter 6: Frequency Analysis of Linear Systems 

- Chapter 7: Stability of Linear Systems 
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5.1 Introduction 

The time-domain analysis of linear systems consists of determining the form of the output 

signal y(t) as a function of time when the system is subjected to a well-defined input signal. 

The time-domain response provides valuable insight into the system's stability, performance, 

and transient behavior. 

The time response of an LTI system is typically divided into two parts: 

a) The Transient Response 

This corresponds to the short-term behavior of the system immediately after a change 

in input or initial conditions. It reflects how the system transitions from its initial state 

to its final steady state. The transient response depends on the system’s poles 

(eigenvalues of the system matrix or roots of the characteristic equation). Depending 

on the location of the poles in the complex plane, the response can be: 

o Exponentially decaying (stable), 

o Oscillatory, 

o Diverging (unstable). 

b) The Steady-State Response 

This corresponds to the long-term behavior of the system once the transients have 

dissipated. It is typically determined by the nature of the input signal (e.g., step, ramp, 

sinusoid) and the system's gain. 

5.1.1 Impulse Response: 

The impulse response is the system’s output when subjected to a Dirac delta function as the 

input ( ) ( )e t t=  

5.1.2 Step Response: 

The step response is the output of the system when the input is a unit step function ( ) ( )e t u t=  

5.2 Analysis of Fundamental Systems  

The analysis of fundamental systems involves the study of first-order and second-order 

systems, which serve as the basic building blocks in control theory and provide essential 

insight into the dynamic behavior of more complex systems. 
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5.2.1 First-order system   

A first-order system is a linear system whose behavior is governed by a first-order ordinary 

differential equation of the form: 

( )
( ) ( )

dy t
y t ke t

dt
 + =                                                                                          (5.1) 

Applying the Laplace transform (assuming zero initial conditions), the transfer function of the 

system is given by: 

( )
( )

( ) 1

Y s K
G s

E s s
= =

+
                                                                                            (5.2) 

K and   are positive constants, where,   : is the time constant, K: is the static gain of the 

system. 

5.2.1.1 Impulse Response 

We will study the response of the system to a Dirac delta input ( ) ( )e t t= . The Laplace 

transform of the input is then given by E(s)=1. The output is Y(s)=G(s), thus : 

/
( )

1 1/

K k
Y s

s s



 
= =

+ +
                                                                                               (5.3) 

The inverse Laplace transform of the (5.3) is: 

1

( )
tK

y t e 



−

=                                                                                                                 (5.4) 

It can be observed (figure 5.1) that at time t=0 the output is equal to /K   and decreases 

exponentially, converging toward zero as t →+ . 
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Figure 5.1: impulse response of first-order system 

5.2.1.2 Step Response 

We now study the response of the system to a unit step input. The Laplace transform of the 

input is given by E(s)=1/s.  The output is given by Y(s)=G(s). E(s), therefore, the output will be: 

1
( ) .

1

k

Y s
s

s





=

+

                                                                                                    (5.5) 

The partial fraction decomposition of the output is:  

1 2( )
1/

A A
Y s

s s 
= +

+
                                                                                              (5.6)                                                         

where A1=k et A2=-k.  The inverse Laplace transform of the output is: 

1 1

( ) (1 )
t t

y t k ke k e 
− −

= − = −                                                                                   (5.7) 

Figure 5.2 illustrates the time evolution of the output in response to a unit step input. From the 

graph, one can define the response time, which is typically calculated as the time required for 

the output to reach and remain within 5% of its final value. 

/( ) (1 ) 0.95 3rt

r ry t k e k t −= − =                                                                       (5.8)    

Note that at  ( ) 0.63t y k =  =  

5.2.1.3 Observations : 

k


 

  
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1. The output signal asymptotically approaches the value K but never reaches it exactly 

in a mathematical sense. 

2. Two distinct phases can be identified: 

o Transient regime: This corresponds to the initial evolution of the output 

signal and lasts for a certain period of time. 

o Steady-state regime: From the moment when the output remains within 5% of 

its final value, the system is considered to be in a steady state. 

 

 

 

 

 

 

 

Figure 5.2: Step response of first-order system 

5.2.1.4 Response to a Ramp Input 

We will analyze the response of the system to a ramp input 
2( )e t t= , The Laplace transform 

of the input is then given by E(s)=
21/ s . The output Y(s) will be :  

2

1
( ) .

1

k

Y s
s

s





=

+

                                                                                                     (5.9) 

The inverse Laplace transform of the output is: 

/( ) ( ) ty t k t k e   −= − +                                                                                             (5.10) 

The form of this expression allows us to highlight an oblique asymptote of the curve. The 

term 
/tk e  −

tends toward zero as t approaches infinity (see Figure 5.3). 

 

0.63k  

0.95k  

  
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Figure 5.3: ramp response to first order system  

5.2.2 Second ordre system   

A second-order system is a dynamic system whose behavior is governed by a second-order 

linear differential equation with constant coefficients. The canonical form of such a system's 

differential equation is: 

2

2

1 ( ) 2 ( )
( ) ( )

n n

d y t dy t
y t ke t

dt dt



 
+ + =                                                                        (5.11) 

The transfer function of a second-order system in canonical form is written as: 

2

2 2
2

( )
( )

1 2( ) 2
1

n

n n

n n

kY s k
G s

E s s s
s s



  

 

= = =
+ +

+ +

                                                 (5.12) 

:k Static gain, : damping coefficient,  n  : natural undamped frequency. 

5.2.2.1 Step Response of a Second-Order System: 

We now study the response of the system to a unit step input. The Laplace transform of the 

input is given by E(s)=1/s.  The output is given by Y(s)=G(s). E(s), therefore, the output will be: 

2 2

1
( )

2

n

n n

k
Y s

s s s



 
=

+ +
                                                                                          (5.13) 

To study the impulse response, we calculate the poles of the transfer function, thus: 
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2 22 0n ns s + + = . The determinant 2 2 2 2 24 4 4 ( 1)n n n     = − = − and the poles will be: 

2

1 1n np   = − − − , 2

2 1n np   = − + −  

Five cases are distinguished: 

a. 1   : The poles are real and distinct, and the output can be written in the following 

form : 
1 2

2 1

2 1

( )
n np t p t

p e p e
y t k k

p p

 − −
−

= −
−

                                                                     (5.14) 

The response is said to be aperiodic. The response exhibits no oscillation and is similar to the 

step response of a first-order system (Figure 5.4).      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Aperiodic and critically aperiodic responses. 

b. 1 =  : We have a double pole, and the output is of the following form: 

( ) ( )n nt t

ny t k k e te
 − −

= − −                                                                                          (5.15) 

The response is referred to as critically damped. It behaves similarly to the aperiodic response, 

with the key difference being that the critically damped response reaches the final value more 

quickly in the transient phase (Figure 5.4). 

c. 0 1   The poles are complex and of the following form 2

1,2 1n np j  = −  − , 

and the output is of the following form: 

1 =  

1   
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2
( ) sin( )

1

nt

p

ke
y t k t



 


−

= − +
−

                                                                                 (5.16) 

Where 2 2sin 1 ,   cos = , et , 1p n      = − = − .  

The response is said to be damped oscillatory with a frequency 
p , or pseudo-periodic 

(figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: damped oscillatory response  

5.2.2.2 Some Characteristics of the Pseudoperiodic Regime 

• The time response at 5% of the final value is : 5%

3
r

n

t


=  

• The pseudo period is: 
2

2

1
p

n

T


 
=

−
 

• The first overshoot D is expressed as a percentage
21

100D e





−

−
= . For example, 

for a D=5%, 0.707 =  

• The peak time of the first overshoot ,peak

d

T



=  with  

21d n  = −  

 

 

0.25 =  

0.5 =  

0.7 =  
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d. 0 =  The poles of the system are purely imaginary 
1,2 np j=  , and the response is 

simply sinusoidal with a frequency n . It is said that the system is at the stability 

margin. 

e. 0   The response is undamped oscillatory and diverges. The system is unstable 

under these conditions. 

5. 2.3 Influence of Poles and Zeros 

5.2.3.1 Effect of Zero on the Step Response 

In this part, we will consider the effects of adding zeros or additional poles to the second-

order system under a step response. 

Let the transfer function of the second-order system in canonical form with the addition of a 

zero be written as: 

2

2

1
( 1)

( )
2

n

z

n n

s
zG s

s s



 

+

=
+ +

                                                                                        (5.17) 

Note that writing the zero in the form 
1

1s
z

+ , instead of s z+  is to maintain the final value as 

1 or k (if 1k  ). 

 ( )zG s  Can be written as : 

2 2

2 2

1
( )

2 2

n n
z

n n n n

G s s
s s z s s

 

   
= +

+ + + +
                                                        (5.18) 

1
( ) ( ) ( )zG s G s sG s

z
= +                                                                                                     (5.19)      

Where 
2

2
( )

2

n

n n

G s
s s



 
=

+ +
, The canonical form of a second-order system. The output is :  

1 1 1 1 1
( ) ( ( ) ( )) ( ) ( )zY s G s G s G s sG s

z s s z s
= + = +                                                     (5.20) 
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1
( ) ( ) ( )zY s Y s sY s

z
= +                                                                                                         (5.21) 

The inverse Laplace transform of  ( )sY s  is 
' ( )y t . Therefore, we obtain: 

1
( ) ( ) ( )zy t y t y t

z

•

= + . 

Case 0z  : which corresponds to a zero in the left half-plane or left half-zero (LHP zero). 

Note that as z increases, the term 1/z  becomes smaller, and the contribution of z diminishes 

and resembles the original response. 

Adding a left half-plane (LHP) zero to a system's transfer function affects its step response as 

follows (figure (5.6)): 

• Increases overshoot: The maximum peak of the system's response surpasses the 

desired final value to a greater extent.  

• Decreases peak time: The time taken to reach the maximum peak is reduced, leading 

to a quicker response.  

• Decreases rise time: The duration for the response to rise from a specified low value 

to a specified high value is shortened, resulting in a faster initial reaction.  

 

Figure 5.6:effect of LHP zero  
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Cas 0z   : In this case, the derivative is subtracted from the input. As a result, the transient 

response initially moves in the opposite direction before eventually rising toward the steady-

state value of 1 (see Figure 5.6). This phenomenon is known as undershoot. A right-half plane 

zero is associated with non-minimum phase behavior. 

 

Figure 5.7:Effect of RHP zero  

5.2.3.2 Effect of Poles on the Step Response 

In general, regardless of the system's order, complex poles induce an oscillatory response. 

Note that poles with a positive real part lead to instability. 

To analyze higher-order systems (n > 2), it can be advantageous to find a second-order model 

that provides a good approximation by considering the dominant poles. However, it is 

sufficient to decompose the transfer function into simple factors. 

Dominant poles are poles whose real part is small and negative. 

In the case of second-order systems operating in a pseudo-periodic regime, adding a pole such 

as:  

2

2

( )
1

( 1) 2

n

n n

G s

s s s
p



 

=

+ + +

                                                                                           (5.22) 
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The addition of a pole (with a negative real part) to the transfer function results in a slower 

response (see Figure 5.8). 

 

Figure 5.8: Effect of LHP pole  

5.3 Exercises  

Exercise 5.1: Identification of a First-Order System 

A first-order system is subjected to a unit step input (Figure 1), and its step response is shown 

in Figure 2. 

 

With  
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Figure 5.9: Step response of first-order system 

1. Identify the system parameters: K: the static gain,τ: the time constant 

2. Compute the  s(t) if the input is  u(t)=t 

3. Plot  s(t) 

Exercise 5.2: Second-Order Control System 

A physical process is modeled by a second-order transfer function: 

0
0 1 2

1 2

( )   ,  1,  10 , 2
(1 )(1 )

G
G s G s s

s s
 

 
= = = =

+ +
 

This process is placed in a closed-loop system with a proportional controller:   C(s)=K 

 

Figure 5.10: control system  

 

1. a. Determine the closed-loop transfer function: H(s) = S(s)/E(s) and express it in its 

canonical form
2

0 2 2
( )   

2

n

n n

H s H
s m s



 
=

+ +
 

   Deduce the expressions for the parameters of H(s): H0 static gain, m damping coefficient, 

and ωn undamped natural frequency in terms of  τ1, τ2, G0, and  K.  

   b. Compute the value of  K to obtain m = 0,7.  

2. Now, consider a unit step reference input, and assume K is adjusted so that m=0.7.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1
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3
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6

Step Response

Time (seconds)
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   a.  Determine the steady-state value s(+∞) and compute its value. 

   b. Express and compute the steady-state error ε0(+∞) = e(+∞) - s(+∞).  

   d. Sketch the response s(t).  

3. To reduce the steady-state error, K is increased.    

   a. Compute the value of K required to achieve ε0(+∞) = 0,05 V.  

   b. Deduce the new value of the damping coefficient m.  

   c. Compute the relative overshoot D (in %).  

   d. Compute the new settling time tr5% .  

   e. Sketch the response s(t). 

 

 

Exercise 5.2: First-Order  PI Control System 

Consider the R-C-R circuit of Figure 5.11 where the input is the supply voltage u(t), and the 

output is v(t) 

 

 

 

Figure 5.11: R-C-R circuit  

a. Write the differential equation that relates the input to the output. 

b. Determine the expression of the transfer function G(s) = V(s)/U(s) , and express it in 

its canonical form : ( )
(1 )

K
G s

s
=

+
 

c. Deduce the expressions of the parameters K and    as functions of R1, R2, C 

d. Calculate K and    if  R1=100   , R2=1 K , C = 5500 F   

This process is inserted into a feedback control loop (figure 5.10) containing a proportional-

integral (PI) controller such as: ( ) (1 )
A

C s s
s

= + . 

e. Determine the expression of the closed-loop transfer function H(s) = V(s)/E(s) and 

express it in the form: 
1

1
( )

(1 )
H s

s
=

+
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f. Deduce the expression of the closed-loop time constant 1 as a function of A and K. 

g. Evaluate A for 1 =0.1 

In the remainder of the exercise, the reference input is a unit step, and the gain A is set such 

that 1 =0.1 

h.  Consider the steady-state regime. Determine the expression of v(+∞) and calculate its 

value. 

i.  Express the steady-state error ε0(+∞)=e(+∞)−v(+∞) 

j.  Deduce the expression of v(t) 

5.4 Exercises solution  

Exercise 5.1: Identification of a First-Order System 

- From Figure 5.9, since the system is subjected to a unit step input, the output response 

is:

1

( ) (1 )
t

s t K e 
−

= − , as t → , the output ( )s t K→ , In this case, we observe that 

K=5. 

- The time constant is determined from the graph at the point where s(t)=0.63K.At this 

point, the corresponding time is t= τ. 

Therefore, τ=0.1. 

- The s(t) when the input is u(t)=t, The Laplace transform of the input is then given by 

U(s)=
21/ s . The output Y(s) will be :  

              31 2

2 2

1
( ) .

1 1

K
AA A

S s
s s s

s s



 

= = + +

+ +

                                                               (5.23) 

Where : 

1

2

3

A K

A Kt

A K





= −

=

=

                                                                                                                    (5.24) 

The inverse Laplace transform of the output is: 

/( ) ( ) ts t K t K e   −= − +                                                                                                (5.25) 
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Figure 5.12: ramp response of first-order system  

Exercise 5.2: Second-Order Control System 

A physical process is modeled by a second-order transfer function: 

0
0 1 2

1 2

( )   ,  1,  10 , 2
(1 )(1 )

G
G s G s s

s s
 

 
= = = =

+ +
 

This process is placed in a closed-loop system with a proportional controller:   C(s)=K 

1.  The closed-loop transfer function: H(s) = S(s)/E(s) in the canonical form
2

0 2 2
( )   

2

n

n n

H s H
s m s



 
=

+ +
 

From the figure 5.9, the closed-loop transfer function is : 

0

01 2

0 1 2 0

1 2

(1 )(1 )( ) ( )
( )

1 ( ) ( ) (1 )(1 )
1

(1 )(1 )

G
K

Gs sC s G s
H s K

GC s G s s s KG
K

s s

 

 

 

+ +
= = =

+ + + +
+

+ +

             (5.26) 

Developing the equation (5.26): 

0 0 1 2

2
2 01 21 2 1 2 0

1 2 1 2

/
( )

1( )( ) 1

KG KG
H s

KGs s KG
s s

 

    

   

= =
+++ + + +

+ +

                                  (5.27) 

By identification to the canonical form : 

0

1 2

0
0

0

1 2

1 2 0

1

1

1

2 1

n

KG

KG
H

KG

m
KG


 

 

 

+
=

=
+

+
=

+

                                                                                            (5.28) 
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b.   For  m = 0,7 , K= 2.6735 

2. The input is step unit and m = 0,7, K= 2.6735 

a. The steady-state value s(+∞) :  

0
0

( )( ) lim ( ) lim
st

sS s Hs s t
→→

= = = =0.7278 

b. The steady-state error ε0(+∞) = e(+∞) - s(+∞) 

               ε0(+∞) = e(+∞) - s(+∞)=1-H0= 1-0.7278= 0.2722 

3. To reduce the steady-state error, K is increased.  For  ε0(+∞)=0.05 , K will be  

a. K=19 

b. The new value of the damping coefficient m 

  m= 0.3 

c. The relative overshoot D (in %).  

21100

m

mD e

−

−= =37.23 % 

 d. The new settling time tr5%   

5%

3
r

n

t
m

= =10s 

d. The figure 5.13 shows the response of the two previous cases :  



Chapter 5: Time-Domain Analysis of Linear Systems 

68 
 

 

Figure 5.13: Step response of second order system  

Exercise 5.2: First-Order  PI Control System  

a. The differential equation that relates the input to the output: applying Kirchhoff’s  law 

on the circuit RCR we can write: 

1

1 2

1 2

2

( ) ( )

( ) ( )
,

R i v t u t

i i i

dv t v t
i C i

dt R


 + =

= +


 = =


                                                                                  (5.29) 

Manipulation these equations, we obtain  

1 1 1 2

1 1

2

( ) ( ) ( ) ( ) ( )

( ) ( )
                         ( ) ( )

R i v t u t R i i v t u t

dv t v t
R C R v t u t

dt R

+ =  + + =

 + + =
                                 (5.30) 

Thus, The differential equation that relates the input to the output is ; 

1 2
1

2

( )
( ) ( )

R Rdv t
R C v t u t

dt R

 +
+ = 
 

                                                            (5.31) 

b. The expression of the transfer function G(s) = V(s)/U(s)  in its canonical form :  
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Applying the Laplace transform we obtain the following transfer function : 

1 2
1

2

( ) 1
( )

( )

V s
G s

R RU s
R Cs

R

= =
+

+

                                                                      (5.32)   

The canonical form of G(s): 

2

2 1

1 2

2 1

( )
( )

( )
1

R

R RV s
G s

R R CU s
s

R R

+
= =

+
+

                                                                         (5.33) 

c. 2 1 2

2 1 2 1

,
R R R C

K
R R R R

= =
+ +

 

d. R1=100   , R2=1 K , C = 5500 F   

0.9091

0.5

K



=

=
 

This process is inserted into a feedback control loop (figure 5.10) containing a proportional-

integral (PI) controller such as: ( ) (1 )
A

C s s
s

= + . 

e. The expression of the closed-loop transfer function H(s) = V(s)/U(s in the form: 

1

1
( )

(1 )
H s

s
=

+
 

( ) ( ) /
( )

1 ( ) ( ) 1 /

C s G s KA s KA
H s

C s G s KA s s KA
= = =

+ + +
                                            (5.34) 

The canonical form: 

1
( )

1

H s
s

KA

==

+

 

f. The expression of the closed-loop time constant 1 as a function of A and K: 

1

1

KA
 =

 

g. Evaluate A for 1 =0.1 

A=11 

In the remainder of the exercise, the reference input is a unit step, and the gain A is set such 

that 1 =0.1 
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h. the expression of v(+∞) : 

0 1

1 1
( ) ( ) ( ) 1

1
( ) lim ( ) lim

st

sV s sH s U s s
s s

v v t
→→

= = = =
+

 =                       (5.35) 

i. The steady-state error ε0(+∞)=e(+∞)−v(+∞) 

 

ε0(+∞)=e(+∞)−v(+∞)=1-1=0 

j.  The expression of v(t) 

1

1

( ) 1
t

v t e 
−

= −                                                                                                    (5.36) 
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6.1 Introductions : 

Frequency response analysis plays a fundamental role in understanding the behavior of linear 

time-invariant (LTI) systems. This analysis is particularly useful in characterizing how a system 

responds to sinusoidal inputs of varying frequencies, which is essential for both analysis and 

design in control engineering. 

6.2 Definition: 

The frequency analysis refers to the steady-state output of a system when subjected to a 

sinusoidal input. Note that Any input signal can be represented through Fourier analysis as a 

finite or infinite sum of sinusoidal signals at different frequencies. Therefore, it is essential to 

understand how a linear system reacts to sinusoidal excitations across a range of frequencies, 

as this determines the system's performance in practical applications. 

6.3 Spectrum concept: 

The spectrum of a signal is its representation in the frequency domain that is, a description of 

how the signal can be decomposed into elementary components, typically sinusoidal functions. 

Example 6.1 : 

Consider the signal: ( ) sin( )s t A t= , The corresponding spectrum is illustrated in Figure 

6.1.b 

 

(a)                                                       (b) 

Figure 6.1: Sinusoidal Signal Representations: (a)Time-domain,(b): frequency domain 

Let us consider a signal: 1 1 2 2( ) sin( ) sin( )s t A t A t = + , this signal is a sum of two sinusoidal 

components with amplitudes A1 and A2, and frequencies 1  and  2 , respectively. Each term 

represents a pure frequency component contributing to the overall shape of the signal in the 

time domain. 
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Figure 6.2: Frequency Representation of a Composite Signal 

However, the phase information is missing in this type of representation when only the 

amplitude spectrum is displayed. 

6.4 Frequency Response of a Linear System: 

When a linear model is excited by a sinusoidal input ( ) sin( )mu t U t= , the output of the system 

will also be sinusoidal ( ) ( ) sin( )my t A U t  = + , but its amplitude and phase may be altered 

depending on the system’s frequency response. The response is therefore sinusoidal with the 

same frequency as the input but phase-shifted relative to the input. 

                            ( ) sin( )mu t U t=                                               ( ) ( ) sin( ( ))my t A U t   = +  

Note that both the amplitude ( )A  and the phase ( )   depend on the frequency. 

6.4.1 Connection with the Transfer Function: 

Let us consider the traditional block diagram of a system, translated into its Laplace domain 

representation:  

( ) ( ) ( )Y s G s U s=                                                                                                     (6.1) 

By assuming:  s j=
 , we obtain :        

( ) ( ) ( )Y j G j U j  =                                                                                                      (6.2)  

G(s)  
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In the case of signals with finite energy ( ),  ( )Y j et U j   are the Fourier transforms of the input 

and output signals represent their frequency-domain representations. 

Therefore, we can demonstrate  

( ) ( )A G j =  : Harmonic Gain 

( ) arg( ( ))G j  =  : Phase shift 

Thus, if we know the transfer function  ( )G s , we can deduce the complex value of the 

frequency response ( )G j  by substituting  s j= . 

However, the information is more useful and easier to interpret when presented in graphical 

form. A graphical representation of the magnitude and phase of the frequency response provides 

a clear understanding of how the system modifies the amplitude and phase of different 

frequency components of the input signal. 

6.5 Bode plot  

A Bode plot consists of plotting two separate graphs corresponding respectively to the 

magnitude gain and the phase shift of a system's frequency response. For the magnitude plot, 

we do not plot the gain ( )G j directly. Instead, we use a logarithmic scale and define the gain 

in decibels (dB) as: 10( ) 20log ( )
dB

G j G j = . The horizontal axis (frequency) is also 

represented on a logarithmic scale, which allows for a wide frequency range to be displayed 

compactly. The phase plot is typically expressed in degrees or radians.  

As a general practice, an asymptotic Bode diagram of the transfer function is often drawn. This 

diagram provides a piecewise linear approximation of the actual plots and serves as a useful 

tool for quickly estimating the system's behavior, especially in the design and analysis of control 

systems. 

6.6 Plotting Technique : 
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We will present a systematic method for constructing the asymptotic Bode diagram by first 

illustrating the plots of basic terms, which will then be generalized to handle any arbitrary 

transfer function. The advantage of using a logarithmic scale is that it transforms multiplicative 

terms in the transfer function into additive linear components in the Bode diagram. 

6.6.1 Basic terms  

Let the magnitude of the transfer function be given in the following form : 

0 0 0

2
( )

2

n n n

f f
G j

f f

 


 

     
= = =     
     

,                                                                         (6.3) 

where 0  is the cut-off frequency (also called the break frequency). Therefore : 

10 10

0 0

( ) 20log 20 og

n

dB
G j n

 


 

   
= =   

   
                                                              (6.4) 

 

Figure 6.3: magnitude Bode plots of functions which vary as nf  

The equation (6.4) is plotted in Figure 6.3 for a several value of n which represents a linear 

function with a slope equal to 20n dB per decade. 
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6.6.1.1 First order system (single pole) 

Consider the RC circuit shown in Figure 2.1 (chapter2), where the transfer function is :  

1/ 1
( )

1/ 1

RC
G s

s RC RCs
= =

+ +
                                                                                    (6.5) 

The transfer function can be written as : 

0

1
( )

1

G s
s



=

+

                                                                                                         (6.6) 

Where    
0

1 1

RC



= =  .  Thus :  

0

1
( )

1

G j
j






=

+

                                                                                                      (6.7) 

The magnitude and the phase  of the transfer function:  

2

0

1
( )

1 ( )

G j




=

+

                                                                                              (6.8) 

1

0

( ) tan ( )


 


−= −                                                                                                      (6.9)    

Here, we have assumed that 0 is real. In decibels, the magnitude is: 

2

10

2 0

0

1
( ) 20log 20log 1 ( )

1 ( )
db

G j







 
 

  = = − +   
 +  

 

                                     (6.10) 

The easy way to sketch the magnitude Bode plot of G is to investigate the asymptotic 

behavior for large and small frequencies. 

For small frequency, 0   and 0f f : is true that  

0

1




 
 

 
                                                                                                                 (6.11) 
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The term of 
2

0




 
 
 

the equation. (6.8) is therefore much smaller than 1, and hence equation 

(6.8) becomes: 

 
1

( ) 1
1

G j = =                                                                                                    (6.12) 

In decibels, the magnitude is approximately zero.  

The phase will be : 

( ) 0  =                                                                                                                 (6.13) 

For high frequency, 0   and 0f f : is true that : 

0

1




 
 

 
                                                                                                              (6.14) 

We can say that :  

2 2

0 0

1
 

 

   
+    
   

                                                                                                 (6.15) 

Hence equation (6.8) becomes: 

1

2 0

0

1
( )

( )

G j







−

 
= =  

 
                                                                                   (6.16) 

In decibels, the magnitude is approximately.: 

0

( ) 20 log
db

G j





 
= −  

 
                                                                                      (6.17) 

The phase becomes :  

( ) 90  = −                                                                                                             (6.18) 

At 0 =  , 
1

( ) 20log( ) 3
2

db
G j dB = = −  and ( ) 45  = −  
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The asymptotes of ( )G j are equal to 1 at low frequency, and at high frequency. The 

asymptotes intersect at 0  (Figure 6.4). The actual magnitude tends toward these asymptotes at 

very low frequency and very high frequency. In the vicinity of the corner frequency, the actual 

curve deviates somewhat from the asymptotes. In the case of phase, Since the high-frequency 

and low-frequency phase asymptotes do not intersect, we need a third asymptote to approximate 

the phase in the vicinity of the corner frequency One way to do this is illustrated in Figure 6.4, 

where the slope of the asymptote is chosen to be identical to the slope of the actual curve at It 

can be shown that, with this choice, the asymptote intersection frequencies and are given by: 

0

0

/10

10

a

b

 

 

=

=
                                                                                                                (6.19) 

 

 

 

 

 

 

 

 

 

                                   

Figure 6.4: Bode plot of single pole (first order system ) 

Note: figure 6.4 is generated using the Matlab function presented in the appendix  

6.6.1.2 Single zero  

The transfer function of a single zero is : 

0  

a  
b  

20 /dB decade−  

45 / decade−  
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0

( ) 1
s

G s


= +                                                                                                                        (6.20) 

Therefore : 

0

( ) 1
j

G j





= +                                                                                                                   (6.21) 

The magnitude and the phase of a single zero are : 

2 2

0 0

1

0

( ) 1 ( ) 20log 1

( ) tan ( )

dB
G j G j

 
 

 


 



−

   
= +  = +   

   

=

                                                   (6.22) 

For small frequency, 0    : 

1
( ) 1

1

( ) 0

G j

 

= =

=

                                                                                                                (6.23) 

For high frequency 0   

0

( )

( ) 90

G j





 

 
=  
 

=

                                                                                                                   (6.24) 

The bode plot of a single zero is presented in Figure 6.5 : 
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Figure 6.5: Bode plot of single zero 

6.6.1.3 Right half plane zero  

The transfer function of a right-half plane zero is : 

0

( ) 1
s

G s


= −                                                                                                                        (6.25) 

Therefore : 

0

( ) 1
j

G j





= −                                                                                                                   (6.26) 

The magnitude and the phase of a single zero are : 

2 2

0 0

1

0

( ) 1 ( ) 20log 1

( ) tan ( )

dB
G j G j

 
 

 


 



−

   
= +  = +   

   

= −

                                                   (6.27) 

For small frequency, 0    : 

20 /dB decade  

45 / decade  

0  

0  
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1
( ) 1

1

( ) 0

G j

 

= =

=

                                                                                                                (6.28) 

For high frequency 0   

0

( )

( ) 90

G j





 

 
=  
 

= −

                                                                                                                   (6.29) 

The bode plot of  the magnitude of a right-half plane zero is the same as the case of a single 

zero, but the phase is inverted as shown in Figure 6.6 

 

 

 

 

 

Figure 6.6: phase plot of RHP zero 

6.6.1.4Combination of terms: 

The Bode diagram of a transfer function composed of multiple poles, zeros, and gain terms can 

be constructed by superposition. At any given frequency, the magnitude (expressed in decibels) 

of the overall transfer function is equal to the sum of the magnitudes (in decibels) of its 

individual components. Similarly, the phase of the composite transfer function at that frequency 

is equal to the sum of the phases contributed by each individual term. 

This additive property, which results from the logarithmic scale used in Bode plots, enables a 

straightforward and systematic construction of the overall diagram by analyzing and combining 

the elementary effects of basic components (constant gains, poles, zeros, etc.). 

45 / decade−  

0  
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Let's consider the transfer function 1 2( ) ( ) ( )G s G s G s=  , such as 1

1 1( ) ( ) jG s R e =  and 

2

2 2( ) ( ) jG s R e =  , therefore: 

1 2( )

1 2( ) ( ) ( ) jG s R R e    +=                                                                                             (6.30) 

Hence, the composite phase is : 

1 2( ) ( ) ( )     = +                                                                                                                                     (6.31) 

The total magnitude is :  

1 2( ) ( ) ( )R R R  =                                                                                                                           (6.32) 

When expressed in decibels becomes 

1 2( ) ( ) ( )
dB dB dB

R R R  = +                                                                                           (6.33) 

Thus, the composite phase of a transfer function is the sum of the individual phase contributions 

from each pole and zero. Likewise, when the magnitude is expressed in decibels, the composite 

magnitude is the sum of the individual magnitudes of the constituent terms. As a consequence, 

the slope of the composite magnitude plot (in dB per decade) is also the algebraic sum of the 

individual slopes (in dB/decade) contributed by each pole and zero. 

Example; let’s consider  the transfer function : 

0

1 2

( )

(1 )(1 )

G
G s

s s

 

=

+ +

                                                                                             (6.34) 

Where 0 1 240, 100 / sec, 1000 / secG rad rad = = =  

The bode  plot of equation 6.34 is presented in the figure 6.7: 
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Figure 6.7: Bode plot of combination terms  

6.6.1.4 Second order system  

Let’s consider a  canonical form of second order transfer function:  

2 2

0 0 0 0

1 1
( )

1 2 1

G s
s s s s

Q

   

= =
   

+ + + +   
   

                                                           (6.35) 

Where 
1

2
Q


=  is the quality factor  et its definition is : 

peak energy 
2

dissipitated energy per cycle 
Q =  

As we have seen in Chapter 5, the type of roots depends on the value of   . Therefore, when 

the damping factor is greater than one, the roots are real and the bode plot is constructed as 

described in the previous section. When the damping factor is between 0 1  , the poles are 

complexes and  the magnitude of the transfer function is : 

2 2
2 2

20 0
0 0

1 1
( )

11
1

G j

j
Q

Q


 

 
 

 

= =
 −     + +    − +          

                                       (6.36) 

45 / decade−  

90 / decade−  

45 / decade−  

0 dB
G  

20 /dB decade−  

40 /dB decade−  
1  

2  
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The phase : 

01

2

0

1

( ) tan

1

Q




 





−

 
 
 = −
 

−  
 

                                                                                            (6.37) 

For small frequency, 
0    : 

( ) 1

( ) 0

G j

 

=

=
                                                                                                                (6.38) 

For high frequency 0   

2

0

( )

( ) 180

G j





 

−

 
=  
 

= −

                                                                                                       (6.39) 

When 0 = ,   

( )G j Q =                                                                                                                (6.40) 

Figure 6.8 shows the real and the asymptotic bode plots of a second-order system with complex 

poles. The high-frequency asymptote has a slope of -40 dB/ decade. The asymptotes intersect 

at and are independent of Q. The parameter Q affects the deviation of the real curve from the 

asymptotes, in the neighborhood of the corner frequency 0 . The exact transfer function has 

magnitude Q at the corner frequency 0 . The phase tends to 0 degrees at low frequency and to 

-180 degrees at high frequency. At 0 = the phase is –90°. 

6.6.2 Phase Margin and Gain Margin : 

Phase margin and gain margin are fundamental stability indicators in the frequency domain, 

particularly when analyzing feedback control systems using Bode plots. 

 

 

 



Chapter 6 : Frequency analysis of linear system  

83 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Bode plot of second-order system 

• Phase margin (PM) is defined as the amount of additional phase lag required to bring 

the system to the verge of instability. It is measured at the gain crossover frequency 

gc , which is the frequency at which the open-loop magnitude ( )G j  is equal to 1 

(or 0 dB). Mathematically: 

Phase Margin=180∘+arg( ( )gcG j ) 

A larger positive phase margin indicates greater relative stability. 

• Gain margin (GM) is the amount of gain increase (usually expressed in dB) required 

to make the system unstable. It is measured at the phase crossover frequency 
pc  

which is the frequency at which the phase of the open-loop transfer function is −180∘. 
Mathematically: 

Gain Margin (dB)=−20log10 ( )G j  

A larger gain margin implies the system can tolerate more gain before becoming 

unstable. 

6.7 Nyquist Diagram  

The Nyquist diagram is a graphical representation of a system's frequency response in the 

complex plane.  It represents the transfer function in one graph. 

Qdb 

40 /dB decade−  

90 / decade−  
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 The Nyquist plot is obtained by evaluating the open-loop transfer function ( )G j  over a range 

of frequencies ω∈[0,∞], and plotting the resulting complex values as points in the complex 

plane. Each point corresponds to a value ( )G j with the horizontal axis representing the real 

part and the vertical axis the imaginary part. 

Example:  

The polar plot of a sinusoidal (figure (6.8))transfer function ( )G j is a graphical representation in polar 

coordinates, where the magnitude ( )G j  is plotted as a function of the phase angle arg( ( )G j ) as 

the frequency ω varies from zero to infinity.  

 

Figure6.8:  Nyquit diagram of a sinusoidal function  

6.7.1 Nyquist Plot of Integral and Derivative Factors 

The polar plot of 
1

( )G j
j




= is the negative imaginary as illustrated in Figure 6.9.a.  

The polar plot of ( )G j j =  is the positive imaginary as illustrated in Figure 6.9.b. 
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 a                                                                            b 

Figure 6.9:  Nyquist diagram of Integral and Derivative Factors 

6.7.2 Nyquist Plot of first-order system  

Let’s consider the transfer function of the first-order system as :  

1
( )

1
G j

j



=

+
                                                                                                       (6.41) 

2 2

1 1 1
( ) .

1 1 1 1

j
G j j

j j

 


   

− +
= = −

+ − + + +
                                                           (6.42) 

The  plot of this first-order system is shown in Figure 6.10 

 

Figure 6.10: Nyquist plot of first-order system 
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6.7.3 Nyquist Plot transfer function  

Let’s consider an arbitrary  transfer function as : 

1
( )

( 1)
G s

s s
=

+
                                                                                                       (6.43) 

Let's calculate ( )G j  by putting s j= : 

1
( )

( 1)
G j

j j


 
=

+
                                                                                              (6.44) 

2

1
( )G j

j


 
=
− +

                                                                                                (6.45) 

2

2 4
( )

j
G j

 


 

− −
=

+
                                                                                                (6.46) 

The  plot of this function transfer is shown in Figure 6.11 

 

Figure 6.11: Nyquist plot of transfer function 
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Remark: The Nyquist plot is particularly useful for analyzing the stability of closed-loop 

systems using the Nyquist stability criterion. 

6.8 Exercises 

Exercise 6.1: inverted Frequency 

- Plot the asymptotic Bode diagram for the following transfer functions:  

 

0

1
( )

(1 )

G s

s


=

+

              0( ) (1 )G s
s


= +  

Exercise 6.2: Given the transfer function:  

0
0

1 2

1

( )

(1 )(1 )

s

G s G
s s



 

+

=

+ +

 

Plot the asymptotic Bode diagram for the transfer function in the following cases:  

- 1 0 2     

- 0 2 1     

 Exercise 6.3:  Given the Bode magnitude plots of the following transfer functions: 

  

 

 

 

 

 

 

 

 

 

 

 

 

•  Express the transfer functions  represented by the asymptotes in Figures (a), (b), and (c) in 

terms of factored pole-zero form. Assume that all poles and zeros have negative real parts. 

(a) 

(c) 
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6.9 Exercises solution : 

Exercise 6.1: 

The asymptotic Bode diagram for the following transfer functions: 

a. 0

0

0

1
( )

1(1 )

s

G s
s

s







= =

++

                                                                                               (6.47) 

So, we replace s j=  : 

0 0

1 1
( )

1 1

G j

j
j


 

 

= =

+ −

                                                                                                 (6.48)  

 The magnitude and the phase of this inverted pole (equation 6.47) is: 

2

0

1
( )

1

G j




=

 
+  
 

                                                                                                       (6.49) 

1 0( ) tan ( )


 


−= − −                                                                                                          (6.50) 

For small frequency, 0    : 

10

0 0

( ) ( ) 20log

( ) 90

dB
G j G j

 
 

 

 

 
=  =  

 

=

                                                                      (6.51)                                                                                                          

For high frequency 0   

( )10( ) 1 ( ) 20log 1 0

( ) 0

dB
G j G j 

 

=  = =

=
                                                                      (6.52) 

                            

The bode plot of an inverted pole is presented in Figure 6.12 : 
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Figure 6.12: Bode plot of inverted pole 

 

b. 0 0

0

(1 )

( ) (1 )

s

G s
ss

 



+

= + =                                                                                           (6.53) 

So, we replace s j=  : 

0 0( ) 1 1G j j
j

 


 
= + = −                                                                                                  (6.54)  

 The magnitude and the phase of this inverted zero (equation 6.47) is: 

2

0( ) 1G j





 
= + 

 
                                                                                                       (6.55) 

1 0( ) tan ( )


 


−= −                                                                                                            (6.56) 

For small frequency, 0    : 

20 /dB decade  

45 / decade−  
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1

10

0 0

( ) ( ) 20log

( ) 90

dB
G j G j

 
 

 

 

−

   
=  = −   
   

= −

                                                            (6.57)                                                                                                          

For high frequency 0   

( )10( ) 1 ( ) 20log 1 0

( ) 0

dB
G j G j 

 

=  = =

=
                                                                      (6.58)                           

The bode plot of an inverted zero is presented in Figure 6.13 : 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Bode plot of inverted zero 

Exercise 6.2: Given the transfer function:  

0
0

1 2

1

( )

(1 )(1 )

s

G s G
s s



 

+

=

+ +

 

The asymptotic Bode diagram for the transfer function in the following cases:  

- Case 01 : 1 0 2     

 

20 /dB decade−  

45 / decade+  
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Figure 6.14: Bode plot of case1 

 

-  Case2 : 0 2 1     

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Bode plot of case2 

 

 

20 /dB decade−  

20 /dB decade−  

1  0  
2  

0  2  
1  
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Exercise 6.3  : 

The transfer functions of the following asymptotic Bode plot   

 

a.  

 

 

 

0

0

0 11

(1 )

( )

(1 )(1 )(1 )(1 )

m
m

s

G
G s G

s ss

s





 

+

= =

+ ++ +

where 0 02 f = , and 1 12 f =    

b.  

 

 

 

 

 

 

where 2i if = , and  1 2 3     

   

c.  

 

 

2

0 0

(1 )

( )

1

z

s

G s
s s

Q



 

+

=
 

+ +  
 

 where 2i if =  

2

1 3

(1 )

( )

(1 )(1 )
m

s

G s G
s s



 

+

=

+ +



 

 

 

 

 

 

 

 

 

 
- Chapter 7: Stability of Linear Systems 
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7.1 Introduction : 

In control theory, the stability of a linear system refers to its ability to produce a bounded output 

for every bounded input. This property is fundamental for the correct and safe operation of 

control systems. On the contrary, if the system is unstable, even a very small input signal can 

lead to an output that diverges toward infinity, which, in practice, may result in material damage 

and potentially cause harm to humans. 

The analysis of stability depends on the system model, typically represented in the time domain 

(state-space representation) or the frequency domain (transfer function). 

There are several criteria available to determine whether a linear system is stable or not. In 

what follows, we will present the most essential and widely used ones. 

7.2 Root Location Criterion 

The Root Location Criterion (also known as the Pole Location Criterion) is one of the most 

fundamental methods for assessing the stability of a linear time-invariant (LTI) system. A linear 

system is asymptotically stable if and only if all of its poles have strictly negative real parts. 

Recall that poles are the roots of the denominator of the system's transfer function. The presence 

of even one pole in the right half of the complex plane inevitably leads to instability. It has 

already been discussed that poles affect the system’s response time and oscillatory behavior. 

Here, we see that their role is even more critical, as they fundamentally determine the stability 

of the system. 

Note that If one or more poles lie exactly on the imaginary axis (i.e., have zero real part), and 

none of them are repeated, the system is marginally stable. 

Proof: let’s consider the transfer function  

1 2 1

1 2 1

( )( )............( )( )
( )

( )( ).............( )( )

m m

n n

s z s z s z s z
G s

s p s p s p s p

−

−

− − − −
=

− − − −
                                                                             (7.1) 

Where n>m 

The transfer function  ( )G s  can be written as :  

1

( )
( )

n
i

i i

A
G s

s p=

=
−

                                                                                                                (7.2) 
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The inverse transform of the equation (7.2) is :  

1 2

1 2( ) ...... np tp t p t

ng t Ae A e A e= + + +                                                                                       (7.3) 

From Equation (7.3), it is evident that if any pole has a positive real part, the time-domain 

response g(t) will grow unbounded, eventually diverging to infinity. 

7.3 ROUTH’S stability  Criterion 

Consider a closed-loop transfer function: 

1

1 1 0

1

1 1 0

........ ( )
( )

......... ( )

m m

m m

n n

n n

b s b s b s b B s
G s

a s a s a s a A s

−

−

−

−

+ + + +
= =

+ + + +
                                                                              (7.4) 

Where the ai s and bi s are real constants and m ≤ n. An alternative to factoring the denominator 

polynomial, Routh’s stability criterion, determines the number of closed-loop poles in the right-

half s plane. 

7.3.1 Algorithm for applying Routh’s stability criterion: 

The algorithm described below, like the stability criterion, requires the order of denominator 

of G(s) to be finite. 

- Characteristic polynomial:  
1

1 1 0( ) .........n n

n nA s a s a s a s a−

−= + + + +                                                                                  (7.5) 

- Construct a table with n + 1 rows from the coefficients ai of a polynomial A(s) as: 

ns  na  2na −  4na −  …. 
0a  

1ns −
 1na −  3na −  5na −  …. 0 

2ns −
 2

1 3

1

1

n n

n n

n

n

a a

a a
b

a

−

− −

−

−

= −  

4

1 5

3

1

n n

n n

n

n

a a

a a
b

a

−

− −

−

−

= −  

5nb −  …. 0 

3ns −
 1 3

1 3

1

1

n n

n n

n

n

a a

b b
c

b

− −

− −

−

−

= −  

1 5

1 5

3

1

n n

n n

n

n

a a

b b
c

b

− −

− −

−

−

= −  

5nc −  …. 0 

…… ……. ……… ……. …. …. 

0s  0a  0 0 ….. 0 
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- Count the number of sign changes in the first column of the array. It can be shown that 

a necessary and sufficient condition for all roots of (2) to be located in the left-half 

plane is that all the ai are positive and all of the coefficients in the first column be 

positive. 

- Relates the number of sign changes in the first column of the table to the number of 

roots in the closed right half-plane 

Example 7.1: Generic Cubic Polynomial. 

Consider the generic cubic polynomial:   

3 2

0 1 2 3( )A s a s a s a s a= + + +                                                                                                                    (7.6) 

 

Where all the ai are positive. The Routh table  is: 

 
3s  0a  2a  

2s  1a  3a  

1s  1 2 0 3

1

a a a a

a

−
 

0 

0s  3a  0 

 

 

So the condition that all roots have negative real parts is: 

1 2 0 3 0a a a a−                                                                                                                                               (7.7) 

Example 7.2 :  

So far, we have discussed only one primary application of the Routh–Hurwitz criterion, 

namely, determining the number of roots with nonnegative real parts, which directly indicates 

the stability of a linear system. However, the Routh criterion can also be used as a design tool 

specifically, to determine allowable ranges for system parameters to ensure stability. This 

makes it particularly useful in control system design and tuning. 

Consider, for example, a system whose closed-loop transfer function is given by: 

2
( )

( 1)( 2)

K
G s

s s s s K
=

+ + + +
                                                                                      (7.8) 

The characteristic equation is : 
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4 3 23 3 2s s s s K+ + + +                                                                                                               (7.9) 

The Routh array is : 

4s  1 3 K 

3s  
3 2 0 

2s  
7 / 3  K 0 

1s  
2-9K/7 0 0 

0s  K 0 0 

The condition for the system to be stable is that the parameter K must be: 

0 14 / 9K   

7.4 Stability criterion based on the frequency response 

There exists a stability criterion based on the frequency response of systems, known as the 

reverse criterion. Historically, it was introduced in the context of the Nyquist plot and is 

derived from the more comprehensive Nyquist stability criterion, which forms the basis of 

many developments in control theory. 

7.4.1 Phase margin condition 

A unity-feedback system is stable when, on the Bode plot of the corresponding open-loop 

transfer function, the following conditions are satisfied: 

• At the gain crossover frequency (i.e., the frequency where the magnitude is 0 dB), the 

phase is greater than −180°. In other words, the phase margin is positive  

7.4.2 Nyquist criterion  

If the Nyquist plot of the open-loop transfer function G(s)H(s)of Figure 3.7 constructed using 

the standard Nyquist contour in the complex s-plane, encircles the critical point (−1+j0) in the 

counterclockwise direction as many times as there are right-half-plane (RHP) poles of G(s), 

then the closed-loop system is stable. 



Chapter 7: Stability of linear system 

97 
 

 

 

 

 

 

 

 

Figure 7.2: Nyquist stability criterion 

7.4.2 .1Application of the Nyquist Criterion 

To apply the Nyquist stability criterion and determine the stability of a closed-loop control 

system, the following systematic steps can be followed: 

1. Determine the Open-Loop Transfer Function 

Identify the open-loop transfer function G(s)H(s) of the system.3 

2. Plot the Frequency Response 

Evaluate the frequency response G(jω)H(jω) for positive frequencies, starting from 

ω=0 to ω=∞. 

For minimum-phase systems, the Nyquist plot typically starts on the real axis and 

moves toward the origin.  

If the transfer function contains integrator terms such as 1/s or 1/s, the plot may start at 

infinity on the real axis for ω=0, sweeping through ±90° (or ±180°) depending on the 

order of the pole at the origin. 

( ) ( )G s H s  ( ) ( )G s H s  
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3. Construct the mirror image of the positive-frequency locus with respect to the real 

axis. This represents the response for ω∈[−∞,0], completing the Nyquist contour. 

4. Analyze Encirclements of the Critical Point (-1, 0)  

If the resulting Nyquist plot encircles the critical point (−1+j0) a number of times 

equal to the number of right-half-plane poles of G(s)H(s), and in the counterclockwise 

direction, the closed-loop system is stable. 

If the plot passes through (−1,0)the system is marginally stable (i.e., on the boundary 

of stability). 

If the plot encircles (−1,0more or fewer times than the number of RHP poles, the 

system is unstable. 

7.5 Exercises 

Exercise 7.1 : 

Let us consider a system with an open-loop transfer function G(s) defined by:  

G(s)=
𝐾

𝑠(𝑠+2)(𝑠+4)
   K>0 

- Using the Routh-Hurwitz criterion, determine the stability conditions of the closed-

loop system when it is placed in a unity feedback configuration. 

Exercise 7.2: 

A closed-loop system with a proportional controller is shown in the figure 7.3 where ; 

2
( )

( 1)

k
G s

s s
=

+
 and  ( ) pC s K=  

k=0.08, 20s =  

 

Figure 7.3: closed-loop control system  

- Calculate the magnitude and phase of the open-loop transfer function, denoted by A(s) 
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- Plot the Nyquist diagram of A(s) for Kp=1. 

- The system is stable? Why? 

- Let’ the gain  Kp=0.4, Plot the Nyquist diagram of A(s). 

Exercise 7.3: 

A closed-loop system with a  PI (proportional integrator) controller is shown in the figure 7.3 

where ; 

3
( )

( 1)

k
G s

s
=

+
 and  ( ) i

p

K
C s K

s
= +  

 

                                   Figure 7.3: Control system with PI controller  

 

- Using the Routh-Hurwitz stability criterion, determine the conditions of the 

proportional gain. Kp  and the integral gain Ki ensure the stability of the closed-loop 

system. 

7.6 Exercises Solution  

Exercise 7.1 : 

a. The closed-loop  transfer function  can be written as : 

( ) ( 2)( 4)
( )

1 ( )
1

( 2)( 4)

k

G s s s s
H s

kG s

s s s

+ +
= =

+
+

+ +

                                                                         (7.10) 

Thus  

3 2
( )

( 2)( 4) 6 8

k k
H s

s s s k s s s k
= =

+ + + + + +
                                                              (7.11) 

The Routh array is : 
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3s  
1 8 0 

2s  
6 K 0 

1s  
6x8

6

k−
 

0 0 

0s  K 0 0 

The condition for the system to be stable is that the parameter k must be: 

0 48k   

Exercise 7.2: 

a. The open loop transfer function A(s) of the block diagram of Figure (7.3): 

2
( ) ( ) ( )

( 1)
p

k
A s C s G s K

s s
== =

+
                                                                (7.12) 

The magnitude and phase of A(s): 

2
( )

( 1)
p

k
A j K

j j


 
=

+
                                                                            (7.13) 

2 2

1

( )
( 1)

( ( )) 2 tan ( )
2

pK k
A j

A j


  


  


=

 +

 = − −


                                                                      (7.14) 

b. Nyquist plot for Kp=1 

 

       Figure 7.4: Nyquist plot for Kp=1 
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- The closed-loop system is stable because the Nyquist plot, traced in the direction of 

increasing frequency, leaves the critical point  (−1,0) on its left-hand side. 

c. Nyquist plot for Kp=0.4 

 

Figure 7.5: Nyquist plot for Kp=0.4 

Exercise 7.3: 

The open loop transfer function of the diagram of the figure 7.3; 

3
( ) ( ) ( ) ( )

( 1)

i
p

K k
A s C s G s K

s s
== = +

+
                                                                      (7.15) 

Therefore : 

3 4 2 3 2

( )
( )

3 3 ( 1)

p i

p i

K s K k
A s

s s s K k s K k  

+
=

+ + + + +
                                                             (7.16) 

The Routh table :  

4s  
3  3  Kik 

3s  

23  1pK k +  0 

2s  
  Kik 0 

1s  
  0 0 

0s  Kik 0 0 
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Where: 

2 3

2

3 x3 ( 1)

3

pK k 




− +
= ,  

2(3 ( 1) )( 1) 3
3

(3 ( 1) )
3

p p i

p

K k K k K k

K k


 






− + + −

=

− +

. 

The condition for the system to be stable is that the parameters Kp and Ki must be: 

2 3

2

3 x3 ( 1) 8
0

3

p

p

K k
K

k

 




− +
=                                                                   (7.17) 

23( 1) ( 1)
0

3

p p

i

K k K k
K

k k


 

+ +
   −                                                              (7.18) 
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Asymptotic Bode Plot: 

The following script defines a MATLAB function named asym_bode that generates an 

asymptotic Bode diagram, as presented in the course. This function takes as input a transfer 

function defined using MATLAB's tf function. 

function asym_bode(obj) 
% ASYM_BODE takes as an input a tf,zpk,ss or symbolic object and outputs an 
% asymptotic Bode plot of its frequency response. Poles and zeros at the 
% origin are accounted for, as well as time delays. The phase is 
% interpolated according to 0.1w=0, w=45[deg], 10w=90[deg] (adjusted for 
% multiplicity). At the moment purely imaginary poles and zeroes are not 
% supported. 
switch class(obj) 
    case 'tf' 
        num=obj.num{:}; 
        den=obj.den{:}; 
        zroots=roots(num); 
        proots=roots(den); 
    case 'zpk' 
        zroots=obj.Z{:}; 
        proots=obj.P{:}; 
    case 'ss' 
        obj=zpk(obj); 
        zroots=obj.Z{:}; 
        proots=obj.P{:}; 
    case 'sym' 
        [symNum,symDen] = numden(obj); 
        num = sym2poly(symNum);     
        den = sym2poly(symDen);  
        obj=tf(num,den); 
        zroots=roots(num); 
        proots=roots(den); 
    otherwise 
        error('Please input either a zpk or tf object') 
        return 
end 
%Find static gain 
K=zpk(obj).k; 
% Find and remove imaginary roots 
im_p=proots(find(real(proots)==0)); 
proots(find(real(proots)==0))=[]; 
im_z=zroots(find(real(zroots)==0)); 
zroots(find(real(zroots)==0))=[]; 
for ii=1:length(proots) 
    w_p(1,ii)=abs(proots(ii)); 
    w_p(2,ii)=-1*abs(sign(real(proots(ii)))); 
    w_p(3,ii)=sign(real(proots(ii))); 
end 
for ii=1:length(zroots) 
    w_z(1,ii)=abs(zroots(ii)); 
    w_z(2,ii)=abs(sign(real(zroots(ii)))); 
    w_z(3,ii)=-1*sign(real(zroots(ii))); 
end 
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try 
    w_t=[w_p,w_z]; 
catch 
    try 
        w_t=[w_p]; 
    catch 
        w_t=[w_z]; 
    end 
end 
interval=sort([0.01*w_t(1,:), 0.05*w_t(1,:), 0.1*w_t(1,:), 0.2*w_t(1,:), w_t(1,:), 
2*w_t(1,:), 5*w_t(1,:), 10*w_t(1,:),100*w_t(1,:)]); 
mag=zeros(size(w_t,2),length(interval)); 
Phi=zeros(size(w_t,2),length(interval)); 
% calculate magnitude of each pole and zero 
for ii=1:size(mag,1) 
        m=20*w_t(2,ii); 
        n=-m*log10(w_t(1,ii)); 
    for jj=1:size(mag,2) 
        if jj < find(interval==w_t(1,ii))+1 
            mag(ii,jj)=0; 
        else 
            mag(ii,jj)=m*log10(interval(jj))+n; 
        end 
    end 
end 
mag=sum(mag,1); 
% Account for integrators and differentiators (mag) 
if length(find(imag(im_p)==0))>0 
    mag_imp=zeros(length(find(imag(im_p)==0)),length(interval)); 
    m=-20; 
    n=0;     
    for ii=1:size(mag_imp,1) 
        for jj=1:size(mag_imp,2) 
             mag_imp(ii,jj)=m*log10(interval(jj))+n; 
        end 
    end 
    mag=mag+sum(mag_imp,1); 
end 
if length(find(imag(im_z)==0))>0 
    mag_imz=zeros(length(find(imag(im_z)==0)),length(interval)); 
    m=20; 
    n=0;     
    for ii=1:size(mag_imz,1) 
        for jj=1:size(mag_imz,2) 
             mag_imz(ii,jj)=m*log10(interval(jj))+n; 
        end 
    end 
mag=mag+sum(mag_imz,1); 
end 
% Account for static gain 
mag=mag+mag2db(prod(abs(zroots))/prod(abs(proots)))+mag2db(K); 
% Calculate phase 
for ii=1:size(Phi,1) 
        m=(pi/4)*w_t(3,ii); 
        n=-m*log10(interval(find(interval==0.1*w_t(1,ii))));%m; 
        n=n(1); 
    for jj=1:size(Phi,2) 
        if jj < find(interval==0.1*w_t(1,ii))+1 
            Phi(ii,jj)=0; 
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        elseif jj < find(interval==10*w_t(1,ii))+1 
            Phi(ii,jj)=m*log10(interval(jj))+n; 
        else 
            Phi(ii,jj)=(pi/2)*w_t(3,ii);     
        end 
    end 
end 
Phi=sum(Phi,1); 
%integrators and differentiators (phase) 
if length(find(imag(im_p)==0))>0 
    phase_imp=(-pi/2)*ones(length(find(imag(im_p)==0)),length(interval)); 
    Phi=Phi+sum(phase_imp,1); 
end 
if length(find(imag(im_z)==0))>0 
    phase_imz=zeros(length(find(imag(im_z)==0)),length(interval)); 
    Phi=Phi+sum(phase_imz,1); 
end 
% linear term for deadtime 
phase_dt=-obj.InputDelay*interval; 
% real curves 
[gain_vec,phase_vec,w_vec]=bode(obj,{interval(1),interval(end)}); 
gain_vec=squeeze(gain_vec); phase_vec=squeeze(phase_vec); w_vec=squeeze(w_vec); 
pp=phase_vec(1); 
% Adjust real plot to account for NMP 
phase_vec=phase_vec-pp+rad2deg(Phi(1)); 
% plots 
figure 
% magnitude 
subplot(2,1,1) 
semilogx(interval,mag,'b','LineWidth',1.2); 
hold on 
% title 
title('Real and asymptotic Bode magnitude','FontSize',10) 
xlabel('$\omega$ [rad/s]','Interpreter','latex','FontSize',10) 
ylabel('$|G(j\omega)|$ [dB]','Interpreter','latex','FontSize',10) 
% real plot 
plot(w_vec,mag2db(gain_vec),'--r','LineWidth',1); 
grid on 
% mark frequencies 
y0=get(gca,'ylim'); 
y0=y0(1); 
Ind=unique(mod(find(interval(:)==w_t(1,:)),length(interval)),'stable'); 
tx = [w_t(1,:);w_t(1,:);nan(1,length(w_t(1,:)))]; 
ty = [y0*ones(1,length(w_t(1,:)));mag(Ind);nan(1,length(w_t(1,:)))]; 
plot(tx(:),ty(:),'--k','LineWidth',0.75); 
% phase 
subplot(2,1,2) 
semilogx(interval,rad2deg(Phi+phase_dt),'b','LineWidth',1.2); 
 
title('Real and asymptotic Bode phase','FontSize',10) 
xlabel('$\omega$ [rad/s]','Interpreter','latex','FontSize',10) 
ylabel('$\mathrm{arg}\,G(j\omega)$ 
[$\,^\circ$]','Interpreter','latex','FontSize',14) 
hold on 
semilogx(w_vec,phase_vec,'--r','LineWidth',1);grid on 
grid on 
end 

 



References  

 

References   

[1] C.-T. Chen, Analog and digital control system design: transfer-function, state-space, and 

algebraic methods. Oxford University Press, Inc., 1995. Consulté le: 24 avril 2025. [En ligne]. 

Disponible sur: https://dl.acm.org/doi/abs/10.5555/541339 

 
[2] « Analysis and Design of Feedback Control Systems | Mechanical Engineering », MIT 

OpenCourseWare. Consulté le: 24 avril 2025. [En ligne]. Disponible sur: 

https://ocw.mit.edu/courses/2-14-analysis-and-design-of-feedback-control-systems-spring-2014/ 

 

[3] P. Patrick, « Automatique contrôle et régulation: cours et exercices corrigés », Dunod, impr, 2010. 

 

[4] Y. Granjon, Automatique: systèmes linéaires, non linéaires, à temps continu, à temps. Dunod, 

2001. Consulté le: 24 avril 2025. [En ligne]. Disponible sur: https://biblio.univ-

annaba.dz/ingeniorat/wp-content/uploads/2017/12/CATALOGUE-GP.2017.pdf 

 

[5]  R. T. Stefani, B. Shahian, C. J. Savant, et G. H. Hostetter, Design of feedback control systems. 

Oxford University Press Oxford, 2002. Consulté le: 24 avril 2025. [En ligne]. Disponible sur: 

https://www.academia.edu/download/66785396/design_of_feedback_control_systems_4th_ed_1_1.pd

f 

 

[6] « ECE 486 Lectures ». Consulté le: 24 avril 2025. [En ligne]. Disponible sur: 

https://courses.grainger.illinois.edu/ece486/sp2025/documentation/lectures/ 

 

[7] G. F. Franklin, J. D. Powell, et A. Emami-Naeini, Feedback control of dynamic systems, vol. 10. 

Pearson Upper Saddle River, NJ, 2010. Consulté le: 24 avril 2025. [En ligne]. Disponible sur: 

https://www.academia.edu/download/39180354/FPE-Ch8-Digital_Control.pdf 

 

[8] R. W. Erickson et D. Maksimovic, Fundamentals of power electronics. Springer Science & 

Business Media, 2007. Consulté le: 24 avril 2025. [En ligne]. Disponible sur: 

https://books.google.com/books?hl=fr&lr=&id=B4XhBwAAQBAJ&oi=fnd&pg=PR18&dq=power+el

ectronics+erickson&ots=jzu2cBEc3t&sig=n_zUVrZ7O_kf0qDoBb6RjQUNagU 

 

[9] D. Xue, Y. Chen, et D. P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB. 

Society for Industrial and Applied Mathematics, 2007. doi: 10.1137/1.9780898718621. 

 

[10] « MathWorks – Editeur de MATLAB et Simulink ». Consulté le: 24 Avril 2025. [En ligne]. 

Disponible sur: https://fr.mathworks.com/ 

 

[11] O. Bachelier et O. Bachelier, « Repre´ sensations d’e´ tat line´ aires des syste` mes 

monovariables ». 

 

[12]  J. J. Distefano, A. J. Stubberud, et I. J. Williams, Schaum’s Outline of Feedback and Control 

Systems, 2nd éd. McGraw-Hill Professional, 1997. 

 

 

https://dl.acm.org/doi/abs/10.5555/541339
https://ocw.mit.edu/courses/2-14-analysis-and-design-of-feedback-control-systems-spring-2014/
https://biblio.univ-annaba.dz/ingeniorat/wp-content/uploads/2017/12/CATALOGUE-GP.2017.pdf
https://biblio.univ-annaba.dz/ingeniorat/wp-content/uploads/2017/12/CATALOGUE-GP.2017.pdf
https://www.academia.edu/download/66785396/design_of_feedback_control_systems_4th_ed_1_1.pdf
https://www.academia.edu/download/66785396/design_of_feedback_control_systems_4th_ed_1_1.pdf
https://courses.grainger.illinois.edu/ece486/sp2025/documentation/lectures/
https://www.academia.edu/download/39180354/FPE-Ch8-Digital_Control.pdf
https://books.google.com/books?hl=fr&lr=&id=B4XhBwAAQBAJ&oi=fnd&pg=PR18&dq=power+electronics+erickson&ots=jzu2cBEc3t&sig=n_zUVrZ7O_kf0qDoBb6RjQUNagU
https://books.google.com/books?hl=fr&lr=&id=B4XhBwAAQBAJ&oi=fnd&pg=PR18&dq=power+electronics+erickson&ots=jzu2cBEc3t&sig=n_zUVrZ7O_kf0qDoBb6RjQUNagU
https://doi.org/10.1137/1.9780898718621
https://fr.mathworks.com/

