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Introduction: 
Electricity and magnetism are among the most important foundations of modern science and 

engineering. From transmitting electrical power from dams to cities, to powering delicate 

digital electronics such as computers, to electromagnetic communication systems, the 

widespread use of electrical and magnetic phenomena is seen. This document provides a 

structured introduction to both static and dynamic electricity, as well as magnetism, which form 

the basis of classical electromagnetic theory. 

The first chapter introduces the phenomena arising from electrostatics, which is the 

phenomenon resulting from static electric charges and the fields they produce, as well as the 

interaction between the charges. Topics such as Coulomb's law, electric fields, and electric 

potential (EP) will be covered. Furthermore, we focus primarily on Gauss's law due to its 

importance in modern technological applications, while presenting a number of its applications 

in practical engineering problems. 

In the second chapter, we move to study the electrokinetic, examining moving charges 

(currents) and the resulting electric fields. This chapter includes a detailed discussion of Ohm's 

law and Kirchhoff's laws that govern electric circuits, as well as the behavior of circuits 

involving resistors, capacitors, and generators. 

In the final chapter, we present a study of the magnetic phenomena arising from electric 

currents within the framework of classical physics. Phenomena such as the effect of electric 

currents on magnetized objects will be studied, in addition to phenomena such as the Hall effect 

and magnetic fields arising from electric currents. 

This course will utilize relatively advanced mathematical tools such as vector calculus and 

differential and integral calculus, which we have comprehensively reviewed in this course, 

along with a physical explanation of electrical and magnetic phenomena. This prepares first-

year engineering students in "Science and Technology" for more advanced studies in 

electromagnetism, electronics, and electromechanical systems. Examples and illustrations will 

help connect theory to engineering applications, ensuring a practical and conceptual 

understanding of the subject. 
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1. Mathematical background: 

1.1. Introduction 

1.2. Coordinate system: 

1.2.1. Cartesian coordinates: 

The Cartesian coordinate system is a coordinate system that is defined by an origin point O and 

three axes (Ox, Oy, Oz) perpendicular to each other (see Figure 1). The unit vectors carried by 

the axes are: 𝑖, ⃗  𝑗 , 𝑎𝑛𝑑 �⃗�   

We can define any point M in space by the three components of the three-unit vectors as: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 �⃗�   

 

Figure 1 The position of the point M in Cartesian coordinates 

1.2.1.a) Differential element of length in Cartesian coordinates: 

In Cartesian coordinates, the differential element of length in three-dimensional space is 

given as: 

𝑑𝑙 =  √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 

1.2.1.b) Displacement (differential) in Cartesian coordinates: 

The displacement is given as: 

𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 �⃗�   

1.2.1.c) Element of the surface: 

In Cartesian coordinates, the differential element of surface in three-dimensional space is 

given as: 

𝑑𝑠 =  𝑑𝑥 𝑑𝑦 
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1.2.1.d) Element of the volume: 

In Cartesian coordinates, the differential element of volume in three-dimensional space is 

given as: 

𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧  

1.2.2. Cylindrical coordinates: 

The cylindrical coordinate system is a three-dimensional coordinate system defined by three 

components: 

ρ: The projection of the magnitude of the vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   on the plan (x, y). 

φ: The azimuthal angle in the xy-plane. 

z: The height or vertical coordinate, representing the position along the z-axis. 

 

 

Figure 2  The position of point M in cylindric coordinates 

Conversion to Cartesian Coordinates 

Given a point (ρ, φ, z) in cylindrical coordinates, the corresponding Cartesian coordinates (x, 

y, z) are: 

𝑥 = 𝜌cos(𝜑) 

𝑦 = 𝜌 sin(𝜑) 

𝑧 = 𝑧 

Conversion from Cartesian to Cylindrical 

For a point (x, y, z) in Cartesian coordinates: 

ρ = √𝑥2 + 𝑦2  
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𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑦

𝑥
) 

𝑧 = 𝑧 

1.2.2.a) Differential element of length in cylindrical coordinates: 

The differential displacement in cylindrical coordinates is: 

𝑑𝑙 = 𝑑ρ �⃗� ρ +  ρ𝑑𝜑 �⃗� 𝜑 + 𝑑𝑧 �⃗�    

The magnitude of the differential length element is given by: 

𝑑𝑙 = √𝑑ρ2 + (ρ𝑑𝜑)2 + 𝑧2   

1.2.2.b) Element of the surface: 

In cylindrical coordinates (𝜌,𝜑,𝑧), the differential surface element depends on the surface 

being considered, as it is defined by the normal vector and the area element on a specific 

coordinate surface. There are three primary surfaces in cylindrical coordinates: constant 𝜌, 

constant 𝜑, and constant 𝑧. 

Surface of constant 𝜌: 

For a surface with a constant 𝜌, the surface element is: 

Along 𝜑: 𝑑𝑙φ =  ρ dφ 

Along z: 𝑑𝑙z =  dz 

Therefore, 

𝑑𝑠 = ρ dφ dz  

Surface of Constant φ: 

 

For a surface with a constant 𝜌, the surface element is: 

Along ρ: 𝑑𝑙ρ =  𝑑ρ  

Along z: 𝑑𝑙z =  dz 

Therefore, 

𝑑𝑠 = 𝑑ρ dz  

Surface of Constant z: 

 

For a surface with a constant z, the surface element is: 

Along ρ: 𝑑𝑙ρ =  𝑑ρ  
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Along 𝜑: 𝑑𝑙φ =  ρ dφ 

Therefore, 

𝑑𝑠 = 𝑑ρ ρ dφ  

1.2.2.d) Element of the volume: 

In Cylindrical coordinates, the differential element of volume in three-dimensional space is 

given as: 

𝑑𝑉 =  𝑑ρ ρ dφ 𝑑𝑧  

1.2.3. Spherical coordinates: 

Spherical coordinates are a three-dimensional coordinate system that extends polar coordinates 

to describe points in space using a radial distance, a polar angle, and an azimuthal angle. 

A point in spherical coordinates is defined by three components: 

𝑟 (radial distance): The distance from the origin to the point 𝑟 ≥ 0. 

𝜃: The angle from the positive 𝑧-axis (typically 0 ≤ 𝜃 ≤ 𝜋). 

𝜙 (azimuthal angle): The angle in the 𝑥𝑦-plane from the positive 𝑥-axis (typically 0 ≤ 𝜙 < 

2𝜋). 

Conversion from Spherical to Cartesian coordinates: 

Let's take a point (r, 𝜃, 𝜙) in spherical coordinates, the corresponding Cartesian coordinates 

are: 

𝑥 = r sin (𝜃) cos(𝜙) 

𝑦 = r sin(𝜃) sin(𝜙) 

𝑧 = r cos (𝜃) 

Conversion from Cartesian to Spherical coordinates: 

r = √𝑥2 + 𝑦2 + 𝑧2  

θ = arccos(
𝑧

𝑟
) 

ϕ = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑦

𝑥
) 

 

1.2.3. a) Differential element of length in Spherical coordinates: 

The differential displacement vector in Spherical coordinates: 

 

𝑑𝑙 = 𝑑r �⃗� r +  r𝑑θ �⃗� θ + 𝑟 sin(𝜃) 𝑑ϕ �⃗� ϕ 
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The magnitude of the differential length element is given by: 

𝑑𝑙 =  √𝑑r 2 + (r𝑑θ)2 + (𝑟 sin(𝜃) 𝑑ϕ)2 

1.2.3. b) Differential Element of Surface in Spherical coordinates: 

Surface of Constant r: 

If r is constant, both coordinates θ and ϕ vary, therefore, the differential displacement 

becomes: 

Along θ: 𝑑𝑙θ = 𝑟 𝑑θ 

Along ϕ: 𝑑𝑙ϕ = 𝑟 sin(θ) 𝑑 ϕ 

The surface element is: 

𝑑𝑠 =  𝑟2 𝑑θ sin(θ) 𝑑 ϕ  

Surface of Constant θ: 

If θ is constant, both coordinates r and ϕ vary, therefore, the differential displacement 

becomes: 

Along r: 𝑑𝑙r = 𝑑𝑟  

Along ϕ: 𝑑𝑙ϕ = 𝑟 sin(θ) 𝑑 ϕ 

The surface element is: 

𝑑𝑠 =  𝑟 𝑑𝑟 sin(θ) 𝑑 ϕ 

Surface of Constant ϕ: 

Along r: 𝑑𝑙r = 𝑑𝑟 

Along θ: 𝑑𝑙θ = 𝑟 𝑑θ 

The surface element is: 

𝑑𝑠 =  𝑟 𝑑𝑟 𝑑θ 

Differential Element of Volume in Spherical Coordinates: 

𝑑𝑉 =  𝑟2  sin(θ) 𝑑 𝑟 𝑑θ dϕ 

 

1.3. Operators: 

An operator is a mathematical object that acts on a function to produce another function. For 

example, differential operators act on a function by computing its derivatives.  

Ω f(x) =  
𝑑𝑓(𝑥)

𝑑𝑥
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1.3.1 Gradient: 

The gradient of a scalar field 𝑓(𝑥,𝑦,𝑧) is a vector field that points in the direction of the 

steepest increase of 𝑓 and whose magnitude is the rate of that increase. 

∇ 𝑓 =  
𝜕𝑓

𝜕𝑥
 𝑖 +  

𝜕𝑓

𝜕𝑦
 𝑗 +  

𝜕𝑓

𝜕𝑧
 �⃗�  

1.3.1.a) Divergence: 

The divergence of a vector field 𝐹 =𝐹𝑥𝑖 +𝐹𝑦𝑗 +𝐹𝑧�⃗�  measures the "outward flux" per unit 

volume at a point. 

∇ 𝐹 =  
𝜕𝐹𝑥

𝜕𝑥
 +  

𝜕𝐹𝑦

𝜕𝑦
 +   

𝜕𝐹𝑧

𝜕𝑧
  

1.3.1.b) Curl: 

The curl of a vector field of a vector field 𝐹 =𝐹𝑥𝑖 +𝐹𝑦𝑗 +𝐹𝑧�⃗�  measure the rotation or circulation 

of the field 𝐹  is: 

 

∇ × 𝐹 =  (
𝜕𝐹𝑧

𝜕𝑦
− 

𝜕𝐹𝑦

𝜕𝑧
) 𝑖 + (

𝜕𝐹𝑥

𝜕𝑧
− 

𝜕𝐹𝑧

𝜕𝑥
) 𝑗 +  (

𝜕𝐹𝑦

𝜕𝑥
− 

𝜕𝐹𝑥

𝜕𝑦
) �⃗�  
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2. Electrostatic 

2.1 Introduction: 

Electrostatics is a branch of classical physics that focuses on the study of static electric charges 

and the interactions between them. This includes the forces, fields, potentials, and energies of 

electric charges arising from or interacting with electrical charges.  

Coulomb's laws of electric force explain how electric charges interact with each other, repelling 

each other if they have the same sign and attracting each other if they have opposite signs. 

Concepts such as the electric field provide a deeper understanding of the instantaneous effect 

of electric forces, while concepts such as the electric potential (EP) allow us to measure the 

energy associated with the distribution of charges. 

Despite its focus on the foundations of classical physics, electrostatics forms the basis of many 

technologies, including some modern electronics, energy storage systems, and sensors, as well 

as natural phenomena such as lightning. 

2.2 Definition of the term: 

The term Electrostatic is divided into two parts(Bleaney and Bleaney, 2013):  

Electricity is the phenomenon resulting from electrical charges, including their behavior, 

interactions, and effects.   

Static: means that this charge is in a state of rest. 

Examples of electrostatic: 

Example 1: 

We deal with electrostatic phenomena almost daily. This can be observed, for example, in small 

electric shocks when touching a metal door handle, such as a car door, after walking on a carpet, 

for example. This phenomenon occurs as a result of the accumulation and discharge of electric 

charge.  

Where does the electric charge come from? 

When walking on a carpet, for example, friction occurs between the sole of the shoe and the 

carpet, which leads to the transfer of electrons. Electrons accumulate on the shoe, making the 

body negatively charged. 

How do the electrical shocks happen? 

When touching a metal door handle, electrons are transferred from the body to the metal door 

as a result of the electric potential (EP) difference between the door and the charged body. 

This results in small electric shocks. 
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Figure 3 Electrostatic example 

2.3. The electrical charge: 

2.3.1. The quantification of the electrical charge: 

Electricity arises from a fundamental property of elementary particles, the elementary electric 

charge. This charge is a scalar quantity and is negative for particles such as electrons and 

positive for other particles such as protons. The magnitude of this elementary charge is a fixed 

value and represents the smallest unit of electric charge in nature, denoted e:(Millikan., 1913) 

e = 1.69 10-19 C     (1) 

All electric charges in the universe are quantized, meaning they are integer multiples of this 

elementary charge. It is not possible to observe a charge smaller than this fundamental value in 

nature . 

“The charge of any particle is equal to an integer multiple of the elementary charge.” 

While classical physics treats electricity as a phenomenon arising from the motion or 

interaction of charged particles like electrons, a deeper understanding requires quantum 

mechanics and quantum field theory. These advanced frameworks provide a more accurate 

description of the behavior and interactions of fundamental particles such as electrons, 

explaining phenomena like wave-particle duality and the quantization of energy. 

In this classical lecture, however, we will consider the electron as a fundamental particle 

carrying a fixed negative electric charge, focusing on its macroscopic effects (electrical force, 

electrical field …) rather than delving into quantum-level explanations. 

2.3.2. The unit of the electrical charge: 

The unit of the electrical charge is the coulomb (C); one coulomb is the amount of charge 

transported by a current of one ampere in one second. Both ampere and second are fundamental 

units in the International System of Units (SI).  

1 C = 1 A s.   (2) 
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One coulomb is equivalent to 6.241 1018 elementary charge. 

2.3.3. Charge transfer: 

The electrical charge can transfer between physical objects through different processes, 

including friction, conduction, ion exchange, and tunneling. 

Friction: 

This Charge transfer occurs when two materials, such as a plastic rod and a piece of fur, are 

rubbed together. Electrons move from a material with a low electron affinity to a material with 

a high electron affinity. When the two materials are separated, one becomes positively charged 

due to losing electrons, and the other becomes negatively charged due to gaining electrons.  

Conduction: 

The phenomenon of charge transfer by electrical conduction occurs when an electrically 

charged conductor (such as a metal) comes into contact with another electrically neutral or 

oppositely charged conductor (also known as a conductor). This allows the transfer of electrical 

charge between the two bodies until equilibrium is reached. 

Ion exchange: 

Cations and anions move between substances when they come into contact with a medium that 

facilitates their movement, such as water or chemical solutions. These chemical compounds 

interact with each other, exchanging electrical charges in chemical reactions. 

Tunnel effect:(Burke, 1952) 

Tunneling charge transfer is a quantum phenomenon whereby elementary particles with 

wavelike properties can cross thin insulating barriers even if they lack the energy required to 

conventionally cross the barrier. 
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Figure 4  The types of charge transfer 

2.3.4. The conservation of the electrical charge: 

In addition to its quantized nature, the electrical charge has another important property, which 

is its conservation nature; the electric charge in an isolated system cannot be created or 

destroyed. This is a fundamental principle in physics that governs the behavior of the charge 

and is widely observed in many experiences. 

Examples of electrical charge conservation: 

Charging by Friction (Triboelectric Effect): 

Rubbing a glass rod with silk fabric results in the transfer of electrons from the glass to the silk. 

The glass acquires a positive charge from the lack of electrons, while the silk attains a negative 

charge from the extra number of electrons. In the context of the glass rod and silk fabric system 

as an isolated object, the total charge remains unchanged before and after the frictional 

interaction. 

Chemical Reactions (Batteries): 

In electrical batteries, such as a zinc-copper battery, zinc atoms undergo oxidation by losing 

electrons, whereas copper ions experience reduction by gaining electrons. The quantity of 

electrons given by the zinc atoms is equivalent to the quantity of electrons acquired by the 

copper ions. The overall charge inside the system is unchanging. 

Nuclear Reactions: 

In nuclear processes, such as beta decay, a neutron transforms into a proton, an electron, and 

an antineutrino. A neutron (charge = 0) transforms into a proton (charge = +1) and an electron 
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(charge = -1). The total charge before to and subsequent to the decay is null. The proton's 

positive charge is counterbalanced by the electron's negative charge. 

The conductors and insulators: 

The materials could be divided generally into kinds: conductors, and insulators.  

Conductors: The conductors are materials that allow the electrical charge to move freely. 

Insulators: The insulators are materials that resist the movement of the electrical charge, “the 

charge cannot move freely”. 

This classification is based on the mobility of the electrical charge inside the material. The 

mobility of the electrical charge inside materials depends on many parameters, particularly the 

atomic electronic structure. Atoms that have free electrons tend to have a conductor behavior; 

however, atoms that have bound electrons tend to have an insulator behavior. 

Examples of conductor materials: Copper, silver, gold, nickel, lead, aluminum, and iron. 

Examples of insulator materials: Plastic, glass, and ceramics. 

Problem 1: 

Two conducting spheres are identical: they have the same radius. The first sphere has a charge 

of 6.0 nC and the second has a charge of −9.0 nC. The two spheres are brought together until 

they touch, then they are moved apart.  

What is the charge on each sphere after they are moved apart? 

Solution: 

We take Q1 is the charge of the first sphere Q1 = 6 nC, and Q2 is the charge of the second charge 

Q2 = -9 nC. 

The total charge of the system is QTotal = Q1 + Q2 = 6 – 9 nC = -3 nC. 

Because the two spheres are identical, the charge is distributed equally between them; 

therefore: 

Qf = Qtotal /2 = -1.5 nC. 
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2.4. Electrical force: 

2.4.1 Coulomb law: 

From the examples and experience that we mentioned 

above, it is clear that the charged objects are sub to an 

electrical force. These observations were noted by many 

scientists around the time; however, systematic 

experiments began in the 18th century by scientists like 

Benjamin Franklin (Morgan, 2002) and Joseph Priestley. 

In 1785, a French physicist called Charles-Augustin de 

Coulomb worked on groundbreaking experiments that 

focused on the quantification of the electrical force 

between charged objects. 

2.4.1.a) The mathematical expression the electrical force: 

We assume that qA and qB are two electrical charges located at points A and B. 

 

 

The mathematical expression of the Coulomb force can be given as follows: 

𝐹 𝐴/𝐵 = 𝐾 
𝑞𝐴 𝑞𝐵

𝑟2
 𝑢𝐴𝐵⃗⃗⃗⃗ ⃗⃗  ⃗ 

Where K is the constant of Coulomb, its value is 8.99 × 109 N m2/C2, qA, qB, are the electrical 

charges, r is the distance between the charges qA, and qB, and 𝑢𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗   is the unit vector of the 

electrical force. 

Suppose that we have two electrical charges qA, and qB fixed at points A, and B, and spaced by 

a distance r. The charge qA is submitted by a force 𝐹𝐵𝐴
⃗⃗ ⃗⃗ ⃗⃗   created by the charge qB, and the charge 

qB is submitted by a force 𝐹𝐴𝐵
⃗⃗ ⃗⃗ ⃗⃗  created by the charge A. The two forces 𝐹𝐵𝐴

⃗⃗ ⃗⃗ ⃗⃗  , and 𝐹𝐴𝐵
⃗⃗ ⃗⃗ ⃗⃗  have the 

same magnitude: 

𝐹𝐴/𝐵 =  𝐹𝐵/𝐴 = 𝐾 
𝑞𝐴 𝑞𝐵

𝑟2
  

In the case of two electrical charges with the same sign (both charges are positive or negative). 

The electrical force between these two charges is repulsive. However, when the charges are not 

Benjamin Franklin 1706-1790
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the same, the electrical force between these two charges is attractive. This is a fundamental 

principle of electrostatics.  

 

Figure 5 Repulsion and attraction phenomena 

Problem: 

An electrical charge q1 = 1 µC is located at the position 𝑟 1 = 2 �⃗�  (𝑐𝑚), and another electrical 

charge q2 = 3 µC located at position 𝑟 1 = (7 �⃗� + 4 𝑗  ) (𝑐𝑚). 

Find the electrostatic force created by the charge q1 on the charge q2. 

 

Problem: 

Two small conducting spheres are suspended using non-conductive strings of length L=30.0 

cm. Each sphere has a mass of 100 g. When the spheres each carry a charge q, they repel each 

other such that the angle between each string and the vertical is θ=1.20°, as shown in the 

following Figure 6. Calculate the charge q. 

 

Figure 6 Problem description 

Problem: 

Four identical free charges each of value q are located at the corners of a square of side a. 

What must be the charge Q that has to be placed at the center of the system so that the system 

stays in equilibrium? 
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2.4.2. The principle of superposition: 

When several charges exert a force on a charge q0, the total electrical force created on the 

charge q0 is the algebraic sum of these forces. This principle is called the superposition 

principle.   

𝐹𝑇 ⃗⃗⃗⃗  ⃗ =  ∑𝐹𝑖 ⃗⃗  ⃗

𝑛

𝑖

 

 

 

Figure 7 The principle of superposition 

Problem: 

Three points charges are located in a plane: 

• q1= +2 μC at 𝑟 1 = 2 𝑖  (cm). 

• q2= −3 μC at 𝑟 2 = 7𝑖 + 4𝑗  (cm). 

• q3 = +4 μC at 𝑟 2 = 5𝑖 − 3𝑗  (cm). 

Calculate the net electrostatic force on q3. 

Problem: 

Four points charges are located at the corners of a square of side a = 5 m: 

1- q1 = 2 µC at (0,0). 

2- q2 = -2 µC at (5 cm, 0). 

3- q3 = 2 µC at (5 cm, 5 cm). 

4- q4 = 2 µC at (0, 5 cm). 

Calculate the net electrostatic force on q1 due to the other three charges. 

Problem: 

Four point charges are located at the corners of a square of side a = 5 m: 

1- q1 = 5 µC at (0 cm,0). 

2- q2 = -6 µC at (1 cm, -1). 
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3- q3 = 7 µC at (5 cm, 3 cm). 

4- q4 = 2.5 µC at (1, 5 cm). 

Calculate the net electrostatic force on q1 due to the other three charges. 

2.5. Electrical field: 

It is clear that Coulomb's law shows that the effect of electric force is an instantaneous effect, 

not related to time. This represents a deep problem in physics, as the existence of an 

instantaneous effect of a force not related to time completely contradicts physical concepts. 

The English physicist, Michael Faraday(Faraday, 1991), addressed this problem by proposing 

another mechanism to explain the instantaneous effect of electric forces. According to Faraday, 

an electric charge q0 creates lines of force around it; these lines are called the electric field. 

This electric field spreads throughout the universe, and the electric charge q0 is considered the 

source of this electric field. The expression for this electric field is given as follows: 

�⃗� 0 = 𝐾 
𝑞0 

𝑟2
 �⃗�  

In the case of an electric charge q at a point in space, the interaction between the lines of force, 

or as we call it, the electric field, leads to the instantaneous appearance of the electric force. 

Thus, the force is the result of the interaction of the electric field and the electric charge. 

𝐹 0 = 𝑞 �⃗� 0�⃗�  

2.5.1. The lines of the electrical field: 

Electric field lines represent the direction and intensity of an electric field around an electrical 

charge and have the following characteristics: 

1. Direction: They start from positive charges (or infinity) and converge toward negative 

charges (or infinity). 

2. Density and Magnitude: The density of field lines in a certain area is directly 

proportional to the magnitude of the electric field in that area. When the lines are closely 

spaced, the field is strong; when they are farther distanced, the field is diminished. 

3. Never Cross: Electric field lines never intersect each other. 

The electric field lines are a visual tool to represent the direction and strength of an electric 

field in space. 
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Figure 8 Line of the electric field 

2.5.2. Continuous distributions of charges: 

In the abovementioned discussion, we dealt with electrical forces and fields that are created 

from separated charges. However, in many real applications, the electrical charges are so close 

and numerous. For example, a metallic sphere S (see Figure 9.) has a charge of -2 nC, this 

charge is due to the existence of 12 109 electrons. If we try to study the electrical field created 

from this huge number of electrons in a point M (x,y,z) from the sphere, it is not possible to 

calculate the electrical field created from each electron in sphere S at the point M. Therefore, 

we suppose that the electrical charges continue. We will study below the continuous 

distributions of electric charge, including linear, surface, and volume charge distributions. 

 

Figure 9 Continuous distributions of charges 
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2.5.3. The linear distribution of electrical charges: 

Let us first take a piece of metal with a length of L as shown in the figure below, and neglect 

the width of this piece. Let us assume that this piece contains a charge Q uniformly distributed 

along the length L of this piece.  

 

Figure 10 A piece of metal contains a charge Q 

We can now define a variable λ as the density of electric charge, which is given by the following 

mathematical equation: 

𝜆 =  
𝑑𝑄

𝑑𝐿
 

Since the electric charge Q is uniformly distributed along the length L of the metal piece, the 

value of λ remains constant. 

λ can also be defined as the linear charge, and its unit in the International System of Units is  

(C/m). The linear charge can take negative or positive values depending on the sign of the 

charge distributed along the length L.  

We can define an infinitesimal amount of the total charge dQ as follows: 

dQ = λ dL 

where dL is an infinitesimal quantity of the length L. 

2.5.4. The surface distribution of electrical charge: 

When a charge Q is distributed over an area S, let's say it's the area of a metal surface, we can 

define another physical quantity 𝜎, which is the surface charge density or surface charge, as 

follows: 

𝜎 =  
𝑑𝑄

𝑑𝑆
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The unit of the surface charge density is (C/m2). 

The sign of surface charge density is also related to the sign of the electric charge distributed 

on the surface S. When the charge is positive, the surface charge density is positive, and when 

the charge is negative, the surface charge density is negative. 

We can also define an infinitesimal amount of the total charge as follows: 

dQ = 𝜎 dS 

Where dS is an infinitesimal amount of the surface S. 

 

Figure 11 Charged surface 

2.5.5. The volume distribution of electrical charge: 

When distributing a charge Q over a volume, we can define another physical quantity, which 

is the volumetric charge density or volumetric charge, as follows: 

𝜌 =  
𝑑𝑄

𝑑𝑉
 

The unit of this physical quantity is C/m3. 

Similarly, the sign of this quantity is related to the sign of the charge. When the charge is 

positive, the volumetric charge density is positive, and when the charge is negative, the 

volumetric charge density is negative. 

We can also formulate any infinitesimal amount of the total charge as follows: 

dQ =  𝜌 𝑑𝑉 

The charge densities defined above will play a fundamental role in our analysis of many 

electrical phenomena, such as the electric fields produced by a piece of metal of negligible 

width, an electrically charged surface of infinite area, or a charged cylinder.  
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Figure 12 Charged volume 

Since our study will deal with calculating the effect of a continuous electric charge, we will 

have to use differential and integral calculus. It would be good here to provide a review of the 

knowledge acquired about differential and integral calculus. 

2.6. A brief overview of calculus: 

The first knowledge of differential and integral calculus goes back to the pioneering work of 

the Greek mathematician Archimedes(Lévy, 2011) while trying to calculate the surface of a 

disc. Archimedes was a brilliant mathematician and geometer, and calculating the area of non-

polygonal shapes, such as the disc, was one of the challenges he faced. Archimedes relied on 

approximating the circular shape to be measured using polygons. By increasing the number of 

polygons, the space between the polygon and the disc is exhausted, thus approximating the area 

of the circle. 

 

Figure 13 Approximation of the disc surface 

As you can see in Figure 13, we can cover a larger area of the disc the more we increase the 

number of sides (or in other words, the more we decrease the length of the side ‘L’ of the 

polygon). In fact, what Archimedes arrived at was the implicit concept of the limit. By reducing 

the length of the side by enough, the area of the polygon will equal the area of the disc. 
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After Archimedes, the luster of these ideas faded for centuries in Europe. In contrast, the 

Islamic world and India made essential contributions to this field: 

In the Islamic world, the mathematician Al-Khwarizmi developed algebra and was able to 

formulate everyday problems in the form of algebraic equations. 

In the European world, the mathematician Descartes was able to connect the two extremes of 

mathematics: algebra and geometry. While the scientists of that age viewed each branch as 

independent of the other, Descartes proved that we can draw mathematical equations 

geometrically and formulate curves according to algebraic equations. 

In the late Middle Ages and the beginning of the European Renaissance, urban and 

technological developments led to the emergence of many problems related to motion, 

variation, calculating areas, and finding the tangents to curves. Scientists such as Nicola Orsme, 

the Chiral School in India, and later Cavalieri, Fermat, Descartes, Pascal, and Barrow made 

groundbreaking contributions: 

Fermat developed a method for finding the maximum and minimum values of functions 

(similar to taking the derivative and setting it equal to zero) and a method for finding tangents 

to curves. 

Barrow was Newton's teacher and realized an inverse relationship between the problem of 

finding areas (integration) and the problem of finding tangents (differentiation), bringing him 

very close to the fundamental theorem. However, the deep concepts of this mathematics did 

not develop until centuries later due to the pioneering work of both the physicist Newton and 

the mathematician Leibniz.  

In the second half of the seventeenth century, independently, Isaac Newton in England and 

Gottfried Wilhelm Leibniz in Germany synthesized the scattered ideas of calculus and integral 

calculus and developed them into a powerful, integrated mathematical system. Although they 

worked concurrently, each had its own approach to introducing calculus. 

Newton and Leibniz work(Reyes, 2004): 

Newton's interest was focused on calculating speeds and distances. For example, to calculate 

the distance traveled by an object moving at a constant speed, say 2 m/s, over a period of 20 

seconds, we multiply the speed by the time. The result is the area of the rectangle below the 

velocity graph, as shown in the following figure. Calculating distances is similar and easy if 

the speed of the moving object is constant, but the problem lies in calculating distances traveled 

if the speed of the moving object is varying. 
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Figure 14  The variation of the velocity as a function of time   

Let's take the following example: 

A moving object moves at a speed that varies with time according to the following equation: 

𝑣(𝑡) =  𝑡2 

To calculate the distance traveled by the object over a time period from ta to time tb, we should 

calculate the area under the curve of the function. 

 

Figure 15 The variation of the velocity as a function of time 

This geometric problem is similar to the one Archimedes encountered while working on 

calculating the area of a disc. 
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Newton used a similar approach to calculate the area under the curve.  He approximated the 

area under the curve using rectangles of equal width, ∆𝑥 , while the length of the rectangle is 

the velocity at instant t (𝑣(𝑡)). 

 

Figure 16 Approximation of the surface under the curve 

The distance traveled will be approximately the sum of the areas of the rectangles. 

∆𝑥 =  𝑥𝑏 − 𝑥𝑎 = ∑𝑣(𝑡𝑖) ∆𝑡 

𝑛

𝑖

 

Although this is a good approximation, it is clear that the area under the curve is not exactly 

equal to the sum of the rectangles. 

To increase the accuracy of the approximation, the length of the side must be reduced, just as 

Archimedes did when trying to approximate the area of a disk. 

When the length of the side is reduced enough, the area of the sum of the rectangles equals the 

area under the curve. The value ∆𝑡 took on another definition, dt, which is the infinitesimal 

difference, while Leibniz’s symbol for the sum was the integral ∫  . This symbol was in fact, 

just the way Leibniz wrote the first letter of the word sum. 

Therefore, the expression of the distance ∆𝑥 becomes: 

∆𝑥 =  𝑥𝑏 − 𝑥𝑎 = ∫ 𝑣(𝑡) 𝑑𝑡
𝑡𝑏

𝑡𝑎

 

Newton didn't care much for the mathematical definition of infinitesimals, and the mathematics 

he derived was able to analyze the motion of bodies and planets well. On the other hand, 

Leibniz's definition of infinitesimal numbers presented a significant problem. He considered a 

quantity like dT to be so small that it was smaller than any positive real value but bigger than 

zero. This definition blatantly contradicted the definition of the real numbers, since between 

every real number and another real number there are an infinity of real numbers. This posed a 
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difficult mathematical problem, and despite the excellent performance of calculus in both 

mathematics and physics, a deep understanding of it required the development of the concept 

of limits by the genius Cauchy. 

Newton didn't care much for the mathematical definition of infinitesimals, and the mathematics 

he derived was able to analyze the motion of bodies, and planets well. On the other hand, 

Leibniz's definition of infinitesimal numbers presented a significant problem. He considered a 

quantity like dT to be so small that it was smaller than any positive real value but bigger than 

zero. This definition blatantly contradicted the definition of real numbers, since between every 

real number and another real number there are an infinity of real numbers. Despite the 

outstanding performance of calculus in both mathematics and physics, many scientists and 

philosophers of the era were highly critical of the works of both Newton and Leibniz. Among 

the most prominent was the Irish philosopher and bishop George Berkeley. Berkeley published 

an article in which he described the works of Leibniz and Newton as mathematical infidels and 

questioned how quantities like dt could be treated as values in some stages of calculus but then 

ignored in others. The article represented a profound scientific and philosophical critique of 

the concept of infinitesimal quantities. A deep understanding of it required the development of 

the concept of limits by the genius Cauchy. 

Cauchy developed the concept of limits, a revolutionary approach to a precise and rigorous 

understanding of integration. 

The integration of the function 𝑣(𝑡) becomes: 

lim
∆𝑡→0

∑𝑣(𝑡𝑖) ∆𝑡 

𝑛

𝑖

= ∫ 𝑣(𝑡) 𝑑𝑡
𝑡𝑏

𝑡𝑎

  

This formula, which relies on the limit of Riemann sums, is the essence of the precise definition 

of definite integrals, and this method owes its rigor to the work of Cauchy in the early 

nineteenth century. 

Some primitive functions: 

∫𝑥𝑛  𝑑𝑥 =
𝑥𝑛+1

𝑛 + 1
+ 𝐶 for 𝑛 ≠ −1 

∫
1

𝑥
 𝑑𝑥 = ln|𝑥| + 𝐶 

∫𝑒𝑥  𝑑𝑥 = 𝑒𝑥 + 𝐶 

∫𝑎𝑥  𝑑𝑥 =
𝑎𝑥

ln 𝑎
+ 𝐶 for 𝑎 > 0, 𝑎 ≠ 1 
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∫sin𝑥  𝑑𝑥 = −cos 𝑥 + 𝐶 

∫cos𝑥  𝑑𝑥 = sin 𝑥 + 𝐶 

∫sec2 𝑥  𝑑𝑥 = tan 𝑥 + 𝐶 

∫csc2 𝑥  𝑑𝑥 = −cot 𝑥 + 𝐶 

∫
1

√1 − 𝑥2
 𝑑𝑥 = sin−1 𝑥 + 𝐶 

∫
1

1 + 𝑥2
 𝑑𝑥 = tan−1 𝑥 + 𝐶 

∫
1

𝑥√𝑥2 − 1
 𝑑𝑥 = sec−1|𝑥| + 𝐶 

∫  tan (𝑥)   𝑑𝑥 =  − ln | cos {𝑥}|  +  𝐶  

∫ln𝑥  𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶 

2.5.6. The electrical field created from a continuous distribution of charge: 

We suppose that we have an object A (see Figure 17) charged by a continuous electrical 

charge Q.  

 

Figure 17 The electric field created from a continuous charge distribution 

To calculate the electrical field created from this charge at the point M (x,y,z), we can first take 

an infinitesimal quantity from the total charge noted as dQ; this infinitesimal charge dQ creates 

an infinitesimal electrical field 𝑑�⃗⃗�   given as: 

𝑑�⃗�  = 𝐾 
𝑑𝑄 

𝑟2
 𝑢𝑟⃗⃗⃗⃗  
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 Where, 𝑢𝑟⃗⃗⃗⃗  is the unit vector of the vector r, which is oriented from dQ to the point M. The 

total electrical field created from all other elements of object A is the following integral: 

�⃗�  = ∫∫∫𝐾 
𝑑𝑄 

𝑟2
 𝑢𝑟⃗⃗⃗⃗  

To calculate this sum (integral), we need to present the quantity dQ as a function of the density 

of charge 𝜌. Also, we need to present the unit vector u as a function of the Cartesian, polar, 

cylindrical, or spherical coordinates. 

2.5.7. The electrical field created by a circle: 

In this section, we deal with the electrical field created from a circle of radius R charged with 

a linear density λ on a point M as shown in Figure 18.  

 

Figure 18 The electric field created by a circle 

Solution 

We take an infinitesimal charge dq from the total charge of the circle Q. The relation between 

the infinitesimal charge dq of the charge and the linear density λ is: 

dq = λ dl. 

Where dl is an infinitesimal arc from the total arc of the circle l. 

dq = λ r dα. 

 This infinitesimal charge will induce the creation of an infinitesimal electrical field 𝑑�⃗�   with 

two compounds along the z and y axes. 

𝑑�⃗�   =  𝑑E𝑦
⃗⃗ ⃗⃗  +  𝑑E𝑧

⃗⃗⃗⃗  
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We can neglect calculating the electric fields in the direction y due to the symmetry of the 

electrical field with the y direction. For the compounds of the electric field in the direction z, it 

takes the following form: 

𝑑�⃗� = 𝑘
𝑑𝑞

𝑏2
cos(𝜃) �⃗�  

𝑑�⃗� = 𝑘
𝑟𝜆 𝑑𝛼

𝑏2
cos(𝜃) �⃗�  

We can also write the cos(θ) as a function of b and r, therefore, the relation of the infinitesimal 

electrical field becomes: 

𝑑�⃗� = 𝑘
𝑟𝜆𝑧 𝑑𝛼

𝑏3
�⃗�  

The total electrical field created from the circle is: 

𝑑�⃗� = ∫ 𝑘
2𝜋

0

𝑧𝑟𝜆 𝑑𝛼

(𝑧2 + 𝑟2)3/2
  �⃗�  

Therefore,  

𝑑�⃗� = 𝑘
𝑧𝑟𝜆 2𝜋

(𝑧2 + 𝑟2)3/2
  �⃗�  

2.5.8. The electric field created by a disc: 

A disc of a center o and a radius R charged uniformly by a surface density charge σ>0 as 

shown in Figure 19. 

Calculate the electrical field created from this disc at the point M (0,0,z) a function of z. 

 

Figure 19 The electric field created by a disc 

The solution: 
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We start first by taking an infinitesimal electrical charge dq, which is distributed on a small 

ring in the disc as shown in Figure 20.  

 

Figure 20 The infinitesimal electric field created by a disc 

The relation between the infinitesimal quantity dq of the charge and the surface density σ is: 

dq = σ ds. 

where ds is an infinitesimal surface, which is the surface of the ring. 

ds = 2 π r dr. 

Therefore: dq = σ 2 π r dr. 

This infinitesimal charge will induce the creation of an infinitesimal electrical field 𝑑�⃗�  with 

two compounds along the z and y axes. 

𝑑�⃗�   =  𝑑E𝑦
⃗⃗ ⃗⃗  +  𝑑E𝑧

⃗⃗⃗⃗  

We can neglect calculating the electric fields in the y direction due to the symmetry of these 

fields. For the compounds of the electric field in the direction z, it takes the following form: 

𝑑�⃗� = 𝐾
𝑑𝑞

𝑏2
cos(𝜃) �⃗�  

θ represents the angle between the Z axis and the direction of the infinitesimal electric field, as 

shown in figure 20. 

By using the relation of the infinitesimal electric charge, we have: 

𝑑�⃗� = 𝐾
2 π 𝑟σ 𝑑𝑟

𝑏2
cos(𝜃) �⃗�  

We can also write the cos(theta) as a function of b and r, therefore, the relation of the 

infinitesimal electrical field becomes: 

𝑑�⃗� = 𝐾
2 π 𝑟σ 𝑑𝑟

𝑏2

z

𝑏
 �⃗�  
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Also,  

𝑑�⃗� = 𝐾
2 π 𝑧 𝑟σ 𝑑𝑟

𝑏3
  �⃗�  

 

The total electric field created by the disc (E) is the integral of the partial electric field 𝑑�⃗�  

created by the infinitesimal ring of the disc. 

𝑑�⃗� = ∫ 𝐾
2 π 𝑧 𝑟σ 𝑑𝑟

𝑏3
  �⃗� 

𝑅

0

 

Therefore, we obtain the total electrical field created from the disc at the point M(0,0,z): 

�⃗⃗� =
σ

2𝜀0

[
𝑧

|𝑧|
 −  

𝑧

√𝑧2 + 𝑅2
] �⃗�  

2.6. Electrostatic potential: 

We have previously dealt with electrostatic forces and electrostatic fields resulting from the 

interaction of electric charges and the electric charges themselves. 

Both physical quantities, "electrostatic forces and electrostatic fields", are vector physical 

quantities. 

In some of the problems we encountered, calculating these quantities was a complex matter 

because it required many mathematical calculations arising from the differential nature of the 

physical problem at hand and also arising from the vector nature of these two quantities. 

In fact, obtaining these two physical quantities through scalar calculations instead of vector 

calculations may facilitate the solution of many of the physical problems that we will encounter 

in this course. 

We consider that in space A, there is an electric field resulting from a constant electric charge 

Q0. Any other electric charge in this space, let's call it Q, will be subject to an electric force F 

given by the following relation: 

𝐹 = 𝑄 �⃗�  

If the two charges Q and Q0 are of the same sign, this will lead to the movement of the electric 

charge Q in the direction of the electric force 𝐹 . To stop the movement of this electric charge, 

we need to apply another force opposite to the force 𝐹  and has the same magnitude. 

The new force, let's call it Fd, has the following expression: 

𝐹𝑑
⃗⃗⃗⃗ = −𝑄 �⃗�  

For an infinitesimal displacement dl, the infinitesimal work resulting from the force 𝐹𝑑
⃗⃗⃗⃗  is given 

by the following relation: 
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𝑤 =  − 𝑄 ∫ 𝐸 ⃗⃗  ⃗ 𝑑l 
𝐵

𝐴

 

The following integral ∫ 𝐸 ⃗⃗  ⃗ 𝑑l 
𝐵

𝐴
 is called the the circulation of the electric field from point A to 

point B. 

This circulation is conservative; that is, its value is constant and not related to the path followed 

In case the charge Q is equal to one Coulomb, the work done is called the electromotive force: 

𝑤 = ∫ 𝐸 ⃗⃗  ⃗ 𝑑l 
𝐵

𝐴

 

In the previous example, we had the electric circulation as a constant value independent of the 

path. That means the work done to move an electrical field from a point A to a point B is also 

independent of the path. The expression, −𝐸 ⃗⃗  ⃗ 𝑑l   called the variation of electrical potential 

dV, and it is a scalar quantity. Therefore, the electrical field is the derivative of the electrical 

potential: 

We can rewrite the expression of the work as follows: 

𝑤 =  − 𝑄 ∫ 𝐸 ⃗⃗  ⃗ 𝑑l 
𝐵

𝐴

 =  ∫ 𝑑𝑉
𝐵

𝐴

 =  − 𝑄 (𝑉𝐵  −  𝑉𝐴) 

We can now define the difference in electric potential (EP) is the work required for a single 

charge to move it from point A to point B. 

2.6.1. The electrical potential created from a charge q: 

The electrical field created from a charge q is given as: 

�⃗� = 𝐾 
𝑞 

𝑟2
 �⃗�  

Because the electrical field and the displacement dl have the same direction the relation of the 

difference potential becomes: 

dV = - E dl 

And dl is parallelled to dr, 

Therefore; 

𝑑𝑉 =
𝑑𝑟

4 𝜋 𝜀0
 
𝑞 

𝑟2
  

The expression of electrical potential becomes: 

𝑉 =
1

4 𝜋 𝜀0
 
𝑞 

𝑟
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2.6.2. The calculation of the electrical field from the electrical potential: 

We have seen before that the relation between the difference of potential and the electrical field 

is: 

𝑑𝑉 =  − �⃗�  𝑑𝑙  

If we suppose that the charge q is moving in the 3D space, therefore,  

𝑑𝑙  =  𝑑𝑥 𝑖  +  𝑑𝑦 𝑗  +  𝑑𝑧 �⃗�  

We can now obtain the relation between the electrical field and the electrical potential as 

follows: 

�⃗�   =  −∇⃗⃗  𝑉 =  −(
𝜕𝑉

𝜕𝑥
 𝑖  +  

𝜕𝑉

𝜕𝑦
 𝑗  +  

𝜕𝑉

𝜕𝑧
 �⃗� )    

Example: 

Find the relation of the electrical field if V the electrical potential given as: 

V (x, y, z) = 3xy + 2z2 

Solution: 

Using the above relation: 

�⃗�  =  3𝑦 𝑖 +  3𝑥 𝑗 +  4𝑧 �⃗�   

2.6.3. The electrical potential created from a set of electrical charges: 

If we suppose that we have n electrical charges q1, q2, q3, …, qn 

The electrical potential created from this set is the sum of the electrical potential created from 

each charge: 

𝑉𝑇  =  ∑ 𝑉𝑖

𝑛

𝑞 = 1

 

2.6.4. The electrical potential created from a continuous distribution of 

electrical charges: 

If we have a continuous distribution Q of electrical charges, the electrical potential created 

from this distribution is the integral of the electrical potential created from an infinitesimal 

charge dq. 

𝑉 =  ∫
1

4 𝜋 𝜀0
 
𝑑𝑞

𝑟
 

We return here to remind you of the importance of using electric potential in calculations 

because it is a scalar quantity compared to the electric field, which is a vector quantity. After 
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finding the electric potential (EP) relationship, we can apply the gradient operator to find the 

electric field. 

The work : 

When a charge is among a configuration of charges, it experiences an electric force exerted by 

the other charges. When the charge moves, the electric force induces a work. The work is a is 

a transfer of energy by means of a force. For a constant force that is exerted by an agent on a 

particle that has a rectilinear displacement dl, the work is given by: 

𝑊 =  𝐹 𝑑𝑙 𝑐𝑜𝑠 (𝜃) 

The work is positive if 𝜃 is between 0 and 90° and negative if theta is between 90 and 180° 

2.7. Electric dipole: 

An electric dipole is an electrostatic system consisting of two equal and opposite electric 

charges, +q and -q, separated by a small distance d. Although the electric dipole has zero 

charge, it creates an electric field between the two charges and possesses potential energy 

when placed in an external electric field due to the separation of its charges. 

 

Figure 21 Electric dipole 

The key characteristic of an electric dipole is its electric dipole moment, denoted by the vector 

𝑝 . The magnitude of the dipole moment is given by the product of the charge magnitude and 

the separation distance: 

𝑝 = 𝑞 𝑑  

2.8. The flux of the electrical field: 

Electric flux is a measure of the total electric field �⃗�  passing through a given surface 𝑆 . The 

mathematical expression of the electric field is defined as the integral of the vector product of 

the electric field and an infinitesimal surface element vector of the surface S (𝑑𝑆⃗⃗⃗⃗ ). 
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Φ𝐸 = ∮�⃗�  𝑑𝑆⃗⃗⃗⃗ = 𝐸 𝑑𝑆 cos(𝜃) 

Here, E is the electrical field, dS is an infinitesimal surface, θ is the angle between the vector 

�⃗� , and the vector 𝑑𝑆⃗⃗⃗⃗ , remember that the vector 𝑑𝑆⃗⃗⃗⃗  is perpendicular to dS (the infinitesimal 

surface element ). 

If the angle θ is zero (that means the electrical field is in the same direction of the dS) the 

electrical field become 1 (that means the electrical field is in the opposite direction to dS), the 

electrical flux becomes -1. 

If the angle is pi/2 the that means the electrical field is perpendicular to the dS, the electrical 

flux becomes nil. 

Example:  

Calculate the electric flux through a sphere that has a radius of r = 2 m and carries a charge of 

q = 4 µC at the center of the sphere. 

Solution: 

 

Figure 22 Electric field created from a point charge 

The electric field vector is parallel to the surface vector, then: 

Φ𝐸 = ∯�⃗�  𝑑𝑆 = 𝐸 ∯𝑑𝑆  

So : 

 

𝑆 = ∯𝑑𝑆 =  4𝜋𝑟2 

Φ𝐸 = 
𝑘 𝑞

𝑅2
 4𝜋𝑟2 = 4 𝜋 𝑘 𝑞 =  

𝑞

𝜀0
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because   𝑘 =  
1

4𝜋𝜀0
 

2.9. Gauss theory: 

Gauss's law, or Gauss's theorem, is a fundamental principle of classical electromagnetism, 

providing a close relationship between electric fields and the distribution of electric charges. 

The beginnings of Gauss's law are associated with the German mathematician and physicist 

Carl Friedrich Gauss (1777–1855). Gauss formulated this law in 1835, during a period that 

witnessed many scientific breakthroughs in the fields of electricity and magnetism. Although 

the law itself was not widely known at that time, it represented one of the pillars of classical 

physics when the great scientist Charles Maskwell incorporated it into his famous equations in 

1861. Maxwell's equations combined the concepts of electricity and magnetism, and Gauss's 

law was one of its pillars. This new framework remained robust until the beginning of the 

twentieth century when scientific developments in the quantum energy field led to the 

emergence of a new scientific revolution: quantum mechanics, which radically reshaped our 

understanding of physics. 

2.9.1. Concept of Electric Flux: 

During its work on calculating electric fields, Carl Friedrich Gauss needed to develop a new 

concept, called now the electric flux. Electric flux is a fundamental concept in 

electromagnetism that represents the measurement of the electric field passing through a given 

surface. This concept was already known in other fields of physics, such as fluid dynamics, 

where it was used to calculate the amount of flux through surfaces. However, Gauss was the 

first to apply it to electricity in a precise quantitative manner. 

For a small area element dA, the electric flux dΦE is defined as: 

𝑑∅𝐸  =  �⃗�  𝑑𝐴  

�⃗� : The electric field vector. 

𝑑𝐴  : The vector area element, with magnitude equal to the area and direction normal to the 

surface. 

For a closed surface, the total electrical flux passing through the area A is given as: 

∅𝐸  =  ∫ �⃗�  𝑑𝐴  
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2.9.2. Units 

Electric flux is a scalar quantity with units of volt-meters (V·m) or newton-meters squared per 

coulomb (N·m²/C). 

Physical Interpretation of the mathematical expression of the electric flux: 

If the electrical field �⃗�  is perpendicular to the surface A, the electrical flux becomes the product 

of the magnitude of the electrical field and the surface area of A. In this case, the electrical flux 

is maximal. If the electrical field �⃗�  is parallel to the surface A, the electrical flux becomes nil. 

For a closed surface, flux is positive when field lines exit the surface and negative when they 

enter. 

2.9.3. Applications of Gauss's Law: 

Gauss's law is very effective for calculating electric fields arising from highly symmetric 

geometric structures, such as spherical, cylindrical, or plane objects, or even systems with 

linear charge distributions, such as a piece of iron of negligible thickness. 

How do we use the Gauss theory? 

Step 1: Identify the Symmetry of the Charge Distribution 

To apply Gauss’s Law effectively, the charge distribution should have high symmetry. 

Step 2: Choose a Gaussian Surface 

The Gaussian surface should be closed (enclose charge completely), and align with the 

symmetry of the charge distribution. 

Step 3: Evaluate the Flux Integral 

If the electrical field is constant over the Gauss surface, then the Gauss law becomes, 

∅𝐸  =  ∫ �⃗�  𝑑𝐴  

Step 4: Compute the Enclosed Charge Qenc  

If the charge is a point charge, 𝑄enc = 𝑞. 

If the charge is distributed, integrate over volume or surface ... etc 

Step 5: Solve for E 

After substituting Qenc, solve for E. 

Examples of application of Gauss' theory: 

1- A sphere of radius R carries a uniform volume charge density ρ. Find the electric field: 

(a) Inside the sphere (r < R) 

(b) Outside the sphere (r > R) 

Using Gauss theory 
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∮ 𝐸 ⋅ 𝑑𝐴 = 𝜀0𝑄 

(a) Inside the sphere (r<R): 

Consider a Gaussian sphere of radius r.  

The enclosed charge is: 

𝑄 = ρ𝑉𝑟 

So, 

 

From Gauss’ law: 

 

Therefore: 

 

(b) Outside the sphere (r>R): 

The total charge enclosed is: 

 

By Gauss’s Law: 

 

 

Electric Field of a Uniformly Charged Cylinder 

A long cylinder of radius R has a uniform volume charge density ρ. Find the electric field: 

(a) Inside the cylinder (r < R) 

(b) Outside the cylinder (r > R) 

Using Gauss’s Law, we choose a cylindrical Gaussian surface of radius r and length L: 

(a) Inside the cylinder (r < R) 

The charge enclosed is: 

 



45 
 

 

Applying Gauss’s Law: 

 

Solving for E: 

 

(b) Outside the cylinder (r>R) 

Total charge enclosed is 

 

So, 

 

 

Which decreases as 1/r 

Electric Field of a Charged Spherical Shell 

A thin spherical shell of radius R carries a surface charge density σ. Find the electric field: 

(a) Inside the shell (r < R) 

(b) Outside the shell (r > R) 

Solution: 

Using Gauss’s Law: 

(a) Inside the shell (r < R) 

Since there is no enclosed charge, 

 

(b) Outside the shell (r > R) 

Total charge is  

 

Using a Gaussian sphere of radius r, 
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Electric Field of a Uniformly Charged Cylindrical Shell: 

A long thin cylindrical shell of radius R carries a surface charge density σ.  

Find the electric field: 

(a) Inside the shell (r < R) 

(b) Outside the shell (r > R) 

Solution 

Using Gauss’s Law, take a cylindrical Gaussian surface of radius r and length L: 

(a) Inside the shell (r<R) 

Since there is no enclosed charge, 

E = 0 

(b) Outside the shell  

The total charge enclosed is 

 

Applying Gauss’s Law: 

 

Which behaves as 1/r. 

2.10. Conductors at equilibrium: 

In electrostatic equilibrium, electrical conductors exhibit a set of distinct properties that govern 

the behavior of electric fields, charge distribution, and electrostatic potentials. These principles, 

reflected in Gauss's law and charge conservation, form the basis of technologies ranging from 

Faraday cages to lightning protection systems. This section of the course provides theoretical 

frameworks, experimental verifications, and practical applications to illustrate the equilibrium 

state of conductors. 

Definition: Let us remember first that a conductor is an object, generally metallic, inside which 

electric charges, such as free electrons or other kinds of charges, can move easily under the 

effect of an electric field, even of low intensity. This electrical conductor is said to be in 

electrostatic equilibrium when no net movement of charges (usually electrons) occurs within 
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it. The free electrons redistribute themselves until they cancel any electric field within the 

material. 

Properties of a conductor in equilibrium: 

1- Zero internal electric field. 

2- Based on the law, �⃗�  =  −∇⃗⃗  𝑉, the potential is constant inside the conductor and, by 

continuity, on its surface. In other words, a conductor in equilibrium is an equipotential 

surface. 

3- Since the number of protons is equal to the number of electrons, the total charge inside 

the conductor is zero. 

4- External electrical field perpendicular to the surface. 

2.10.1. Electrostatic pressure: 

For a conductor with surface charge density σ, the electric field on the surface of the conductor 

is given by: 

𝐸surface =
𝜎

𝜀0
 

As we mentioned before, inside the conductor, the electric field is zero. 

Let us now consider a small charge element dq = σ dS, the force dF acting on it is the product 

of dq and the effective electric field it experiences. it is clear that the infinitesimal charge cannot 

exert a net force on itself; therefore, the effective field is half the total surface field: 

𝐸effective =
𝜎

2𝜀0
 

Thus: 

𝑑𝐹 =  𝑑𝑞 𝐸effective = 𝜎 𝑑𝑠
𝜎

2𝜀0
 =  

𝜎2

2𝜀0
𝑑𝑠 

The pressure becomes: 

𝑃 =  
𝑑𝐹

𝑑𝑠
 =  

𝜎2

2𝜀0
 =  

𝑞2

2𝜀0𝑠2
 = 𝜎 𝐸effective 

Mechanical Stress: Electrostatic pressure mimics tensile stress in materials, attempting to 

expand the conductor’s surface. 

Discontinuity in Field: The abrupt change in electric field at the surface (from outside) creates 

a net outward force. 

Examples 

Charged Spherical Conductor 

For a sphere with charge Q and radius R: 
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𝑃 =  
𝜎2

2𝜀0
 =  

𝑄2

32 𝜋2 𝜀0 R
4
 
 

This pressure causes mechanical stress, potentially deforming the sphere if structural strength 

is exceeded. 

2.10.2. Capacitance of a conductor: 

Capacitance C measures the charge stored per unit of potential: 

𝐶 =  
𝑄

𝑉
 

Where Q is the charge and V is the volume. This capacitance depends only on the geometry of 

the conductor. 

Capacitance C is a positive quantity; the unit of this quantity is called the Farad (F). The farad 

is thus defined as the capacitance of an insulated conductor whose potential is 1 volt when it 

receives a charge of 1 coulomb. 

The farad is a very large unit; sub-multiples are commonly used: 

Microfarad: 1µF = 10-6 F, nano-farad: 1nF = 10-9F, picofarad: 1 pF = 10-12F. 

2.10.3. Electrostatic Influence Effect:  

The electrostatic effect is the redistribution of electrical charges on an electrical conductor 

under the influence of an external electric field. These interactions are fundamental to 

understanding many electrical systems. If we place a neutral object A in an external electrical 

field created by object B, the charges inside object A will be redistributed. 

 

Figure 23 Electrostatic influence effect 

How does this happen? 

When a piece of macroscopic insulating material is placed in an external electric field (which 

may be generated by an electric current or a conductor), the atoms and molecules that make up 

this material interact with this electric field. There are two basic mechanisms for this response 

at the atomic level: 

Polar Materials: These materials are composed of inherently polar molecules (such as water), 

due to the non-uniform distribution of electric charges. In the absence of external electric fields, 
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the orientations of these dipoles are random, and therefore the total dipole moment of the 

material is zero. When an external electric field is applied, the torque acting on each dipole 

causes it to tend to align in the direction of the external electric field. This alignment does not 

occur totally due to the random thermal motion of the molecules, but there is a tendency, or 

average, alignment in the direction of the field. 

Nonpolar molecular materials: These materials consist of molecules that do not have permanent 

dipoles and have a more homogeneous charge distribution within their molecules. When an 

external electric field is applied, a relative displacement occurs between the center of positive 

charge (the nucleus) and the center of negative charge (the electron cloud) within each atom or 

molecule, leading to the induction of a temporary electric dipole that points in the same 

direction as the external field. 

The effect of an external electric field on a large number of atoms or molecules that make the 

material leads to a phenomenon at the macroscopic level known as electric polarization, 

symbolized as: 

𝑃 =  
∑ 𝑝𝑖

∑𝑉
 

Where, 𝑝𝑖 is the dipole moment of each molecule or atom in the substance. The summation is 

done over a large number of molecules or atoms present within the atomic volume in a small 

volume (ΔV). This volume is small macroscopically but very large at the microscopic level, 

containing a huge number of atoms or molecules. 

2.10.4. Capacitor: 

A capacitor is an electronic component that stores electrical energy in an electric field by 

accumulating positive and negative charges on two conductive objects that are generally plates 

elements separated by an insulating dielectric material. Its ability to store charge, quantified as 

capacitance, enables critical functions in electronic circuits, such as energy buffering, noise 

filtering, and timing control. 

How does the capacitor work 

Charge Storage Mechanism: 

When a voltage is applied between the plates of the capacitor, electrons accumulate on one 

plate (negative charge), while the other plate loses electrons (positive charge). The dielectric 

prevents direct current flow between the two plates, which allows the charge separation. For 

example, the capacitor can be connected to a battery, which causes a transient current until the 

voltage across the capacitor matches the battery voltage. 
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Figure 24 Capacitor 

 

Electric Field Formation: 

The charge separation between the two plates creates an electric field, storing energy as: 

𝐸 =  
1

2
𝐶 𝑉2  

Where V is the voltage and C is the capacity of the capacitor. 

The capacity of the capacitor: 

The capacitance of a capacitor is defined as: 

𝐶 =  
𝑄

∆𝑉
 

Here, Q is the charge carried by each of the plates (+Q for one and -Q for the other). 

Capacitance is a constant specific to each capacitor. Its value depends on the shape, dimensions, 

and relative position of the two conductors’ nature that constitute it, and the nature of the 

dielectric element. 

The capacity of a plane capacitor: 

Consider a plane capacitor, consisting of two plane conductors, carrying charges +Q and -Q 

respectively, with surfaces S, separated by a distance e. The distance e is very small compared 

to the dimensions of the two plane conductors. Due to the symmetry of the distribution, the 

electric field between the plates of this capacitor is uniform, and it is given by: 

𝐸 =  
𝜎

𝜀0
 

The distribution is uniform; we have: 

𝜎 =  
𝑄

𝑆
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Figure 25 Plane capacitor 

The relation of the capacity of the capacitor becomes: 

𝐶 =  
𝑄

∆𝑉
 =  

𝜎 𝑆

𝐸 𝑒
 =  

𝜎 𝑆
𝜎
𝜀0

 𝑒
 =  

𝑆 𝜀0

𝑒
 

Capacity of a spherical capacitor: 

A spherical capacitor (Figure 26) consists of two concentric conducting spheres. The first, for 

example, of radius R1, carries a positive charge of +Q and its potential is V1; the second, of 

radius R2 (R1 < R2), carries a charge of -Q and its potential is V2.  

 

 

Figure 26 Spherical capacitor 



52 
 

 

 

 

Applying Gauss's theorem, we obtain the electric field between the plates of such a capacitor: 

�⃗�  =  𝑘 
𝑄

𝑟2
 𝑢𝑟⃗⃗⃗⃗  

 

We know that,  

𝐸 =  − 
𝑑𝑉

𝑑𝑟
 

Therefore, 

𝑉 =  ∫ −𝑑𝑉 =  𝑘 𝑄 ∫
𝑑𝑟

𝑟2

𝑅2

𝑅1

𝑉2

𝑉1

 

Therefore, the capacity of the capacitor becomes: 

𝐶 =  4 𝜋 𝜀0  
𝑅1 𝑅2

𝑅2 − 𝑅1
 

2.10.5. Grouping of the capacitors: 

Series Connection: 

Consider the group of N capacitors in series shown in the following figure. 

 

Figure 27 Grouping of capacitors "series connection" 

When a potential difference AV = V0 - Vn is applied between the endpoints of the set of 

capacitors, the left-hand plate of the first capacitor will acquire a charge Q.  

The total potential difference across the terminals of the set of capacitors can then be simply 

written: 

∆𝑉 =  (𝑉0  −  𝑉1)  +  (𝑉1  − 𝑉2)   + (𝑉2  −  𝑉3)  + . . . . + (𝑉𝑛−1  −  𝑉𝑛)   

 

∆𝑉  =  
𝑄

𝐶1
 + . . . . + 

𝑄

𝐶𝑛
 =  𝑄 ∑

1

𝐶𝑖

𝑛

𝑖 = 1

 

Therefore: 



53 
 

 

1

𝐶𝑒𝑞
 =  ∑

1

𝐶𝑖

𝑛

𝑖 = 1

  

 

Parallel Association: 

Let there be N capacitors, placed in parallel, with the same potential difference V. 

Let Qi and Ci are the electric charge and capacitance of the ith capacitor, and we have: 

𝑄𝑖  =  𝐶𝑖 𝑉 

The total electric charge carried by all the capacitors is then given by: 

 

𝑄 =  ∑ 𝑄𝑖  =  𝑉 ∑ 𝐶𝑖

𝑛

𝑖 = 1

𝑛

𝑖 = 1

 

So: 

𝐶𝑒𝑞  =  ∑ 𝐶𝑖

𝑛

𝑖 = 1
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3. Electrokinetic 

3.1 Introduction: 

Our lives today depend primarily on the use of electricity to operate many electronic and 

electrical devices. Devices such as heaters, televisions, and washing machines cannot function 

without an electric current, or, more simply, without the movement of electric charges. In 

scientific and academic fields, the movement of this charge, plays a fundamental role in our 

understanding of the behavior of the materials around us and our biological nature. In biology, 

for example, the human nervous system consists of electrical circuits that transmit commands 

from the brain to the rest of the organs through the movement of charged particles like electrons 

or ions. 

In classical physics, the science that studies the movement of these electric charges is called 

electrokinetics. Electrokinetic is a set of phenomena resulting from the movement of charged 

particles in conductor elements, particularly the electrical circuits. In this chapter we will study 

the fundamental principles and laws that govern the behavior of the electrical current, voltages, 

and charges in the electrical circuit. 

3.2 Electrical conductor: 

At their core, conductors are materials that allow the free movement of electric charges. Free 

movement is relative because electric charges generally remain subject to the influences of 

their environment, such as the electrical potential of atoms, and the vibrations of crystals 

(temperature effect). This ability is due to "loosely bound" valence bond electrons in metals or 

mobile charge carriers in solutions, such as ionic conductors.  When an electric potential 

difference is applied, these electrons begin to move, creating an electric current. 

Examples of Conductors: 

1. Metals like copper, silver, gold, and aluminum are the best conductors due to relatively 

free-moving electrons. 

2. Plasma, which is a state of matter where ions and electrons move freely. 

3. Ionic solutions like salt solutions conduct electricity through ion movement. 

4. Graphene and carbon nanotubes are new 2D materials with excellent conductors at the 

nanoscale. 
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Figure 28 Electric conductor 

3.3. The origin of the electrical current: 

Consider two conductors, A and B, initially in electrostatic equilibrium. Conductor A carries a 

charge QA, and conductor B carries a charge QB. Let's say that the charge QA is greater than the 

charge QB. The presence of these two charges creates two electric potentials in A and B, and 

also creates an electric field between these two charges, which we call E. 

When conductor A is connected to conductor B via an electrically conductive wire, for 

example, copper, the electrostatic equilibrium is disturbed, and the electric charges move under 

the influence of an electric force resulting from the superposition of electric fields from each 

of the conductors. The movement of electrons continues from the two conductors until a new 

state of electrical equilibrium is reached in a conductor, this time composed of both conductors. 

The movement of electrons over time is called electric current, and it is a very important 

physical quantity in understanding the behavior of electrokinetic systems. This resulting 

current is temporary, meaning it will disappear once a state of electrical equilibrium is reached 

see Figure 29. 

In practical applications of electricity, we require permanent electric currents. Therefore, it is 

necessary to maintain an imbalance between conductors A and B. This can be achieved using 

batteries or electric generators. 
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Figure 29 The origin of the electric current 

 

3.4. Electrical current: 

The electrical current is defined as the flow of electric charges through a conductor over time. 

The electrical current has a direction, and it is measured in amperes (A), "a fundamental unit 

in SI", where 1 ampere is defined as 1 coulomb of charge passing through a point in a circuit 

every second. 

From a historical point of view,  it is extremely difficult to pinpoint the exact time when the 

concept of electric current developed. The works of scientists such as William Gilbert in his 

book "De Magnete" or Benjamin Franklin on lightning, while studying static electricity, laid 

the groundwork for a deeper understanding of the movement of electric charges, thus 

establishing the concept of electric current.  In this lesson, we will argue that the concept of 

electric current was most clearly defined when Alessandro Volta invented the voltaic pile. This 

device allowed for a continuous flow of electric charge instead of intermittent discharges of 

static electricity, which represented a qualitative leap in the applications of electricity and in 

our understanding of the nature of electricity. Based on Volta's work and "battery", many 

scientists in the following years studied the electrokinetic, including the brilliant scientist 

Ampere, who conducted a wide range of experiments on both electricity and magnetism and 

the relationship between them.   In these experiments, Ampere introduced the concept of electric 

current in all its dimensions. He considered it a continuous flow of electricity and demonstrated 



58 
 

 

through his experiments that it has a definite direction. He also demonstrated through his law 

of force and of electric circuits that electric current is a measurable quantity.  In fact, we can 

say that Ampere, through his work, introduced the concept of electric current in the same 

concept used today. 

3.4.1. Types of electrical current: 

1. Direct current: Direct current (DC), is an electric current in which electric charges 

(mostly electrons) flow in one direction. This current remains constant over time. This 

electrical current can be generated by batteries or DC generator. 

2. Alternating Current: Alternating current (AC), is an electric current where the flow 

of electric charge reverses direction periodically.  

3.4.2. Electrical Current Intensity: 

Current intensity, is a measure of the flow of electric charge through an electrical conductor 

per unit time. It represents the total amount of electric charge passing through a point in the 

conductor every second. It is symbolized by the symbol I and measured in amperes (A), which 

is equal to coulomb per second. 

The mathematical definition of this quantity is given by the following relationship: 

𝐼 =
𝑄

𝑡
 

Q is the electric charge (in coulombs, C), 

t is time (in seconds, s). 

Rq: The ampere (A) is a fundamental unit in the SI. 

3.4.3. The direction of the electrical current: 

Electric current flows in the direction opposite to the negative charges, that is, in the direction 

of the electric field, from the positive pole to the negative pole. This is the conventional 

direction of current, which was chosen by Ampere at the beginning of the nineteenth century 
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Figure 30 The direction of the electric current 

3.5. Ohm law: 

Ohm's law is one of the most famous laws of electromagnetism. It was published by the German 

physicist Georg Simon Ohm in 1827 after conducting numerous experiments using voltaic 

batteries to study the behavior of electric potential in circuits. The law states that electric 

potential increases with the linear increase of current and resistance. The mathematical relation 

of this law is: 

 𝑉 = 𝑅𝐼 

V is the voltage (potential), R is the resistance, and I is the current. 

3.6. Density of Current: 

We consider a conductor of section dS as shown in Figure 31. 

 

Figure 31 The movement of electric charge 

 

The quantity of charge dq, which crosses the section dS perpendicular to the axis of the flow 

tube for a time dt, is: 

𝑑𝑞 = 𝜌 𝑑𝑉 =  𝜌 𝑣 𝑑𝑡 𝑑𝑆 

In our case, both the velocity and the direction vector are parallel. In the case where these two 

quantities are no longer parallel, this expression becomes:  

𝑑𝑞 = 𝜌 𝑑𝑉 =  𝜌 𝑣 ⃗⃗⃗  𝑑𝑆⃗⃗⃗⃗  𝑑𝑡 
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We now defined the vector 𝑗 ⃗⃗ : 

𝑗 ⃗⃗ =  𝜌 𝑣 ⃗⃗⃗   

This vector, called the density of current vector, is the amount of electric current flowing per 

unit area of a conductor’s cross-section (surface). The unit of this quantity is A/m2. 

From the expression of the infinitesimal quantity of charge, we can rewrite the expression of 

the density of current as: 

𝑑𝑞

𝑑𝑡
=  𝜌 𝑣 ⃗⃗⃗   𝑑𝑆⃗⃗⃗⃗ = 𝑗 ⃗⃗  𝑑𝑆⃗⃗⃗⃗  

 

Therefore,  

𝐼 =  ∫∫ 𝑗 ⃗⃗  𝑑𝑆⃗⃗⃗⃗  

The density of current is a very useful quantity in many fundamental needs, and technological 

applications, such as the design of electronic conductors and wires, where the density of current 

helps in determining the appropriate thickness of wires to avoid overheating. 

Example: 

Calculating the current density passed through a copper wire with a diameter of 2 mm carrying 

a steady current of 5 A. 

Solution: 

𝐽 =  
𝐼

𝑆
 

Therefore,  

𝐽 = 1.59 106 𝐴/𝑚2 

The relation between the electrical density and the electrical field: 

We obtain in Chapter I that the electrical potential can be obtained as: 

𝑉 =  𝑉𝐴 − 𝑉𝐵 = ∫ �⃗�  𝑑𝑙 
𝐵

𝐴

 

If the conductor is a wire with a section S, the electrical field is uniform from A to B.  

𝑉 = 𝐸 𝑙 = 𝑅 𝐼 = 𝑅 𝐽 𝑆 = 𝐸 𝑙 

Therefore, 

  𝐽 =  
𝐸 𝑙

𝑆 𝑅
 

3.7. The movement of electric charge and conductivity: 

To explain the mechanism of electrical conduction in electrical conductors, we suggest the 

following model: 



61 
 

 

Let's suppose that we have a conductor metal. We also assume that the conduction electrons in 

this metal move randomly, affected by collisions with positive ions, which cause them to lose 

speed and change direction. Between two collisions, the electron moves in a straight line. If we 

calculate the average velocity of a large number of electrons moving randomly and changing 

their speed and direction after each collision, it will be zero. Therefore, there is no electrical 

current in this metal. 

 

Figure 32 The movement of charges in a conductor  

If we applied a homogeneous external electrical field on the conductor, between two collisions, 

the electrons experience acceleration in the opposite direction of the applied electric field as 

shown in Figure 32. The acceleration 𝛼 of the electron given as: 

∑𝐹 = 𝑚 𝛼 =  𝑞 �⃗�  

𝛼 = 𝑞 
�⃗� 

𝑚
= −𝑒 

�⃗� 

𝑚
  

The velocity of the electron is given as: 

𝑣 =  𝑣 𝑡ℎ + 𝛼  𝑡 =  𝑣 𝑡ℎ − 𝑒 
�⃗⃗� 

𝑚
 𝑡  

Were 𝑣 𝑡ℎ is the random velocity due to the thermal agitation.  

We need to calculate the average velocity of the electrons. The average velocity of the thermal 

agitation is nil. The second side of the electron velocity equation is a quantity common to all 

electrons. Let τ be the average time between two collisions of an electron with a positive ion. 

Therefore, the average electron velocity is: 

𝑣𝑎⃗⃗⃗⃗ =   −𝑒 
�⃗⃗� 

𝑚
𝜏 

The average velocity is proportional to the electric field, because the factors e, τ, and m are constants. 
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Figure 33 The movement of charges in a conductor under the effect of electric field 

 We can now represent the current density as: 

𝐽 = 𝑛 𝑒2   
�⃗⃗� 

𝑚
𝜏 

From the relation between the current density and the electrical field, 𝐽 =  𝜎 �⃗� . The 

conductivity can present as: 

𝜎 =   
𝑛 𝑒2

𝑚
𝜏 

We can also present the resistivity, which is the inverse of the conductivity: 

𝜌 =  
𝑚

𝑛 𝑒2 𝜏 
 

 

The unit of resistivity is Ω. 

The values of the conductivity of some metals are given in the following table. 
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Table 1  The conductivity of some chemical elements 

Element Symbol Conductivity 

Silver Ag 6.30 107 

Copper Cu 5.96 107 

Gold Au 4.52 107 

Aluminum Al 3.77 107 

Calcium Ca 2.98 107 

Beryllium Be 2.50 107 

Magnesium Mg 2.24 107 

Rhodium Rh 2.20 107 

Sodium Na 2.10 107 

Iridium Ir 2.06 107 

Tungsten W 1.82 107 

Zinc Zn 1.69 107 

Nickel Ni 1.43 107 

Lithium Li 1.08 107 

Iron Fe 1.00 107 

Platinum Pt 9.40 106 

Palladium Pd 9.30 106 

Cobalt Co 6.00 106 

Titanium Ti 2.40 106 

Lead Pb 4.80 106 

3.8. Electrical power 

Electrical power is the rate of transferring or consuming electrical energy in a circuit. It is 

calculated as: 

Power (P) = Voltage (V) × Current (I) (the unit of electrical power is the Watt, W) 

3.9. Joule law: 

The Joule effect, also called Joule heating or resistive heating, is a phenomenon in which the 

passage of an electric current through a conductor increases the temperature of the conductor. 

As previously explained, an electric current results from the regular movement of electrical 

charges, usually electrons, within a conductor. As they move within a conductor, the electrons 

interact with the conductor's crystal lattice, as well as with impurities, leading to "collisions" 

at the microscopic level. Part of the kinetic energy of the electrons is transferred to the 
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conductor's crystal lattice through these "collisions", increasing their vibration and, 

consequently, increasing the conductor's temperature. 

The mathematical relationship for this phenomenon is given as follows: 

W = R I2 t = P t 

W is the heat energy generated over time, R is the resistance, I the applied current, and t is the 

time. 

It is clear that increasing resistance or electrical current leads to an increase in the temperature 

of an electrical conductor. Resistance is primarily created by the impediment of electron 

movement by the conductor's atoms. However, when large currents are applied to a conductor, 

this can lead to changes in the nature of the conductor and damage it due to increased 

temperature. This means that increasing the current does not necessarily mean an increase in 

temperature, but rather the destruction of the conductor. This is a common problem in modern 

technological applications, especially within the limits of currents applied to nano and micro 

conductors, which do not cause a temperature increase sufficient to change their properties. 

3.10. Electrical circuit: 

An electrical circuit is a set of conductors and electrical compounds that are connected in a 

closed loop pathway. The electrical current flows in this loop, enabling the transfer of the 

electrical energy to the electrical compounds for useful work. 

3.10.1. Electrical Circuit Elements 

Elements of an electrical circuit are electrical components that work in concert to control the 

flow of electrical current to perform specific tasks. These components differ based on their 

assigned tasks, such as providing power, directing current, consuming power, converting 

power, etc. 

Examples: 

1. Power Source: power sources, such as batteries and generators, provide the electrical 

energy needed to operate a circuit. 

2. Conductors: conductors are materials that conduct electrical current between components 

in an electrical circuit, such as wires. These wires are typically made of copper and offer low 

resistance to electrical current, reducing energy loss. 

3. Resistors: restrict the flow of current and convert electrical energy into heat. 

4. Light bulbs: convert electrical energy into light and heat. 

5. Cotors: convert electrical energy into mechanical motion. 
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6. Transistors: Act as electronic switches or amplifiers in complex circuits. 

7. Heaters: Generate heat from electrical energy. 

 

 

Figure 34 Electrical Circuit Elements 

3.10.1.a) Generators: 

An electrical generator is a device that converts energy such as mechanical energy or chemical 

energy into electrical energy through the process of electromagnetic inductions or chemical 

reactions. In the case of electromagnetic inductions, the process involves a changing magnetic 

field inducing an electric current in a conductor, enabling the generator to produce electricity. 

In the case of chemical reactions, redox reactions transfer electrons, generating electricity. Note 

here that there are other type of source energy such as, solar energy, geothermal energy, and 

nuclear energy. 

3.10.1.b) Generators types: 

DC generator:  

The DC generators create a direct current (DC), where the electric current flows in a single 

direction, and its intensity is constant. DC arises from the constant flow of electrons and is 

usually generated by batteries. The chemical reactions inside the battery create a potential 

difference. This potential difference causes electrons to flow between the negative and positive 

electrodes. As they flow, the electrons create electromagnetic fields that excite electrons in a 

heater, for example. The electrons in the heater move randomly, and their movement causes 

collisions with atoms, which leads to greater vibration of the atoms and consequently higher 

temperature (the Joule effect). 

AC generator:  
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The AC generators create an alternative current (AC), where the electric current change its 

direction as a function of time. Alternating current is generated from several sources, such as 

dams. Dams store large quantities of water, and due to the height of the dams, the water acquires 

significant potential energy. Releasing water from the dam causes it to flow at high speed, 

colliding with the dam's turbine wheels. This water transfers its kinetic energy to the turbines, 

causing them to rotate. The turbines are connected to the shaft of an electric generator, which 

consists of the rotor: a large electromagnet rotating at a constant speed (e.g., 3,000 rpm for 50 

Hz). The stator: stationary copper coils surrounding the rotor. When the rotor rotates, the 

changing magnetic field induces an alternating current in the stator coils, according to Faraday's 

law of magnetic induction. This induces the creation of an alternative electrical current. 

3.10.2. The electrometric force EMF: 

Electromotive force (EMF) is the energy provided by an electrical source, such as a battery or 

generator, per unit charge. 

Sum of Electromotive Forces: 

When we connect several generators in a circuit, the resulting electrical power depends on the 

nature of the connection, whether in series or parallel. 

Generators in Series: 

When generators are connected in series, where the positive terminal of one generator connects 

to the negative terminal of the next generator (See Figure 35), the total EMF adds algebraically 

(we take into account their polarities). 

 

Figure 35 The grouping of generators in series 

𝐸𝑇 = 𝑉𝐵 − 𝑉𝐴 = 𝑒1 + 𝑒2 + ⋯+ 𝑒𝑛 = 𝑅1𝐼 + 𝑅2 𝐼+ . . + 𝑅𝑛 𝐼 

If polarities oppose (e.g., one generator is reversed), subtract the opposing EMF:  

𝐸𝑇 = 𝑒1 − 𝑒2 + ⋯+ 𝑒𝑛 

If e2 is reversed. 

Example: Two generators with E1 = 12, internal resistance R1=1 Ω and E2 = 6 V, internal 

resistance R2=0.5 Ω in series:  

Etotal = 12 + 6 = 18 V. 

Generators in Parallel: 
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In this scenario, all positive terminals of the generators are connected together, and all 

negative terminals of the generators are connected together. 

 

Figure 36 The grouping of generator in parallel 

If the generators have the same EMF and are connected with the same polarity, the total EMF 

equals the EMF of one generator. 

𝐸𝑇 = 𝑉𝐵 − 𝑉𝐴 = 𝑒 − 
𝑅

𝑁
 𝐼 

Receiver: 

A receiver is a device that consumes electrical energy and converts it into another form of 

energy, such as light, heat, or mechanical work. 

Key differences between the generator and the receiver: 

Table 2 The difference between the generator and receiver 

Aspect Generator Receiver 

Function Produces electrical energy Consumes electrical energy 

EMF Provides EMF  
May have a counter-EMF 

(e.g., motors) 

Energy Flow 
Supplies energy to the 

circuit 

Dissipates energy from the 

circuit 

Examples Battery, generator, solar cell Resistor, bulb, motor 

Voltage 𝑉𝐵 − 𝑉𝐴 =  e – I R  𝑉𝐵 − 𝑉𝐴 = I R  

3.10.3. Electrical resistance: 

Resistance is a physical phenomenon that shows opposition to the flow of electric current. It is 

a fundamental concept in electricity and electronics and is measured in ohms (Ω). 

Resistor: 

The resistor is an electrical component designed to provide specific resistance in an electrical 

circuit. The resistor is used for different objectives such as controlling current, voltage division, 

and signal processing. 
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Resistance grouping: 

Before explaining how to calculate the sum of resistances connected in parallel or series, we 

will briefly introduce two laws. We will return to explaining these two laws in more detail in 

the following sections of this lesson. 

First law: In any electrical circuit, the sum of the intensities of the electrical currents flowing 

into a node is equal to the sum of the intensities of the electrical currents flowing out of the 

same node. 

Second law: When resistors are connected in parallel to each other. The voltage across each 

resistor is the same, and the current splits up and takes different paths through each resistor.  

Parallel grouping: 

As shown in Figure 37, the total electrical current I is the sum of the electrical currents I1, I2, 

…, In, and the voltage between each parallel resistance is the same V1 = V2 = V3 = .. = Vn.  

 

Figure 37 The parallel grouping of resistors 

Using Ohm's law, V = RT I, V1 = I1 R1, V2 = I2 R2, …, Vn = In Rn. 

V/RT=I = I1 + I2 + … + In = V1/R1 + V2/R2 + … + Vn/Rn = V (1/R1 + 1/R2 + .. + 1/RT) 

Therefore,  

1

𝑅𝑇
= ∑

1

𝑅𝑖

𝑛

𝑖=1

 

 

Series grouping: 

As shown in Figure 38. the electrical current passing through each resistance is the same, I = 

I1 = I2 ..= In. The potential inside the circuit is the sum of the voltage between each resistance. 

VT = V1 + V2 + .. + Vn. 



69 
 

 

 

Figure 38 The serie groupement of resistors 

VT = IT RT = V1 + V2 + .. + Vn =  R1 I + R2 I + .. + Rn I = I (R1 + R2 + .. +Rn) 

Therefore, RT = R1 + R2 + .. + Rn 

Example: 

Four resistances are connected to a 12.0 V battery, as shown in the following figure. R1 = 500, 

R2 = 800, R3 =1100, R4 = 400 

a. What is the power supplied by the battery? 

b. Determine the current and potential difference across each resistance. 

 

Figure 39 Description of the circuit 

3.10.4. Analysis of an electrical circuit: 

As we mentioned before, an electrical circuit is a set of conductors and electrical compounds 

that are connected in a closed loop pathway. The electrical current flows in this loop, enabling 

the transfer of electrical energy to the electrical compounds for useful work. 

Node: 

A node is a point in an electrical circuit where at least three dipoles meet. 
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Figure 40 The nodes (junctions) 

Branch: 

A branch is a portion of the circuit between two nodes. 

 

Figure 41 The branches 

Mesh: 

 a mesh is made up of a set of branches, forming a closed circuit. 

 

Figure 42 Mesh 
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3.11. Kirchhoff Laws: 

3.11.1. Law of Current Conservation: 

The algebraic sum of currents entering a node is equal to the sum of currents leaving the 

same node, see Figure 43. 

∑𝐼𝑖𝑛 = ∑𝐼𝑜𝑢𝑡 

 

 

Figure 43 Law of nodes 

This law is based on the conservation of electric charge—charge cannot accumulate at a node 

in a steady-state circuit 

3.11.2. Law of Voltage Conservation: 

The algebraic sum of all voltages (potential differences) around any closed loop in a circuit is 

zero. This includes EMFs from generators and voltage drops across receivers or resistances. 

∑𝑉𝑖 = 0

𝑛

𝑖=1
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Magnetism 
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4. Magnetism 

4.1 Introduction: 

Magnetism is one of the most important physical phenomena in our daily lives. Many 

instruments used throughout history have relied on magnetic phenomena. For example, the 

traditional compass, designed to explore the world, relied on a needle that moved in the 

direction of magnetic north. In our current world, magnetism is relied upon in many modern 

applications. For example, current computers rely on magnetism to store data, and modern 

trends in nanomedicine rely on magnetic nanoparticles to destroy cancer cells or selectively 

transport drugs. 

4.2 The Historical Aspect of Magnetism 

Observations of magnetism date back thousands of years, when humans discovered the magical 

properties of magnetite. Magnetite is composed primarily of iron oxide Fe₃O₄, which enables 

it to attract iron. This mineral was primarily used in the development of the compass in China. 

This compass, called “Si Nan”, we can consider as a primitive instrument. Meanwhile, 

thousands of kilometers away in ancient Greece, the Greek philosopher Thales of Miletus wrote 

in the 6th century BC about the miraculous ability of magnetite to attract iron. His explanations 

for this phenomenon were spiritual, as he believed that a kind of spirit resided within the stone. 
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Figure 44 Applications of magnetism 

 4.3 Magnetic field: 

Similar to the electric field, a magnetic field (also called magnetic flux density or magnetic 

induction) is defined as a mediator of the magnetic force. A magnetic field is a vector field, 

which means it has both a magnitude and a direction, and is presented as �⃗� . In classical physics, 

the magnetic field is generated by the movement of electrical charge (current in a wire). 

However, the magnetic field can also be generated by magnetic materials like ferromagnetic 

materials (the ferromagnetic behavior cannot be described in classical physics), and the 

intrinsic magnetic moment of particles, called spin.  

A magnet or an electrical field creates a magnetic field around itself. If an object is placed in 

this field, it experiences a magnetic force. The magnetic field can be presented by its magnetic 

field lines, similarly to the case of the electrical field. The magnetic field lines create complete 

loops around current sources or magnets, never beginning or ending at a point (See Figure 45). 
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Figure 45 Magnetic field lines 

Magnetic field lines possess the following characteristics: 

1. The magnetic field is always tangent to the field lines. 

2. The magnetic field table is directly proportional to the field line density. 

3. The magnetic field lines originate from the north pole of the magnet and move to the 

south pole of the magnet. 

4. The magnetic field lines never intersect. 

4.4 Supposition principle: 

The superposition principle of magnetic fields asserts that the cumulative magnetic field at a 

given site M, generated by several magnetic fields �⃗� 1, �⃗� 2, … �⃗� 𝑛 (each with distinct direction 

and magnitude), is the vector sum of the individual magnetic fields from each source at that 

location. 

�⃗� 𝑇 = ∑�⃗� 𝑖

𝑛

𝑖=1

 

This holds true assuming the medium is linear and the sources are independent. 
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4.5. Earth's magnetic field  

Earth's magnetic field is a geomagnetic field 

created by molten iron currents in its outer core of 

the earth. This magnetic field extends from the 

planet's interior to 100,000 km from the planet's 

center. Also, the Earth's magnetic field has north 

and south magnetic poles, shielding Earth from 

solar wind. These dipoles are not fixed; they move 

slowly. Figure 46. presents the movement of the 

north dipole of Earth’s magnetic field from 1500 

to 2024(Alexander, 2025).  

 

 

 

 

 

 

4.6. The magnetic field produced by 

a long wire: 

In 1820, Danish physicist Hans Christian Ørsted made a very important discovery while 

studying electric currents passing through conductive wires. An electric current passing 

through a conductive wire causes a change in the direction of a magnetic compass needle 

placed nearby. This may be one of the first observations linking electricity and magnetism. 

Let's take the following example: 

A group of magnetic needles is distributed around an electrically conducting wire, see Figure 

47. When no electric current is applied to the wire, the needles do not change their direction. 

When an electric current is applied, the magnetic needles deflect due to the formation of a 

magnetic field around the wire. 

The magnetic field produced by the wire is tangent to a circle centered on the wire, and the 

direction of the magnetic field is obtained using the right-hand rule. 

 

 

 

 

Figure  46  Earth's magnetic field 

 

 



77 
 

 

 

Figure 47 The effect of electric field on needles 

 

4.6.1. The unit of the magnetic field: 

In the IS system, the magnetic field is measured in tesla (T). 

4.6.2. The right-hand rule: 

For a long wire carrying a direct current i, the magnetic field is tangent to a circle centered on 

the wire. The direction is that indicated by the fingers of the right hand when the thumb is 

placed in the direction of the current. 

4.6. The magnetic force: 

Magnetic force is one of the fundamental concepts in physics and a fundamental component of 

the electromagnetic force, which is one of the four fundamental forces in nature. This force 

arises from the interaction between the magnetic fields and moving electric charges. When an 

electrical charge moves, it generates a magnetic field. This magnetic field interacts with other 

moving electrical charges, which result in the creation of a magnetic force. This interaction is 

responsible for a diverse range of phenomena, from the ordinary attraction of magnets to iron 

to the complex functioning of spintronic devices such as solid-state drives (SSDs). 

Similarly to the magnetic field, the electrical force is inherently a vector quantity, possessing 

both magnitude and direction.  Due to its vector nature, magnetic force also depends on its 

direction relative to the electric charge and the direction of the magnetic field. 

Effect of a magnetic field on the movement of an electric charge: Consider a particle with a 

charge of q moving at a speed v. We place an electrical current close to the particle. Due to both 

the electrical field �⃗�  and the magnetic field �⃗� , the particle experiences a magnetic force that 

depends on the charge q and the magnetic field, and the particle's speed v. The Dutch physicist 

Hendrik Lorentz gives the expression for the force exerted on this particle as follows: 

𝐹 = 𝑞 (�⃗� + 𝑣  ×  �⃗�  ) 
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In the presence of only the magnetic field (let say that we have a magnet close to the particle), 

the Lorentz force becomes: 

𝐹 = 𝑞 (𝑣  ×  �⃗�  ) 

 

This magnetic force possesses the following characteristics: 

1. The magnetic force is zero if the velocity is zero or if the velocity has the same 

direction as the magnetic field. 

2. The modulus of the force is: 

𝐹 = |𝑞| 𝑣  𝐵 sin (𝜃) 

Where 𝜃 is the angle between the vector of the particle velocity and the magnetic field 

3. The force is perpendicular to the plane formed by the vectors 𝑣  and �⃗� . 

4. The direction of the magnetic force is obtained by the right-hand rule. The direction 

of the force is the same as the thumb in the case of a positive charge, and it is opposite 

to the direction of the thumb in the case of a negative charge. 

4.6.1. The Laplace force: 

The Laplace force is a magnetic force that arises from the Lorentz force. Let's suppose we have 

a conductive wire of length L and cross-sectional area A, carrying a current I. The electrical 

current is due to the movement of charge carriers, for example, electrons with an average drift 

velocity v. Let's take the number of charge carriers per unit volume to be n, and each carrier 

has a charge q. We applied a magnetic field on this wire. 

The total number of electrical charges in the conductor is N = n A L. Also, the total magnetic 

force on all these electrical charges can be obtained using the Lorentz law as: 

𝐹 = 𝑁 (𝑞 𝐹 × �⃗� ) = 𝑛 𝐴 𝐿 (𝑞 𝑣 × �⃗� )  

The current density expression is: 

𝐽 = 𝑛 𝑞 𝑣   

So,  

𝐹 = 𝐴𝐿 (𝐽  × �⃗� )  

Therefore: 

𝐹 = 𝐼 (�⃗�  × �⃗� )  
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Figure 48 The movement of the electric charges 

This equation represents the Laplace force, which is the total magnetic force on a current-

carrying conductor. 

4.7. Hall effect: 

The Hall effect(Chien, 2013) is a phenomenon widely used in modern physics to study the 

properties of materials or for use as a magnetic sensor. This effect is observed when a current-

carrying conductor is placed in an external magnetic field, resulting in a voltage difference 

perpendicular to the current. 

Consider the following figure, which shows a conductive metal piece in which an electric 

current is applied in the direction of the x-axis, and a magnetic field in z-axis. Electrons move 

along the x-axis with a velocity 𝑣 . The magnetic field perpendicular to the metal piece causes 

the electrons to experience a magnetic force, the Lorentz force. 

𝐹 = 𝑞 (𝑣  ×  �⃗�  ) 

Under the influence of this force, the electrons are deflected in the direction perpendicular to 

both the electric current and the magnetic field, resulting in a difference in the field between 

the two ends of the metal sheet along the y-axis. 

 

Figure 49 Hall effect 
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4.8. Ampère's circuital law  

Ampère's circuital law is a fundamental law in magnetism and one of Maxwell’s equations, 

which relates the integrated magnetic field around a closed loop to the electric current passing 

through the loop. We can consider this law as analogous to Gauss's law in electrostatics, “see 

the electrostatic chapter”. 

Ampère’s Law: the line integral of the magnetic field 𝐵 around a closed loop (called an 

Amperian loop) is proportional to the total electric current, the expression of the law is given 

as: 

∮ �⃗�  𝑑𝑙 = µ0 𝐼 

Here, 

�⃗�  is the magnetic field vector. 

µ0 is the magnetic permeability of the space. 

4.9. The Biot-Savart law: 

The Biot-Savart law is a fundamental principle of electromagnetism, derived experimentally 

in 1820. This law relates the magnetic field produced by a small strip of current-carrying 

conductor at a specific point in a vacuum to the electric current. This law allows for the 

calculation of magnetic fields in systems where symmetry does not allow for easy application 

of Ampere's law. Although the law was derived two centuries ago, it is still used today to 

analyze many magnetic systems, including modern spintronic sensors used to study the 

properties of nanoparticles. The law states that an electric current of intensity I passes through 

an infinitesimal element d𝑙  of an electrical conductor generates a magnetic field d�⃗�  where: 

𝑑𝐵⃗⃗⃗⃗  ⃗ =  
µ0 𝐼

4 𝜋 𝑟2
 𝑑𝑙  × 𝑢𝑟⃗⃗⃗⃗  

 

Figure 50 The magnetic field created from an infinitesimal current 
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The total magnetic field created from all the l is: 

�⃗� =
µ0 𝐼

4 𝜋 
 ∫

𝑑𝑙  × 𝑢𝑟⃗⃗⃗⃗ 

𝑟2
 

 

4.10. Magnetic dipole: 

A magnetic dipole is a simple magnetic configuration that produces a magnetic field. It can be 

visualized as either a pair of equal and opposite magnetic poles separated by a small distance 

or a closed loop of electric current. Unlike electric dipoles, magnetic monopoles do not exist 

in nature, making magnetic dipoles the primary building blocks of magnetic phenomena. 
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Problems with the solutions: 
Problem 01: 

Calculate the partial derivatives of the following functions and then give their gradients: 

𝑓(𝑥, 𝑦) = 2𝑥 + 3𝑦 + 5 

𝑔(𝑥, 𝑦) = 3 𝑥2𝑦 + 4𝑥𝑦3 + 2𝑥 − 5𝑦 + 7 

ℎ(𝑥, 𝑦) = exp(𝑥) sin(𝑦) + 𝑥2𝑦 + 3𝑦 

𝐿(𝑥, 𝑦) = ln(𝑥2 + 𝑦2) + 𝑥 exp(𝑥𝑦) +
𝑦

𝑥
 

Solution : 

1/ 

𝒇(𝒙, 𝒚) = 𝟐𝒙 + 𝟑𝒚 + 𝟓 

 

Partial Derivatives and Gradients 

∂𝑓

∂𝑥
= 2,  

∂𝑓

∂𝑦
= 3 

∇𝑓(𝑥, 𝑦) = (
∂𝑓

∂𝑥
,
∂𝑓

∂𝑦
) = (2,3) 

2/ 

 

𝒈(𝒙, 𝒚) = 𝟑 𝒙𝟐𝒚 + 𝟒𝒙𝒚𝟑 + 𝟐𝒙 − 𝟓𝒚 + 𝟕 

 

∂𝑔

∂𝑥
= 6𝑥𝑦 + 4𝑦3 + 2,  

∂𝑔

∂𝑦
= 3𝑥2 + 12𝑥𝑦2 − 5 

∇𝑔(𝑥, 𝑦) = (6𝑥𝑦 + 4𝑦3 + 2,  3𝑥2 + 12𝑥𝑦2 − 5) 

3/ 

𝒉(𝒙, 𝒚) = 𝐞𝐱𝐩(𝒙) 𝐬𝐢𝐧(𝒚) + 𝒙𝟐𝒚 + 𝟑𝒚 

∂ℎ

∂𝑥
= exp(𝑥) sin(𝑦) + 2𝑥𝑦,  

∂ℎ

∂𝑦
= exp(𝑥) cos(𝑦) + 𝑥2 + 3 

∇ℎ(𝑥, 𝑦) = (exp(𝑥) sin(𝑦) + 2𝑥𝑦,  exp(𝑥) cos(𝑦) + 𝑥2 + 3) 

∂

∂𝑥
ln(𝑥2 + 𝑦2) =

2𝑥

𝑥2 + 𝑦2
,  

∂

∂𝑦
ln(𝑥2 + 𝑦2) =

2𝑦

𝑥2 + 𝑦2
 

∂

∂𝑥
(𝑥 exp(𝑥𝑦)) = exp(𝑥𝑦) + 𝑥𝑦 exp(𝑥𝑦) ,  

∂

∂𝑦
(𝑥 exp(𝑥𝑦)) = 𝑥2 exp(𝑥𝑦) 

∂

∂𝑥
(
𝑦

𝑥
) = −

𝑦

𝑥2
,  

∂

∂𝑦
(
𝑦

𝑥
) =

1

𝑥
 

4/ 

𝑳(𝒙, 𝒚) = 𝐥𝐧(𝒙𝟐 + 𝒚𝟐) + 𝒙𝐞𝐱𝐩(𝒙𝒚) +
𝒚

𝒙
 

 

∂𝐿

∂𝑥
=

2𝑥

𝑥2 + 𝑦2
+ exp(𝑥𝑦) + 𝑥𝑦 exp(𝑥𝑦) −

𝑦

𝑥2
 

∂𝐿

∂𝑦
=

2𝑦

𝑥2 + 𝑦2
+ 𝑥2 exp(𝑥𝑦) +

1

𝑥
 

∇𝐿(𝑥, 𝑦) = (
2𝑥

𝑥2 + 𝑦2
+ exp(𝑥𝑦) + 𝑥𝑦 exp(𝑥𝑦) −

𝑦

𝑥2
,  

2𝑦

𝑥2 + 𝑦2
+ 𝑥2 exp(𝑥𝑦) +

1

𝑥
) 
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Problem 02: 

1- Give the expression for the position vector of a point M in the three coordinate systems: 

Cartesian, cylindrical (polar), and spherical. 

2- Deduce the expressions for displacement, surface elements, and volume elements in 

each coordinate system. 

3- Calculate the surface area of the portion of a circular cylinder with a radius 𝑅 = 2 m and 

height h=5m, limited by 45∘≤𝜃≤120° 

4- Find the surface area of the band cut on a sphere of radius R, defined by 𝛼≤𝜃≤𝛽 

             What does the result become if α=0 and β=π? 

5- Calculate the volume of a sphere. 

Solution: 

Vector and Geometric Calculations in Different Coordinate Systems: 

Cartesian Coordinates: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 �⃗�  
Cylindrical Coordinates: 

𝑟 = ρ 𝑈ρ
⃗⃗ ⃗⃗ + 𝑧 �⃗�  

Spherical Coordinates: 

𝑟 = 𝑟 𝑈𝑟
⃗⃗⃗⃗  

Differential Displacement, Surface and Volume Elements: 

d𝑟 = d𝑥 𝑖 + d𝑦 𝑗 + d𝑧 �⃗�  

Surface elements: d𝑆𝑥 = d𝑦 d𝑧,  d𝑆𝑦 = d𝑥 d𝑧,  d𝑆𝑧 = d𝑥 d𝑦 

Volume element: 

d𝑉 = d𝑥 d𝑦 d𝑧 

Cylindrical: 

d𝑟 = dρ 𝑈ρ
⃗⃗ ⃗⃗ + ρ dθ 𝑈θ

⃗⃗ ⃗⃗  + d𝑧 �⃗�  

Side surface: 

d𝑆ρ
⃗⃗  ⃗ = ρ dθd𝑧 𝑈𝜌

⃗⃗ ⃗⃗   

Top and bottom surfaces: 

d𝑆𝑧
⃗⃗  ⃗ = ρ dρ dθ �⃗�  

Radial surface: 

d𝑆θ
⃗⃗⃗⃗ = dρ d𝑧 𝑈𝜃

⃗⃗ ⃗⃗   
Volume element: 

d𝑉 = ρdρ dθd𝑧 

Spherical: 

d𝑟 = d𝑟 𝑈𝑟
⃗⃗⃗⃗ + 𝑟 dθ 𝑈θ

⃗⃗ ⃗⃗  + 𝑟 sin θ dφ 𝑈𝜑
⃗⃗⃗⃗  ⃗ 

d𝑆 = 𝑟2 sin θ dθ dφ 𝑈𝑟
⃗⃗⃗⃗  

Volume element: 

d𝑉 = 𝑟2 sin θ d𝑟 dθ dφ 

 

Surface Area of a Sector of a Cylinder: 

Lateral surface area element: 
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d𝑆 = 𝑅 dθd𝑧 

𝐴 = ∫ ∫ 𝑅

2π
3

θ=
π
4

dθ
5

𝑧=0

d𝑧 

= 𝑅ℎ (
2π

3
−

π

4
) 

𝐴 = 2 ⋅ 5 ⋅ (
8π − 3π

12
) = 10 ⋅

5π

12
 

=
50π

12
=

25π

6
 m2 

Surface Area of a Spherical Band 

d𝑆 = 𝑟2 sin θ dθ dφ 𝑈𝑟
⃗⃗⃗⃗  

𝐴 = ∫ ∫ 𝑅2
β

θ=α

sin θ
2π

φ=0

dθdφ 

= 2𝜋𝑅2[− cos 𝜃]𝛼
𝛽

 

𝐴 = 2𝜋𝑅2(cos 𝛼 − cos 𝛽) 

𝐴 = 2𝜋𝑅2(cos 0 − cos 𝜋) = 2𝜋𝑅2(1 − (−1)) = 4𝜋𝑅2 

Volume of a Sphere: 

𝑉 = ∫ ∫ ∫ 𝑟2
2𝜋

𝜑=0

sin 𝜃
𝜋

𝜃=0

𝑅

𝑟=0

d𝜑 d𝜃 d𝑟 

𝑉 = [
𝑟3

3
]
0

𝑅

⋅ [− cos 𝜃]0
𝜋 ⋅ [𝜑]0

2𝜋 

=
2𝑅3

3
⋅ 2𝜋 =

4𝜋𝑅3

3
 

Problem 03: 

Calculate by integration: 

1. The perimeter of a circle with radius R (figure a). 

2. The area of a disk with radius R (figure b). 

3. The volume V of a cylinder with radius R and height h (figure c). 

4. The surface area of a hemisphere with radius R (figure d). 

5. The volume V of a sphere with radius R (figure e). 

6. The volume of a cone with height h and a circular base of radius R (figure 

f). 
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Solution: 

Perimeter of a Circle: 

𝑃 = ∫ 𝑅
2𝜋

0

d𝜃 = 2𝜋𝑅 

Area of a Disk 

𝐴 = ∫ ∫ 𝑟
𝑅

𝑟=0

d𝑟
2𝜋

𝜃=0

d𝜃 

=
𝑅2

2
⋅ 2𝜋 = 𝜋𝑅2 

Volume: 

𝑉 = ∫ ∫ ∫ 𝑟
𝑅

𝑟=0

d𝑟
2𝜋

𝜃=0

d𝜃
ℎ

𝑧=0

d𝑧 

= 𝜋𝑅2ℎ 

Surface Area of a Hemisphere: 

𝐴 = ∫ ∫ 𝑅2

𝜋
2

𝜃=0

sin 𝜃
2𝜋

𝜑=0

d𝜃 d𝜑 

= 2𝜋𝑅2(0 + 1) = 2𝜋𝑅2 

Volume of a Sphere: 

𝑉 = ∫ ∫ ∫ 𝑟2
2𝜋

𝜑=0

sin 𝜃
𝜋

𝜃=0

𝑅

𝑟=0

d𝜑 d𝜃 d𝑟 
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=
4𝜋𝑅3

3
 

Volume of a Cone: 

Equation of cone: 

𝑦 =
𝑅

ℎ
𝑥,  𝑥 ∈ [0, ℎ] 

𝑉 = 𝜋 ∫ (
𝑅

ℎ
𝑥)

2

d𝑥
ℎ

0

 

=
1

3
𝜋𝑅2ℎ 

Problem 04: 

The expression of a vector �⃗�  is given as: 

�⃗� = (2𝑥𝑦 + 𝑧3)𝑖 + (𝑥2 + 2𝑦)𝑗 + (3𝑥𝑧2 − 2)�⃗�  

Prove that 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ×  �⃗� =  0⃗  
Solution: 

(𝜕𝑦𝑉𝑧 − 𝜕𝑧𝑉𝑦) = 

𝜕𝑦(3𝑥𝑧2 − 2) − 𝜕𝑧(𝑥
2 + 2𝑦) = 0 − 0 = 0 

(𝜕𝑧𝑉𝑥 − 𝜕𝑥𝑉𝑧) = 

𝜕𝑧(2𝑥𝑦 + 𝑧3) − 𝜕𝑥(3𝑥𝑧2 − 2) 

= 3𝑧2 − 3𝑧2 = 0 

(𝜕𝑥𝑉𝑦 − 𝜕𝑦𝑉𝑥) = 

𝜕𝑥(𝑥
2 + 2𝑦) − 𝜕𝑦(2𝑥𝑦 + 𝑧3) 

=  2𝑥 −  2𝑥 =  0 

Therefore, 

∇⃗⃗ × �⃗� = 0  

Problem 06: 

 Considering an orthonormal coordinate system (oxyz) with basis vectors (𝑜, 𝑖 , 𝑗 , �⃗�  ). At any 

point M(x,y,z) in space, a physical quantity f is defined as: 

f (M) = r2. 

Where 𝑟 = 𝑂𝑀 = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 �⃗� . 

1- Determine the gradient of the scalar field f.  

2- Calculate the differential df 
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3- Prove that at any point M in space, the differential df of the function f is related to the 

gradient of f elementary displacement vector 𝑑𝑟  by the relation df = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 𝑑𝑟 . 

Solution: 

The computation of the gradient in Cartesian coordinates: 

∇𝑓 =
𝜕𝑓

𝜕𝑥
𝑖 +

𝜕𝑓

𝜕𝑦
𝑗 +

𝜕𝑓

𝜕𝑧
�⃗�  

𝜕𝑓

𝜕𝑥
= 2𝑥,  

𝜕𝑓

𝜕𝑦
= 2𝑦,  

𝜕𝑓

𝜕𝑧
= 2𝑧 

Thus, the gradient is: 

∇𝑓 = 2𝑥𝑖 + 2𝑦𝑗 + 2𝑧�⃗� = 2𝑟  

The total differential of  

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 

𝑑𝑓 =  2𝑥  𝑑𝑥 +  2𝑦  𝑑𝑦 +  2𝑧  𝑑𝑧 

Problem 07: 

A circular loop of radius R and center O carries a uniformly distributed positive charge q. 

1- Determine the expression for the electric 

field E(z) at a point M located on the z'0z 

axis perpendicular to the plane of the loop. 

2- Provide the expression for the electric 

potential V(z) at point M using: 

a) Direct calculation. 

b) The expression for the electric field E(z). 

(We will assume the potential is zero at 

infinity). 

Solution: 

Electric Field and Potential of a Charged Circular Loop: 

The charge is distributed uniformly along the circumference be the linear charge density. 

d�⃗� =
1

4𝜋𝜀0
⋅

d𝑞

(𝑅2 + 𝑧2)3/2
(−𝑅 cos 𝜃  𝑖 − 𝑅 sin 𝜃  𝑗 + 𝑧 �⃗� ) 

Due to symmetry, the (𝑖 ) and (𝑗 ) components cancel. The total field is only 𝑎𝑙𝑜𝑛𝑔(�⃗� ): 

 

 M 

q>0 

O R 

z' 



88 
 

 

�⃗� (𝑧) = ∫r𝑑�⃗�  

=
1

4𝜋𝜀0
⋅

𝑧

(𝑅2 + 𝑧2)3/2
∫ 𝜆𝑅

2𝜋

0

 d𝜃 �⃗�  

�⃗� (𝑧) =
1

4𝜋𝜀0
⋅

𝑞𝑧

(𝑅2 + 𝑧2)3/2
  �⃗�  

Electric Potential V(z) by Direct Calculation: 

𝑉(𝑧) = ∫r𝑑𝑉 

= ∫
1

4𝜋𝜀0
⋅

d𝑞

√𝑅2 + 𝑧2
 

=
1

4𝜋𝜀0√𝑅2+𝑧2 ∫ 𝜆𝑅
2𝜋

0
 dq 

𝑉(𝑧) =
1

4𝜋𝜀0√𝑅2 + 𝑧2
⋅ 𝜆𝑅 ⋅ 2 

 

=
𝑞

4𝜋𝜀0√𝑅2 + 𝑧2
 

Electric Potential from the Electric Field: 

�⃗� (𝑧) = −
d𝑉

d𝑧
 �⃗�  

 ⇒  
d𝑉

d𝑧
= 

−𝐸𝑧 = −
1

4𝜋𝜀0
⋅

𝑞𝑧

(𝑅2 + 𝑧2)3/2
 

Integrate from z to ( ∞), assuming (𝑉(∞) = 0): 

𝑉(𝑧) = −∫
d𝑉

d𝑧′

∞

𝑧

 d𝑧′ 

=
𝑞

4𝜋𝜀0
∫

𝑧′

(𝑅2 + 𝑧′2)3/2

∞

𝑧

 d𝑧′ 

Make the substitution (𝑢 = 𝑅2 + 𝑧′2), so (d𝑢 = 2𝑧′d𝑧′), then: 

𝑉(𝑧) =
𝑞

4𝜋𝜀0
[−

1

√𝑅2 + 𝑧2
] 

=
𝑞

4𝜋𝜀0√𝑅2 + 𝑧2
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Problem 08: 

a) Find the expression for the electric field created in M, by a uniform linear distribution λ<0 

distributed on a length L. 

b) Calculate this field when 𝑎 = 40 cm, b=10cm, λ=−2μC/m, and L=50cm. 

Solution: 

1/ 

d𝐸 =
1

4𝜋𝜀0
⋅

𝜆 d𝑥

(𝑎 + 𝑏 − 𝑥)2
 

The field points along the ( 𝑥 )-axis (repulsive if ( 𝜆 >  0 ), attractive if ( 𝜆 <  0 )): 

𝐸 =
𝜆

4𝜋𝜀0
∫

1

(𝑎 + 𝑏 − 𝑥)2

𝐿

0

 d𝑥 

Change variables: let ( 𝑢 =  𝑎 +  𝑏 −  𝑥 ), so (d𝑢 = −d𝑥) and limits 𝑏𝑒𝑐𝑜𝑚𝑒 ( 𝑢 =  𝑎 +

 𝑏 ) 𝑡𝑜 ( 𝑢 =  𝑎 +  𝑏 −  𝐿 ) 

𝐸 =
𝜆

4𝜋𝜀0
∫

−1

𝑢2

𝑎+𝑏−𝐿

𝑎+𝑏
 d𝑢  

=
𝜆

4𝜋𝜀0
[
1

𝑢
]
𝑎+𝑏−𝐿

𝑎+𝑏

 

𝐸 =
𝜆

4𝜋𝜀0
(

1

𝑎 + 𝑏 − 𝐿
−

1

𝑎 + 𝑏
) 

2/  

𝐸 ≈ −1.76 × 106 V/m 

Problem 09: 

Consider a non-conductive wire in the shape of a 

semicircle with radius R, uniformly charged with a 

linear density λ>0 (see the figure on the side). 

Given:  

R=15cm and λ=10μC/m. 

Calculate: 

a. The total charge, Q, of the semicircle. 

b. The potential produced at the center O. 

c. The total electric field is at the center O, and represented. 

Solution: 

𝐿 =  π𝑅 

The total charge is: 
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𝑄 = 𝜆𝐿 = 𝜆𝜋𝑅 = 10 × 10−6 ⋅ 𝜋 ⋅ 0.15 = 𝑄 = 1.5𝜋 × 10−6 C ≈ 4.712 × 10−6 C  

Electric Potential at the Center: 

Since the potential due to a line charge element (d𝑞) at a distance ( 𝑅 ) is: 

d𝑉 =
1

4𝜋𝜀0
⋅
d𝑞

𝑅
=

1

4𝜋𝜀0
⋅
𝜆 dl

𝑅
 

Integrating over the whole arc: 

𝑉 =
𝜆

4𝜋𝜀0𝑅
∫ dl

𝜋𝑅

0

 

=
𝜆

4𝜋𝜀0𝑅
⋅ 𝜋𝑅 

=
𝜆

4𝜋𝜀0
⋅ 

=
𝜆

4𝜀0
 

Substitute values: 

𝑉 =
10 × 10−6

4 ⋅ 8.85 × 10−12
= 𝑉 = 282,485 V ≈ 2.82 × 105 V  

Electric Field at the Center: 

Consider a charge element (d𝑞 = 𝜆𝑅 d𝜃) located at angle (𝜃 ∈ [0, 𝜋]). 

The position vector of the element: 

𝑟 = 𝑅 cos 𝜃  𝑖̂ + 𝑅 sin 𝜃  𝑗̂ 

Magnitude of the element field: 

d�⃗� =
1

4𝜋𝜀0
⋅
d𝑞

𝑅2
⋅ �̂� 

=
1

4𝜋𝜀0
⋅
𝜆𝑅 d𝜃

𝑅2
⋅ (− cos 𝜃  𝑖̂ − sin 𝜃  𝑗̂) 

Now integrate over the semicircle: 

�⃗� = −
𝜆

4𝜋𝜀0𝑅
∫ (cos 𝜃  𝑖̂ + sin 𝜃  𝑗̂) d𝜃

𝜋

0

 

�⃗� = −
𝜆

4𝜋𝜀0𝑅
⋅ (0 𝑖̂ + 2 𝑗̂) = −

𝜆

2𝜋𝜀0𝑅
𝑗̂ 

�⃗� = −
𝜆

2𝜋𝜀0𝑅
𝑗̂ 
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𝐸 =
10 × 10−6

2𝜋 ⋅ 8.85 × 10−12 ⋅ 0.15
≈ 1.19 × 105 V/m  

Problem 10: 

A circular disk of negligible thickness bounded by 

two circles of radius R1and R2 with a constant 

surface charge density σ (see figure on the right). 

1- Calculate the electric field created by this 

charge distribution at point M(0,0,z). 

2- What is the expression of the electrical field 

when 𝑅1 tends toward zero? Plot the curve 

E(z)=f(z). What can you conclude about 

E(0)? 

 

Problem 11: 

A finite charge sheet has a surface charge density given by: 

σ = 2x(x2 + y2 + 9)3/2 C/m2 

This sheet extends in the plane z=0 within the region 0 ≤ x ≤ 2 m,  and  0 ≤ y ≤ 3 m. 

Determine the electric field created at the point S(0, 0, 3). 

 

 

 

 

 

 

 

 

 

Solution: 

We are given a surface charge density: 

𝜎(𝑥, 𝑦) =
2𝑥

(𝑥2 + 𝑦2 + 9)3/2
 (C/m2) 

The charge lies in the ( 𝑧 =  0 ) plane over the region ( 0 ≤ 𝑥 ≤ 2 ), ( 0 ≤ 𝑦 ≤ 3 ). We 

compute the electric field at point (𝑆(0,0,3)). 
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Let a surface element (d𝑆 = d𝑥 d𝑦), and consider a point (𝑃(𝑥, 𝑦, 0)) on the surface. The 

vector from ( 𝑃 ) to ( 𝑆 ) is: 

𝑟 = 𝑟𝑆⃗⃗⃗  − 𝑟𝑃⃗⃗  ⃗ = −𝑥 𝑖 ̂ − 𝑦 𝑗 ̂ + 3 �⃗� ̂ 

𝑟 = √𝑥2 + 𝑦2 + 9 

The infinitesimal electric field due to (d𝑞 = 𝜎(𝑥, 𝑦) d𝑥 d𝑦) is: 

d�⃗� =
1

4𝜋𝜀0
⋅
𝜎(𝑥, 𝑦) d𝑥 d𝑦

𝑟3
𝑟  

𝑑�⃗� =
1

4𝜋𝜀0
⋅

2𝑥

(𝑥2 + 𝑦2 + 9)3/2
⋅

d𝑥 d𝑦

(𝑥2 + 𝑦2 + 9)3/2
(−𝑥 𝑖 ̂ − 𝑦 𝑗 ̂ + 3 �⃗� ̂) 

d�⃗� =
1

4𝜋𝜀0
⋅

2𝑥

(𝑥2 + 𝑦2 + 9)3
(−𝑥 𝑖 ̂ − 𝑦 𝑗 ̂+ 3 �⃗� ̂) d𝑥 d𝑦 

Now integrate over the region: 

�⃗� =
1

4𝜋𝜀0
∬

2𝑥

(𝑥2 + 𝑦2 + 9)3
0≤𝑥≤2, 0≤𝑦≤3

(−𝑥 𝑖 ̂ − 𝑦 𝑗 ̂+ 3 �⃗� ̂) d𝑥 d𝑦 

𝐸𝑥 = −
1

4𝜋𝜀0
∬

2𝑥2

(𝑥2 + 𝑦2 + 9)3
d𝑥 d𝑦 

𝐸𝑦 = −
1

4𝜋𝜀0
∬

2𝑥𝑦

(𝑥2 + 𝑦2 + 9)3
d𝑥 d𝑦 

𝐸𝑧 = +
1

4𝜋𝜀0
∬

6𝑥

(𝑥2 + 𝑦2 + 9)3
d𝑥 d𝑦 
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Problem 12: 

Consider a hemisphere of radius 𝑅, centered at O, with a 

uniform surface charge density >0 

1-  Determine the electrostatic potential at a point 

MMM along the symmetry axis (OzOzOz) of this 

hemisphere. 

2- Derive the expression for the electric field at point 

MMM. 

3- Compute the electrostatic potential and field at 

point O. 

Problem 13: 

At every point in space, determine the electrostatic field created by an infinite plane carrying 

a uniform surface charge density σ > 0. 

Problem 14: 

The figure opposite represents three concentric 

spheres S1, S2, and S3 with respective radii R, 2R, 

and 3R. The space between S1 and S2 is charged 

with a uniform volume charge density ρ. The surface 

of sphere S3 carries a uniform surface charge density 

σ. 

1. Determine the electrostatic field at every 

point in space.  
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2. Deduce the expression for the electrostatic potential, up to a constant. 

Problem 15: 

We consider a volume charge distribution with density ρ, 

uniformly distributed between two coaxial cylinders of infinite 

length and respective radii R1 and R2. 

1. What is the Gaussian surface suitable for this system? 

Justify your answer. 

2. At every point in space, determine the electrostatic field 

created by this charged system. 

3. Deduce the expression for the electrostatic potential 

created in the different regions of space. 

Problem 16: 

A sphere with center O and radius R is charged in volume with a charge density given by: 

𝜌 (𝑟) =  𝜌0  (1 −
𝑟

𝑅
) ,𝑤ℎ𝑒𝑟𝑒 𝜌0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

1. Determine the electric field at every point in space. 

2. At which point in space does the field reach its maximum value? 

3. Represent 𝐸(𝑟). 

Problem 17: 

Consider the electrical circuit shown in the figure below, consisting of three resistors: R1=6 Ω, 

R2=4 Ω, and R3=12 Ω, powered by a real battery with an electromotive force (e.m.f.) E=20 V 

and an internal resistance r=1 Ω. 

1. Draw the equivalent resistance of the association of resistors R2 and R3 (R2,3). Find the 

equivalent resistance Req of the association of resistors R1, and R2,3. 

2. Using Ohm's Law, calculate the current intensities through resistors R1, R2,3. Then 

deduce the currents flowing through resistors R2 and R3. 

3. Calculate the potential difference VB−VA across the terminals of the battery. 

4. What energy is dissipated by the Joule effect in this circuit after 10 minutes of 

operation? 

Problem 18: 
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The electrical circuit in the figure below consists of resistors: R1 =10 Ω, R2 =20, R3=15 Ω, R4 

= 10, R5= 25 Ω, and two generators with negligible internal resistances: E1=12 V and E2=6 V. 

Identify the number of: (a) nodes, (b) branches, (c) independent loops. How many currents 

need to be determined? 

1. Establish the node and loop equations for the circuit. 

2. Determine the current intensities in each branch. 

3. Which of the two generators operates as a receiver? Justify. 

4. Assuming the potential at point A is VA=+12 V, determine the potential VC at point C. 

5. Calculate the power supplied or consumed by each dipole, then perform an energy 

balance. What do you conclude? 

Problem 19: 

In the circuit shown in the figure opposite, E = 250 V and R = 1 kΩ . 

1. Calculate the intensities of the electric currents circulating in each resistor. 

2. Deduce the value and direction of the current in the horizontal wire between points A 

and F. 

3. Determine the voltage UBD=VB−VD between points B and D. 

4. Calculate the power supplied by each electromotive force. 

Problem 20: 

Five resistors, R1=2 Ω, R2=3 Ω, R3=1 Ω, R4=5 Ω , and R5=4 Ω , are connected as shown in the 

circuit diagram opposite. 

1. Using the laws of nodes and meshes, express the currents flowing through each resistor 

as a function of the current I supplied by the source E. 

2. Determine the equivalent resistance Req of the circuit. 

Problem 21: 

A battery with an electromotive force (e.m.f.) E=6 V and negligible internal resistance powers 

the circuit shown in the figure below. When switch K is open, as shown in the figure, the 

electric current intensity measured through the battery is 1 mA. When the switch is closed in 

position 1, the current intensity through the battery is 1.2 mA. When the switch is closed in 

position 2, the current intensity through the battery is 2 mA. Calculate the values of the 

resistances R1, R2, and R3. 

Problem 22: 

Consider the electric circuit shown below, powered by a generator with an e.m.f. E=200 V, 

E=200V and five resistors R1=10 Ω, R2=40 Ω, R3=20, R4=10, R5=30 Ω. Calculate: 

1. The equivalent resistance RAB between terminals A and B. 
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2. The current intensity I delivered by the generator. 

3. The electric voltages across the terminals of each resistor. 

4. The intensities of the currents passing through each resistor. 

Problem 23: 

Four point charges are placed at the corners of a square of side length a as follows: 

𝑞1 = +𝑞 𝑎𝑡 𝐴(0,0). 

𝑞2 = +𝑞 𝑎𝑡 𝐵(𝑎, 0). 

𝑞3 = −𝑞 𝑎𝑡 𝐶(𝑎, 𝑎). 

𝑞4 = −𝑞 𝑎𝑡 𝐷(0, 𝑎). 

Let point M be located at the center of the 

square. 

1- Find the net electric field �⃗� 𝑀 at point 𝑀 

due to the four charges. 

2- Find the electrostatic potential VM at 

point M. 

3- Suppose a charge 𝑞0 is placed at point M, calculate the force acting on it. 

Problem 24: 

We consider two cylinders, one of which is charged 

volumetrically with a positive electric charge and the 

other is charged surface-wise with a positive electric 

charge. The charge densities of the two cylinders are 𝜌 

and 𝜎. 

1- What is the Gaussian surface SG suitable for 

this system? 

2- Determine, using Gauss's theorem, the 

electrostatic field created by this system at any 

point in space. 

3- Deduce the expression of the electrostatic potential created in the different regions of 

space. 

Problem 25: 
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Consider the electrical circuit composed 

of an ideal generator (no internal 

resistance) with electromotive force 𝐸 = 

10 V, and five resistors with the following 

values: 

and Ω, = 1 4RΩ, = 3 3RΩ, = 4  2RΩ, = 3 1R

Ω.= 1  5R 

1- Find the number of nodes 

(junctions), branches, and independent loops. 

2- Calculate the equivalent resistor Req of all the resistors of the circuit. 

3- Calculate the intensity of currents I1, I2, and I3. 

4- Refined the current I1 by using the node law. 

5- Calculate the electrical power Pf supplied by the generator, then the total power Pd 

dissipated in the resistors. 
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Key words 

Arabic (العربية) French (Français) English 

 Électricité Electricity الكهرباء

 Circuit électrique Electrical circuit الدارة الكهربائية

 Électron Electron الإلكترون

 Proton Proton البروتون

 Neutron Neutron النيوترون

 Résistance électrique Electrical resistance المقاومة الكهربائية

 Conducteur électrique Electrical conductor الموصل الكهربائي 

 Isolant électrique Electrical insulator العازل الكهربائي

 Champ électrique Electric field الحقل الكهربائي

 Champ magnétique Magnetic field الحقل المغناطيسي 

 Différence de potentiel Potential difference فرق الجهد 

 Flux magnétique Magnetic flux التدفق المغناطيسي 

 Force électrique Electric force القوة الكهربائية

 Force magnétique Magnetic force القوة المغناطيسية 

 Puissance électrique Electrical power القدرة الكهربائية

 Courant électrique Electric current التيار الكهربائي 

 Courant continu (DC) Direct current (DC) التيار المستمر 

 Courant alternatif (AC) Alternating current (AC) التيار المتردد 

 Charge électrique Electric charge الشحنة الكهربائية 

 Tension électrique Voltage فرق الجهد الكهربائي

 Loi d’Ohm Ohm’s law قانون أوم 

 Conductivité électrique Electrical conductivity الموصلية الكهربائية

 Polarisation électrique Electric polarization الاستقطاب الكهربائي 

 Résistance variable Variable resistance المقاومة المتغيرة

 Puissance active Active power القدرة الفعالة 

 Puissance apparente Apparent power القدرة الظاهرة 

الفعالة القدرة غير   Puissance réactive Reactive power 

 Magnétisme Magnetism المغناطيسية

 Aimant Magnet المغناطيس

 Pôle magnétique Magnetic pole القطب المغناطيسي 

 Flux magnétique Magnetic flux التدفق المغناطيسي 

 Induction magnétique Magnetic induction الحث المغناطيسي 

 Matériaux magnétiques Magnetic materials المواد المغناطيسية 
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 Effet électromagnétique Electromagnetic effect التأثير الكهرومغناطيسي

 Perméabilité magnétique Magnetic permeability النفاذية المغناطيسية

 Lignes de champ magnétique Magnetic field lines خطوط المجال المغناطيسي 

 Force magnétomotrice Magnetomotive force (MMF) القوة الدافعة المغناطيسية 

 Induction électromagnétique Electromagnetic induction الحث الكهرومغناطيسي 

 Loi de Faraday Faraday's law قانون فاراداي 

 Loi de Lenz Lenz’s law قانون لنز

 Transformateur électrique Electrical transformer المحول الكهربائي 

 Générateur électrique Electrical generator المولد الكهربائي

 Moteur électrique Electric motor المحرك الكهربائي

 Circuit magnétique Magnetic circuit الدارة المغناطيسية 

 Inductance Inductance المحاثة 

 Bobines électriques Electrical coils الملفات الكهربائية

 Fréquence électrique Electrical frequency التردد الكهربائي 

 Condensateur électrique Electrical capacitor المكثف الكهربائي 

 Capacité électrique Capacitance السعة الكهربائية

 Auto-induction Self-induction المحاثة الذاتية 

 Induction mutuelle Mutual induction المحاثة المتبادلة

 Permittivité électrique Electrical permittivity ثابت العزل الكهربائي

 Loi des courants de Kirchhoff قانون كيرشوف للتيار

Kirchhoff's Current Law 

(KCL) 

 Loi des tensions de Kirchhoff قانون كيرشوف للجهد 

Kirchhoff's Voltage Law 

(KVL) 

 Loi de Gauss pour l’électricité Gauss’s law for electricity قانون جاوس للكهرباء 

 قانون جاوس للمغناطيسية 

Loi de Gauss pour le 

magnétisme Gauss’s law for magnetism 

 Loi d'Ampère Ampère's law قانون أمبير

 Loi de Coulomb Coulomb's law قانون كولومب 

 Loi de Faraday sur l’induction Faraday’s law of induction قانون فاراداي للحث 
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