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Introduction:

This document provides a comprehensive foundation in the mathematical and physical
principles essential for understanding classical mechanics and related physical phenomena. It
covers the fundamental concepts that link mathematics and physics to describe the behavior of
the physical world. This document is an introductory reference for first-year science and
technology students in general, and engineering students in particular. This document was
written according to the curriculum for first-year science and technology students.

The first chapter of this document is devoted to reviewing the mathematical concepts students
need, in addition to studying physical quantities, their dimensions, and dimensional analysis,
which ensures the consistency of physical equations. The first chapter also discusses advanced
mathematical tools, such as functions of several variables, partial derivatives, and vector
operations, which are essential tools for modeling physical systems. Coordinate systems—
Cartesian, polar, cylindrical, and spherical—are introduced to describe positions and motions
in various contexts.

Other chapters focus on kinematics and dynamics, detailing the motion of point particles in
various frames of reference, including uniform, uniformly accelerated, sinusoidal, and
curvilinear motion. Newton's laws of motion, forces (such as friction, tension, buoyancy, and
spring forces), momentum, work, energy, and rotational dynamics are also explored, providing
a robust framework for analyzing mechanical systems.

Through clear definitions, mathematical derivations, examples, and problem sets, this
document provides readers with the tools to systematically analyze physical systems, making

it a valuable resource for the study of mechanics and related fields of physics.

Page 7 of 79



Analysis dimensional and Mathematical background

[.1 Analysis dimensional:

I.1.1 Introduction:
Human beings have realized the importance of measurements in daily life and the development

of societies since the dawn of history. This prompted ancient civilizations to develop simple
measurement systems necessary to simplify life. At first, the human being relied on parts of his
body to measure lengths and distances. For example, the cubit was a commonly used unit of
measurement. This measurement tool was first used by the Egyptians around 3000 BC. The
size of the cubit in Egyptian civilization is equal to the length between the elbow and the tip of
the middle finger. This unit of measurement played an important role in Pharaonic engineering,
especially in the construction of the pyramids. Other ancient civilizations such as the
Babylonian, Roman, and Greek civilizations developed other measurement systems such as the
foot and the inch. Despite this, the development of trade systems between peoples with the
beginning of the Industrial Revolution and the European Renaissance led to the need to unify
measurement systems between societies. The French Revolution was one of the most
significant turning points in the history of measurement systems. In 1799, France officially
adopted the metric system. The meter was then defined as one ten-millionth of the distance
from the North Pole to the Equator via Paris. This system remains the cornerstone of modern

measurement systems.

[.1.2 Physical quantity:
A physical quantity "P" is any property or characteristic of an object or a physical phenomenon

that can be measured or quantified using numbers and units. Examples include mass, length,
time, temperature, electric current, force, and volume.

1.1.2 a) Types of physical quantities:
There are two types of physical quantities:

Fundamental (base) quantities, such as length, mass, and time, are defined independently and
measured directly.
Derived quantities, these quantities are defined in terms of base quantities.

1.1.2 b) International system IS:
The International System of Units, known also by the abbreviation SI (from the French

language Systéme international d'unités), is the modern form of the metric system and the
world's most widely used system for measurement. The SI is coordinated by the International

Bureau of Weights and Measures (BIPM)(Mills et al., 2011).



The basic dimensions in IS:

Length (L) is measured by the meter.
Mass (M) is measured by the kilogram.
Time (7) is measured by the second.
Electric current (/) is measured by amper.
Temperature (6) is measured by Kelvin.

Amount of substance (N) is measured by mol.

S

Luminous intensity (J).

mpere

¢

|
A
A Secony

Figure 1 Fundamental unit

Derived Units: All other units in the SI are derived from these base units through multiplication,

division, and exponentiation.

Table 1 Example of derived units:

Derived Unit Symbol  Physical Quantity Base Unit Expression
Newton N Force kg-m/s?
Joule J Energy, Work, Heat kg-m?/s?
Watt W Power kg-m?*s?

Pascal Pa Pressure kg/m-s?
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Coulomb C Electric charge A-s
Volt \Y Electric potential kg -m%s3-A~!
Ohm Q Electrical resistance kg -m?*/s* A2
Siemens S Electrical conductance s*-A?/kg-m?
Farad F Capacitance s*A%kg-m?
Hertz Hz Frequency st

l. 1.3 Prefixes:

The SI uses prefixes (such as kilo-, milli-, micro-) to denote multiples or fractions of the base

units, making it suitable for expressing very large or very small quantities depending on the

applications.

Table 2 Prefixes
Prefix Symbol Factor Scientific Notation
tera T 1,000,000,000,000 102
giga G 1,000,000,000 10°
mega M 1,000,000 10¢
kilo k 1 10°
hecto h 100 102
deca da 10 10
(base) — 1 10°
deci d 0.1 10!
centi c 0.01 10
milli m 0.001 107
micro v 0.000001 10°¢
nano n 0.000000001 107

pico p 0.000000000001 107"
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femto f 0.000000000000001 107"

atto a 0.000000000000000001  107'®

I.1.4 Definition of some unit in IS:
The definitions of the SI units are based on fundamental constants of nature such as the speed

of light, the Planck constant, and the cesium frequency.

1.1.4. a) Meter:
The meter is the most common unit for measuring lengths; the definition of this unit has

undergone major changes since its development until the past few years. The meter was
initially defined as a unit of measurement equal to one ten-millionth of the distance from the
equator to the North Pole via Paris. The first standard meter was created in 1799 in the form of
a platinum rod. This platinum rod was changed to a platinum-iridium rod due to the fact that
this alloy was more resistant to corrosion compared to the platinum rod. With the emergence
of the quantum revolution at the beginning of the twentieth century and the development of
technological systems, there was a need to change the definition of the meter. The definition of
the meter was modified in 1960 to become as follows:

“The meter is a length equal to 1,650,763.73 times the wavelength in a vacuum of the radiation

emitted by a krypton atom when electrons transit between the atomic levels. ”(Brzhezinskii et

al., 1970)

1.1.4. b) Second
The second is the basic unit of time in the International System of Units (SI). The definition of

this unit has undergone various developments over time. Its current official definition, in effect
since 1967, is based on a fundamental property of the cesium-133 atom.

The second is defined by taking the constant numerical value of the cesium frequency, the
frequency of the unperturbed hyperfine transition in the ground state of the cesium-133 atom,
to be exactly 9,192,631,770 when expressed in hertz (Hz), which is equal to s*.

This definition means that “one second is equal to the duration of 9,192,631,770 cycles of
radiation corresponding to the transition between the two hyperfine levels of the ground state
of the cesium-133 atom”.(Gill, 2011)

1.1.4. c) Kilogram:

The kilogram is the base unit of mass in the International System of Units (SI). It is the last SI
unit to be defined by linking it to a cosmological constant, just as the second and the meter
were redefined. Since 2019, the kilogram has been defined by taking the numerical value of

Planck's constant, h, to be exactly 6.62607015 x 1073* when expressed in joule-seconds (J-s),
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which is equivalent to kg-m?-s7'. This definition links the kilogram to the fundamental constants
of nature, specifically Planck's constant, the speed of light, and the frequency of cesium.(Wood

and Bettin, 2019)

I.1.5 Dimensions:
The physical nature of a quantity P is characterized by its dimension [P].

1.1.5. a) The Dimensions of the fundamental quantities:

Table 3 The fundamental unit

Physical Quantity SI Unit Dimension Symbol
Length meter (m) L

Mass kilogram (kg) M

Time second (s) T

Electric Current ampere (A) I

Thermodynamic ]

Temperature Relvin () ¢

Amount of Substance mole (mol) N

Luminous Intensity candela (cd) J

I.1.5. b) Equation of Dimensions
The dimension of any physical quantity, whatever is fundamental or derived, [P] can be

expressed by a combination of the seven basic dimensions. This combination is called the

equation of dimensions and can be formulated as follows:
[P] = M®LP TcI?6eN/ "

Where a,b,c.d,e.f, and g are real numbers.

I.1.5. c) Homogeneity of a formula:

A formula: A = B is said to be homogeneous if the two physical quantities A and B have the

same dimensions.

1.1.5. d) Fundamental Rules of Dimensional Analysis:
1- Every term in a physical equation must have the same dimensions.

2- In the dimensional analysis we use only fundamental dimensions when expressing

physical quantities.
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3- The dimension of any real number and functions is one.

4- We cannot add or subtract quantities of different dimensions.
Example:
Find the dimension of velocity, acceleration, force, work, pressure, power, gravitational
potential energy, electrical potential, gravitational constant, momentum, impulse, density,
angular momentum, surface tension, dynamic viscosity, magnetic field, electrical field,

resistivity, and heat capacity

Velocity:
d L
=, = — = LT'_1
v . [v] T
Acceleration:
v LT 1
= -, = = LT_Z
a n [a] T
Force
F=m-a, [F]=M-LT™?
Work
W=F-d, [W]=M-LT % -L=ML*T?
Pressure:
F MLT?
P=—, = =MLIT2
1 [P] B
Power:
W ML*T 2
P = e [P] = = MI2T~3

Gravitational potential energy
U=mgh, [U=M-(LT %) -L=MI*T?
Electrical potential

_ MI*T?
- IT

, V] =ML*T311



Gravitational constant

Momentum

Impulse

Density

Angular momentum

Surface tension

Dynamic viscosity

Magnetic field

Electric field

Resistivity

14

Fr?
F=6——">G=
mym;
MLT™2.12 .
(6] = ——— = MT'L°T?
p=mv, [p]=M-LT?
J=Ft, [Jl=MLT™*-T =MLT™*

m M
pZV' [p]:_:ML_3

L=Iw, |[L]= (MLZ) T~ 1= MI2T?
T_F [ ]_MLT‘Z_MT_Z
=1 = T =
Ft MLT=?-T
= —, = = ]\4L_IT_1
n= [n] 7]
F MLT 2
B=—, [B]= — = MT 21
qv IT - LT-1
F MLT 2
E=—, [E]= = MLT 3171
q IT
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A 1?
p=R7, [p]=MIPT17% — = MI*T I

Heat capacity

[.2 Mathematical background

1.2.1 a) Functions of several variables:
A function f is said to be of several variables if it takes inputs from a domain in Rn, where n

is the number of variables, and maps to a value in R for scalar-valued functions or Rm for

vector-valued functions, where m is a natural number.

Examples:

Paraboloid Function:
floy) =x>+y?
Temperature Distribution in 3D Space:
T(x,v,2z) = x? + y% + 22

Electric Potential in Cylindrical Coordinates:

1
A

1.2.1 b) Partial derivatives of a function of several variables:
The partial derivative measures how a mathematical function of multiple variables (xi, x2, ...,

xn) changes when only one variable is varied, for example, xi, keeping the others constant (x2,

vees Xn).
Notation

Several notations are used:

if (x,y,2)
O0x

fe(x,y,2)

0fx(x,y,2)

We will use the first notation in this course.
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Example:

Find the partial derivatives of the following functions:
fCoy) = xy +3y%)

of of _ ,
a—x—ny, @—x + 6y

fy) = e¥

of x of
R — y R — Xy
0x yes dy xe

f(x,y,z) = xyz + x*z

0 0
9 = Y2t 2xz, %zxz, a—];:xy+x2

fx,y) =In(x* + y?)

of  2x  of 2y
Ox  x24+y2 9y x2+y2

f(x,y) = sin(xy)
of _ of _
i ycos(xy), @ = x cos(xy)

flx,y) =x3+vy3+ 3xy

of 5 of 5
5—396 +3y, @—3}/ + 3x
o1 (Y

f(x,y) = tan (x)

of y of  x

ox  x24y2’ 0y x24y2

fl,y) =xY

of

e TR AV, |

x yxY 1, 3y xY Inx

f(x,y) =In(xy + 1)
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of vy of «x
ox xy+1 9y =xy+1

1.2.1 c) Total differential of a function of several variables:
The total differential of a function of several variables (x1, x2,

change in the function due to small changes in all its variables.

df (xy) = = o

[.2.2 Vectors:
1.2.2.a) Definition

_ Yy de + df (x,y)

..., Xn) gives the approximate

dy

A vector is a mathematical quantity that has magnitude, sense, and direction. It is represented

geometrically as an arrow and algebraically as an ordered set of components.

For example, in 3D space:

V=xi+y/+zk

-

~

e ~"
AR -~
'&%“\ ~

1\:\’6 Rt P I
I/ The direction

-
- The sense
. / .
/
/ ’

Figure 2 Vector characteristics

Table 4 Characteristics of vectors

Type Description

Zero vector Magnitude = 0, direction undefined

Unit vector Magnitude = 1, represents direction only
Position vector Points from the origin to a location in space
Equal vectors Same magnitude and direction

Opposite vectors Same magnitude, opposite direction

1.2.2 b) Vector Magnitude:

The magnitude or length of a vector is how long the vector is, regardless of its direction. The

mathematical expression of the magnitude represents as:
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Examples:

7l =J/(3)2+ (4)2=vV9+ 16 =V25 =5

T=—1+27 +2k

Tl =J(CD2+22+ 22 =VI+4+4=9=3

1.2.2 c) Cartesian coordinate system:
The Cartesian coordinate system is the first system developed historically, successfully linking

both branches of geometry and algebra. It was developed in the 17th century by René
Descartes, the famous mathematician who proposed the idea of using algebra to describe
geometry. In his 1637 book, Geometry, Descartes (Descartes, 1954) demonstrated how points
on a plane can be represented by ordered pairs of numbers (x, y), measured along two
perpendicular axes. At roughly the same time, Pierre de Fermat independently developed
similar ideas, and their combined work laid the foundations of analytic geometry. This system
revolutionized mathematics by allowing geometric problems to be solved using algebraic
equations. Over time, the system was expanded to include three dimensions and became

fundamental in fields such as physics, engineering, computer science, and economics.
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> N

> >V
/7 .
+" X coordinate

Y coordinate

Figure 3 Position of point M in Cartesian coordinates

1.2.2. d) Cartesian reference:
In a three-dimensional space, the Cartesian coordinate system consists of an origin (point O)

and directed and orthogonal (perpendicular to each other) axes passing through this origin.
x-axis (denoted Ox);
y-axis (denoted Oy);

z-axis (denoted Oz);

Orthonormal Cartesian Basis:

In a three-dimensional space, the Cartesian coordinate system has an orthonormal vector basis

consisting of three pairwise orthogonal unit vectors denoted as follows:

~J

: carried by the Ox axis and oriented along its orientation.
J : carried by the Oy axis and oriented along its orientation.
k : carried by the Oz axis and oriented along its orientation.

Vector Representation of the Displacement from Point A to Point B in Cartesian basis:

Let A, and B tow point in the space where A (xa, ya, za) and B (xv, yb, zb). The vector (Zﬁ),

representing the displacement from point A to point B, is given by:
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AB = (x, —x) T+ (vp — Vo) J+ (2p — z) k

B (xb,y6,25) @

X

Figure 4 Displacement
Examples:
Let A(1,2,3) and B(4,6,8).
AB = 37+ 4j + 5k
Let A(-2, 0, 5) and B(1, -3, 2).
AB =37 —3j -3k

1.2.2 e) Vector operation:
Let 4 and v two vectors:

U=ul+uf+usk, B=v0+v,]+vsk
The sum of these two vectors is:
U+ 7= (u + )T+ (Uy + 1)) + (us + v3)k
Vector Subtraction:
U= = (u — 0T+ (up — v)] + (us — v3)k

Examples:

Let 1 and ¥ two vectors:
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U=20+3]—k ©B=1—47+2k
U+5=Q+1Di+GB-4)j+(-1+2Dk=31—7+k
d=—-1+2j+4k, b=31—-7+k
G-b=(-1-3)I+Q+1Dj+@&—-1k=—4T+3]+3k

Properties of Vector Addition:

Existence of Additive Inverse:

The result of adding a vector to its opposite is nil vector:
b4+ (%) =0

Commutativity:

The order in which vectors are added does not affect the result.
(A+B)+C=4+(B+()

Associativity:

When adding three or more vectors, the grouping of the vectors does not affect the result.
(A+B)+C=4+(B+()

Existence of Zero Vector:

There exists a zero vector 0 such that adding it to any vector A does not change the vector A:
A+0=4

Distributivity of Scalar Multiplication over Vector Addition:

Scalar multiplication distributes over vector addition. If ccc is a scalar and A, B are vectors:
c(A+B)=cA+cB

Distributivity of Scalar Addition over Vector Addition:

Scalar addition distributes over vector addition:
c([f+§)=c[f+c§

Examples:
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A+B=QQ+3)I+Q-1j=41+7
A+B=0+3)i+Q-1Dj=4i+]

-

B+A=0CB+ )i+ (-1+2)j=4i+J

(A+B)+C= @i+ +(—i+3)) =2{+4j
A+(B+C)=i+@+4) =20+4j
A=41-27, 0=07+0
A+0=(4+07T+(-2+0)j=41—2]
A=21-5], —-A=-21+5]
A+ (-A)=Q2-2)I+(-5+5)]=0{+0]=0

-

A=T

13

. B=20—] c¢=3

—+

A+B=0Q+2i+(1-1)j=37
c(A+B)=3-31=91
cA+cB=30+N+3Q1-))=@i+3)+(61-3)) =97
Example:/T=T+ 2/, ¢=2, d=5
(c+dDA=70+2) =71+ 14]
CA+dA=20+2))+50+2)) = T+ 4)) + (51 + 10)) = 77 + 14]

The dot product:

The dot product, also known as the scalar product, is an algebraic operation that takes two
vectors and gives a single scalar, a real number. This product measures how much one vector
extends in the direction of another.

The analytic expression:

S
Let d and b two vectors were,

C_i = a1?+ azj_)'i' a3k,
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B = bli)‘l' bz]_)‘l' b37€

The analytic expression of the dot product of these two vectors is:

(_i . E ES a’lbl + azbz + a3b3

Alternatively, we can use magnitudes and angle 8 between the vectors to find the dot product:

Examples:

The cross product

The cross product (@ X b) of two vectors (&) and (b) is a vector perpendicular to both (&) and

(B), with magnitude equal to the area of the parallelogram formed by (d) and (5), and
direction given by the right-hand rule.

Analytic expression in terms of basis vectors:

Let @, and b
d = a,l+ a,] + ask,
b = b,T+ b,] + bsk
@ x b = (asbs — ash,)i — (aybs — asb))j + (a1b, — a,by)k
Also, we can calculate the magnitude of d X b as:

|c'i X B| = |a| |B| sin



24

Examples:
G=1+2j, b=30+4]
Gxb=(2-0-0-4)i—(1-0-0-3)J+(1-4—2-3)k =—2k
d=k b=T1+]+k
dxb=0-1-1-D7—(0-1-1-1)J+(©0-1-0-Dk =—i+7J

[.2.3 Coordinate systems:

1.2.3. a) The Cartesian coordinates:
In the Cartesian coordinate system, the position vector of a point M is given as:

—_—

OM = x1+ yj + zk

»
»

Figure 5 Position in Cartesian coordinates

The magnitude of the position vector:

OM = \[x%+ y2 + 22

The direction OM est le segment de droite M O, and the sens of OM is from the point O to
the point M.

1.2.3. b) The Polar coordinates:

Polar coordinate is a two-dimensional coordinate system in which the position of a point M in
the plane is described by:

A distance from a fixed point called the origin, denoted by p, and an angle from a fixed

direction, typically the positive x-axis, denoted by 6.
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b
N 4
~ aWAY
y ________
YA
S
A X :
J 0 1
ol ‘;f >

Figure 6 Position in polar coordinates

As shown in FIG. |5ﬁ| = p which is the distance between M and O.

p is the radial coordinate, and 6 is the angular coordinate.
The base of the polar coordinates is u, and ug , here u, is the unit vector of the vector oM

on
~ Jo|

—

Up

The relation between the polar coordinates and the Cartesian coordinates:

Based on the FIG, we can find that the relation between the Cartesian coordinates (x, y) is:
X = pcosB
y = psin@

Therefore,

OM=pcosOi+psindJ

p = x*+y?
_ Y
0 = arctan(x)

The unit vector of OM becomes

—_—

—_— OM - . -

U, =——=1Cc0sO 1 +5sinb j
p

Also,

Ug = —sinf T+ cosOJ
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Unlike the fixed unit vectors in the Cartesian coordinate system, the unit vectors in the polar
coordinate system are position-dependent; thus, as the point M moves, the polar unit vectors
also change their direction accordingly. The derivation with respect to the polar angle of the
unit vectors u, and ug , gives us:

az

do

% (cosB T+ sinB )
= —sin® 7+ cosO J
=ug
dug
doe

d NP
—%(—sme i+ cosB))

=—cosO7—sin0J

= —up
1.2.3. ¢) cylindrical coordinates:

In the cylindrical coordinate system, the position of a point M is identified by 3D coordinate

system that extends polar coordinates by adding a vertical height component z.

ZJ h

Figure 7 position in cylindrical coordinates

The relation between cylindrical coordinates and Cartesian coordinates:

X =pcosH
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From Cylindrical to Cartesian:

The unit vector of the cylindrical coordinates:
u, = cosf I+sinf j
Ug = —sinB T+ cosO J
k= k

The position vector:

Example:
Convert the point (x, y, z) = (3, 4, 5) to cylindrical coordinates:

p=+x2+y2=4324+442=/9+16=V25=5
1 (Y 1 (4 .
0 = tan (—) = tan (—) ~ 0.93 radians
X 3

Z=5

1.2.3. d) Spherical coordinates:
In three-dimensional space, the position of a point M is located in the spherical coordinate

system by:
The radial distance r is given by:

r = [0M]
r is the distance between O and M.

The angle 0 is the angle between the vector OM and the axe Oz.
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The angle ¢ is the angle between the projection of OM on the plane (x,y) and the axis Ox.

The spherical coordinates use radial distance and two angles to locate point M.

zj\
< [~ = : .
/ = - M _
LIt Uy,
. i Y
/0
> S
- -‘-H \\i\b ' I:-m .\;
. k4 - - 1 |
L . ]
o y Ly Ny
i ,(p#‘ Seml i F L P
_ AR Y +". Up
lofll=p

Figure 8 Spherical coordinates

The relation between the spherical coordinates and the Cartesian coordinates:
From Cartesian to spherical coordinates:
X =1rsinB cos@
y=1rsin0 sing
zZ =1rcos0

From the spherical to Cartesian coordinates:
r=x%+y?+z?

08 = arccos (;)

= arctan 4 with quadrant adjustment
% X J

The unit vector of the spherical coordinates:

Radial Unit Vector:

U, =sinBcosg T+sinOsing ]+ cosO k

Polar Angle Unit Vector:

Ug = cosBcosg T+ cosOsing j—sin® k
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Azimuthal Angle Unit Vector:

—

Up,=—sing i+cose J

Algebraic Properties
Orthonormality:

U x U; = Uy
Cross Product Relations:
U xU; = Ty

Examples:

Convert the following point coordinates from Cartesian to Spherical system:

M (2, 0, 0)

P(3,4,0)
B(1,1,v2)
Point M:
r=+4224+02+0%2=2
0 = arccos (3) = 3
= arccos 5) =3
= arct (0) — 0
@ = arctan >) =
Point P:
r=+32+424+0%2=5
0 = arccos (2) = 3
= arccos z) =3
4
¢ = arctan (§> ~ 0.927 rad
Point B:

r=\/12+12+(x/§)2=2
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<\/§> T
0 = arccos|— | =
2

= aretan () = 3
¢ = arctan 1) =12
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Kinematics of the material point

[1.1 Introduction:
Kinematics is one of the fundamental branches of classical mechanics. It describes the motion

of objects, focusing solely on geometric and temporal aspects without considering the forces
causing the motion. The Kinematics is based on some principal physical quantities: position,
time, velocity, acceleration, and trajectory.

[I.2 Definition:

[1.2.1 Point particle:
In kinematics, motion problems are simplified by approximating the dimensions of a body into

a point particle. A point particle is a point-like mass with no volume, internal structure, or
dimensions. This simplification is valid when the size and rotation of the body are negligible

compared to its overall motion.

I.2.2 Reference Frame:
To describe the motion of a point particle, we need a reference frame or coordinate system.

This is a set of axes, such as X, y, and z axes in Cartesian coordinates, or 1, 0, and z in cylindrical
coordinates, with a defined origin (0,0,0), from which all positions and motions are measured.

Motion and rest are relative to the chosen reference frame.

[1.2.3 Position:
The location of a point particle in space at a specific time, relative to the chosen origin of the

reference frame. It is a vector quantity, which means it has both magnitude; its distance from

the origin, and a direction.

M (xm1,yn,2m1)

srdinate

|

~y

= E‘SI // y
I -
N2 X coordinate

Y coordinate

Figure 9 Position

Mathematical expression of the position in Cartesian coordinates:

7(t) = OM(t) = xp () T+ yy () 7+ zy (t) k
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Mathematical expression of the position in Polar coordinates:

0—M)=pu_p’

Mathematical expression of the position in cylindrical coordinates:

szu_p’+zz

Mathematical expression of the position in spherical coordinates:

—

OM = ru,
1.2.4 Displacement A7 (t):
It is the change in the particle's point position. It's the straight-line vector drawn from the initial

position of the particle's point to its final position. the displacement is a vector quantity.

AF(t) = 7(t;) — 7(t)

M (x(t1),y(t1),z(t1))

Mx (©),y(t2),2(t2))

Figure 10 Displacement

11.2.5 Velocity (V):
It is the rate of change of a particle's displacement with respect to time. It's a vector quantity,

which means it has both magnitude (speed) and direction.

Average velocity:
B () —F(t)

V. = — =

VB At t, — ty
dr
T odt

e

v(t)
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11.2.5.a) Vector velocity in Cartesian coordinates:
The vector velocity in the Cartesian coordinate system is expressed as a vector with

components along the x, y, and z axes. It describes the rate of change of the position vector OM

with respect to time, as follows.

_dOM()

b0 =—5

Velocity vector in component form (Leibniz notation):

R dx, dy, dz-
v(t) :EH_E] +—k

Velocity vector in component form (Newton notation):
3(t) = 2T+ y ()] + 2(Dk

We note here that the base (, J, k) is characterized by:

di_s 4 _ dE_B
de ' dt 7 dt

Example:

Let a point M move in space such that its position vector (relative to origin O) is:

0M(t) = 2t)T+ 30 + (B)k

Calculate the velocity vector.

Solution
dx_4t dy_3 dz_0
dt ' dt 7 dt
dOM(t
ﬁ(t) = T() = 4t + Bj

Let the position vector of a point M be:

OM(t) = R cos(wt) T + R sin(wt) ]

Calculate the velocity vector.
Solution
_doM(t)

v(t) TR —Rw sin(wt) T+ Rw cos(wt) J
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1.2.5 b) Vector velocity in polar coordinates:
Vector velocity in polar coordinates is the rate of change of a particle point position with respect

to time, expressed using radial and angular components.

The relation of the velocity is given as:

a, _,
= dr (pup)
dp_, du,
=2 Yo + P (Product Rule)
., dy,
=pu,+p dr
The unit vector derivative is:
lep doe__,
a T dare T g

Therefore,

Radlal Tangentlal

vp:p

Ue:pé

Conversion to Cartesian coordinates:
v, = pcosB® — pbsin O
v, = psin® + pb cos O

11.2.5.c) Vector velocity in cylindrical coord/nateS'

R dr
V= i (pup + zk)
dp_, du, dz
Eup +p ar P4 I k (Product Rule)
The unit vector derivative is:
dtTp do __,
@ T a Oy

Therefore,

= pup + p9€9 + Zk
e —
Radlal Angular Vertlcal

vp:p

ngpg

v, =2Z
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Conversion to Cartesian:
v, = pcosO — phsinb
v, = psind + pb cos
v, =2
Example:
A drone moves with the following cylindrical coordinates as functions of time:

p(t) =2tm
o(t) = gt rad
z(t) = 3t’m
Find its velocity vector in cylindrical and Cartesian coordinates at (t = 2s).
Solution:
p(t) =2tm
p=2m/s

6(t) = %t rad

0= T rad/s
4
z(t) = 3t?’m
z=6(2)=12m/s
Using the fundamental equation of the velocity:

¥ = pu, + phug + 2k

13=2u_p’+ﬂu_9’+12Em/s

In cartesian coordinates:

D= —1l+ 2]+ 12k m/s ~ —3.147 + 2] + 12k m/s

11.2.5.d) Vector velocity in spherical coordinates:

L dar d  _
V= i (ru,)
= U, +7 Uy
" dt
The unit vector derivative is:
dtr = Gm+ ¢ sin0 U_q;

Fe): Polar unit vector
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Wp): Azimuthal unit vector

¥ =70, +r0Uq +r¢sind U,

Radial Polar Azimuthal
V=T
vg =106

Vo =T@sind

Conversion to Cartesian:
v, =7 sin 0 cos ¢ + 70 cos B cos @ — r sin O sin @

v, = 7 sin O sin @ + 18 cos O sin ¢ + r¢ sin B cos @

y
v, =7cosO —r0Osin0

Example:

A weather balloon moves with the following spherical coordinates as functions of time:

r(t) = 3t> + 1m

0(t) = —t rad
—12 ra

o(t) = gt rad

Find its velocity vector in spherical and Cartesian coordinates att =2 s.

Solution:
r=3(12)>+1=13m
7=6(2)=12m/s

T s
9=E(2)=grad
) o
0 = ﬁrad/s
(ng(Z)zgrad
.om
(ngrad/s

ﬁ=fﬁ+r9UT;+r¢sin6UTP

¥ = 12U, + 3.40Uq + 3.40U, m/s

11.2.6 Acceleration (a):
This is the rate of change of an object's velocity with respect to time. Mathematically, it is the

second derivative of a particle's position vector with respect to time, therefore, the acceleration

is also a vector quantity.
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11.2.6.a) Acceleration vector in Cartesian coordinates:
The acceleration can be defined as the second derivative of the position:

30 = dv B d*7
=0 T ae
For a position vector :

7(t) = x(O)T + y(O)] + 2(Ok
The acceleration vector can be given as:
dzx—>+ dzy—)_l_ dZZE
aez' T aee! T ae

a(t) =

= X0+ ]+ 2k
Example:
Given the position functions:

x(t) = 2t3 — 4t

y(t) = 5cos(mt)
2(t) = 3e02¢

Find the acceleration vector at t = 1s.
Solution :

The second derivatives

dZ
i(t) = W(zﬁ3 —4t) = 12t

. d?
y(t) = ﬁ(S cosTt) = —5m? cosTt

dZ
Z(t) = W(?’em) = 3(0.2)%2e%2%t = 0.12e%%¢
Att=1s.
¥(1) = 12(1) = 12 m/s?
(1) = —=5m? cos(m - 1) = 57 =~ 49.35 m/s?
7(1) = 0.12e%% =~ 0.146 m/s?

Therefore, the acceleration vector is:

d(1) = 127+ 49.35] + 0.146k m/s>

11.2.6. b) Acceleration polar coordinates:
The acceleration vector in polar coordinates is derived from the second time derivative of the

position vector.
dv  d*7

=%
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From the velocity vector in polar coordinates

od,
a = a(pUp + pGUg)

= pU, + &+—( 8)Us + o2
PUp TP g T e PP TP gy
Using unit vector derivatives:
Uy _o7;
dt o
dUs . .
2 —-_9
dt p

Therefore,
a=(p- pE)'Z)U_p) + (pé + 2p'9)U79
Radial Angular

For uniform circular motion

p=00=0
a, = —pB2  (Centripetal)
g = 0
a= —pooZU_p) where w = 6

I1.2.6.c) Acceleration in cylindrical coordinates:
The acceleration vector in cylindrical coordinates is derived from the second time derivative

of the position vector.

L _dv_d*f
T= U T de?
?=p7p)+zﬁ

. d, — s— =
a=a(pUp+pGUe+zUz)

e AUy d e dUg
=pUp+pW+%(pG)U9+p9W+2k
I/ —
dt p
dt

Therefore,
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a= (ﬁ—péz)U_p) + (p0 + 20 0) Up + +5k

11.2.6.d) Acceleration in spherical coordinates:
In spherical coordinates, the position vector is:

—

7 =rU,
The acceleration vector in spherical coordinates is derived from the second time derivative of

the position vector.

odv df. — . —\ d{dp — dg —
ar) = L =—(P'U +p-9-Uﬂ)=—[—p-U "’P'_'Uu]

de d¢ g delde 7 de
|dtp — dp dU, | [dp a0 =0 = do dU,
de® "7 de dt de dr " 2 de  dr

[1.3. Movement (motion) of a particle point:
The motion or the movement of a particle point ‘material point’ refers to a phenomenon in

which the change in the position of a material mass of negligible dimensions relative to a frame

of reference over time is studied(Chow, 2024).

[1.3.1. Type of movement (motion) of a particle point:
The types of motion of a material point can be classified based on path, velocity, acceleration,

and force.

11.3.1.a) Rectilinear Motion (Straight Line)
In the rectilinear motion, the particle moves along a straight path.

The vector position: For motion along the ( x ) —axis, the position vector of a material point at

time (t) is:
) =x(®)7
x(t) is the position function, 7, is the unit vector in x axis.
In this case, the motion is purely along the (7)-direction: therefore, y(t) = 0,and z(t) = 0.
The vector velocity: The vector velocity is the time derivative of the position.
v(t) =x(t)T
The vector acceleration: The vector acceleration is the time derivative of the velocity.

a(t) =x() 7
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From acceleration to velocity:
t
v(t) = vy + f a(t) dt

to
Where, v, is the initial velocity of the particle.
If (d(t) = ay1) is constant:
V() =V +ag(t —ty) T
From the velocity to position:

t
() =1, +f v(t) dt

to

Where, 7, is the initial position of the particle.

1
7(t) =75 + Vot — tp) + an(t —t)%7

11.3.1.b) Uniform rectilinear motion:
Uniform Rectilinear Motion (URM) is the motion of a material point along a straight line with

the following characteristics:

1- A constant velocity ((t) = vy).
2- A zero acceleration a(t) = 0.

3- Alinear trajectory along one axis (e. g., the ( x ) — axis).

Analysis:

Let the motion be along the ( x ) —axis. The position vector at time ( t ) is:
7(t) = x(t) 7
Since the velocity is constant:
() =x(t)T=vy1
If the initial position is (7 = x, 1), then:
7(t) = xo L+ vo(t — to) T = [xg + vo(t — to)]T
Therefore,

x(t) = xo + vo(t — to)
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The acceleration:

Velocity Acceleration
V>0
V)=c

a=0

X0
‘?‘*\\ V<0
2.
-

X—fa ! a()=20

v Vgl‘Z:C g 0 ,

Figure 11 Uniform rectilinear motion

11.3.1.c) Uniformly varied rectilinear movement:
Uniformly varying rectilinear motion refers to the motion of a material point along a straight

line under the following conditions:

1- Constant acceleration (d(t) = ag)
2- A changing velocity linearly over time.

3- A motion along a single direction, assumed here to be the ( x ) —axis.

Analysis:

We consider motion only along the ( x ) —axis:
7(t) = x(t) 7
The acceleration vector given as :
a(t)=a;=agl
Velocity is the time integral of acceleration:

t

10 =v—0’+f ao dt

to
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Therefore,
v(t) = g + ao(t — to)
If (Vo = vy D)and(a, = ayl), then:
U(t) = [vo + ao(t — to)]7
Position is the integral of velocity
F(t) =70 + ftz B(0) dt

Substitute (D(t) = vy + ag(t — ty))

t
R(D) =g+ f [ + @t — to)]de
to

Thus,if (r; = xo1), (Vg = vy 1), t, = 0sand(ay = a, 1), then:
- 1 -
() = [xo +vo(6) + an(t)z] i

Example:

The initial conditions of the motion of a particle are:

So:

1
x(t) = xo + v (t) + an(t)2 = 5t + t2
U(t) = UO + ao(t_ to) = 5 + Zt
a(t) = ay = 2m/s?,

The variation of the position function, the velocity function, and the acceleration function with

time presented in the following figure.
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Position vs Time
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Figure 12 Uniformly varied rectilinear movement

11.3.1.d) Sinusoidal rectilinear motion :
Sinusoidal Rectilinear Motion refers to the oscillatory movement of a particle point along a

straight line where its displacement "position", velocity, and acceleration follow a sinusoidal

pattern which means sine or cosine functions.

Analysis:
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The displacement of a particle M moving along a straight line be given by:
X(t) = Asin(wt + ¢) T
Here,

A is the amplitude of the motion of the particle M, which is defined as the maximum

displacement from equilibrium.
¢ is the phase angle.
t is the time.
The velocity:
The velocity is the first derivative of the position:
7(t) = Awcos(wt + ¢) T

The acceleration :

The acceleration is the time derivative of velocity:
a(t) = —Aw?sin(wt + ¢) 7
This relation can be given as :
a(t) = —w?x(t)

Characteristics of the motion :

2m .

I- T=— Period
w

2- f=

3- Vpax = Aw maximum velocity

12 Frequenc
T 2m q y

4- @, = Aw? maximum acceleration
Example:
Let's take a particle that moves according to the following equation :
X(t) = Asin(wt+ ¢) T
Were A is the amplitude A = 3 m and w is the angular frequency w = 2and¢ = 0

1-Find the velocity and acceleration of the particle
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2- plot the variation of the position, velocity, and acceleration as a function of time.
Solution:
The velocity is the first derivative of the position:
v(t) = 6 cos(2t) T
The acceleration is the time derivative of velocity:

a(t) = —12sin(2t) T
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Position vs Time
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Figure 13 Sinusoidal rectilinear motion

[1.3.2. Curvilinear Motion
Curvilinear Motion refers to the movement of an object (in our study, a particle point) along a

curved path in two or three dimensions. Contrary to rectilinear motion, where the motion of
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the particle is described as a straight-line motion, the trajectory in curvilinear motion is

characterized by continuous changes in direction of the object.

Projectile Motion - Curvilinear Trajectory

Trajectory
40 1 = \felocity vectors | ]
® datat
® data2
30 ® data3 a

0 10 20 30 40 50 60 70 80 90

Figure 14 Curvilinear Motion
To analyze the motion of a particle that moves along a curved path, we use the intrinsic ‘Frenet-

Serret’ coordinates. These coordinates are defined by the following unit vector:

11.3.2.a) Curvilinear abscissa:
Let M be a material point that moves along a curvilinear trajectory (C). The intrinsic position

of M at time t, relative to an initial position My, is defined by the curvilinear abscissa.

3D Helix with Tangent Vector

Curve \vec{r)(t) 1
== Tangent vector \vec{U)_t
e Small arc segment s
y 0.5

X

Figure 15 Curvilinear abscissa
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11.3.2.b) The unit vectors:
The tangential unit vector:

The tangential unit vector is a vector that is tangent to the trajectory at a given point and

oriented in the direction of increasing arc length along the curve.

Here, the arc length s is a scalar quantity that measures the distance traveled along a curve from
a fixed reference point (curvilinear abscissa), and the differential ds represents an infinitesimal
element of arc length along the curve.

Normal unit vector:

The normal unit vector is a vector that points in the direction of the tangent vector @ is

changing. It is perpendicular to the tangent vector and lies in the osculating plane of the curve.

az;
TR ds
U, = —=
o |du

ds

The binormal vector:

The binormal vector is the vector product (cross product X) of the tangent vector U{ and the

normal vector U,,.

Properties of the Unit Vectors:

Ui x Uy =T,
11.3.2. c) Velocity and Acceleration in Intrinsic Coordinates:
Let the position of a particle moving along a space curve be given by the vector function 7(t).
The velocity and acceleration vectors can be expressed in terms of intrinsic coordinates using

the arc length s(t) as an intermediate variable.
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We introduce the arc length s(t) , and apply the chain rule:

_d? ds

U(t)—g'a

) dr . . — d .
Since (d—Z) is the unit tangent vector (U;), and (d—i = v) is the speed:

B(t) = vU,
Acceleration vector:

o dp 4,
a(t) = P %(Vut)

Apply the product rule:

) dv_., dU,
a(t) = EUt +'UE

du; . .
We compute now d—tt. Use the chain rule again:

dU; dU; ds _dU;

dt ds dt ds

We have:
dU; _ o
ds _ n
dU; _ -
It = xvU,

Substitute back into the expression for (a(t):

R dv ., —
a(t) = EU,: + U(KUUn)

So,
R dv 5
a(t) = Eut + kveU,
v(t) = vU,
dv
a(t) = EUt + kv?U,
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[ll. Relative motion

1.1 Introduction
Relative motion refers to the motion of a particle point with respect to another moving

particle point or frame of reference.

1.2 Example from real life:
Walking on a Moving Walkway (like in an airport)

¢ You're walking forward on a moving walkway.
e To someone standing on the walkway, you're just walking normally.
e To someone standing on the ground, you’re moving faster because the walkway

adds speed.

_——

+ To someone standinge
" e walkway, you're just walking
)

2 l normally

P

To someone standing on the ground,”

you’re moving faster because the

walkway adds speed.

Figure 16 Walking on a moving walkway

Cars Passing Each Other

You're sitting in a car on the highway going 100 km/h.
Another car passes you going 120 km/h.
Even though both cars are moving fast, the other car looks like it’s moving slowly past you

— just at 20 km/h.
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Figure 17 Cars passing each other

[11.3. Definitions:
We consider two reference frames R (O, x, y, z) and R’ (O°, x’,y’,z’) with the basis:

-

I, ] k,and v 7, K respectively

I11.3.1. The absolute frame of reference:

An absolute frame of reference, also known as an inertial frame, is a coordinate system in
which Newton's laws of motion apply without the need to introduce imaginary forces. It is
considered stationary in space and unaccelerated.

In this reference, the unit vectors are fixed, that means the magnitude and the direction of the

unit vectors do not change with time:

ai - df -  dk -
—=0, —=+=0, —=0

dt dt dt

I11.3.2. Relative reference:
A relative reference frame is a coordinate system that is moving or rotating with respect to an

absolute (inertial) frame.

[11.3.3. The absolute motion:
Absolute motion refers to the motion of an object as observed from a fixed, non-moving

(inertial) reference frame.
Vector Position in Absolute reference:
OM(@) =7() =x(O)T+y@®) ]+ z() k
Vector position in Relative reference:
) =x'OV+y ] +2 Ok

[11.3.4. Motion of a Relative Reference Frame with Respect to an Absolute Reference Frame:
Absolute frame unit vectors:

Relative frame origin and unit vectors:
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0, V(©®, J©, k'®
OM(t) =7#(t) = x(O) T+ y(®) ]+ 2O k
70,(t) (position of O’ in absolute frame),
r7(t) (position of M in relative frame)

Case 1:

If there is only translation and no rotation, then

— —

=1 ;=] k'=k

F(t) = Tor(t) + 77(t) = T0,(8) + X' (T + y' ()] + 2 (ke
Case 2

[11.3.5 Rotation:
In this case:

When the relative frame rotates with angular velocity w(t), the unit vectors vary as:

=
ac 20
d’ . -

= X ’,
a2
dF—*xk_’)
ac @

The position vector of point M in the absolute frame is:
(1) =70, (6) + X' (D () +y' ()] (1) + 2/ Ok ()
The position vector of M in relative frame:

O =x@OU+y )] +2 Ok’
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Frames R and R’ with Point M and Vectors OM, O'M

o X/’
3 ¥ e
-2/ ,OMm
0.8 - o B
0.6 1k - oM ’
N i =
3] L’ R’ (Relative)
0.2 pr
Pt 1.5
v
0 - 1
0 ,
\0,5\’\'\/ 05
R (Absolute) ;
X 9 )
Figure 18 Absolute and relative frame
Velocity in Case of Translation:
In this case, we study the translation of reference R’.
V=1 j=j ki=k
The position vector of the point M:
Tt = Tor + T
., dry drg dr, .
V = = + = Vo + Viyz!
MR~ "qe ~ dt  dt 0 TM/RD
_, do'o
Vgr = ——
0 dt

Vol = z the motion of reference R’ compared to R

(A _dd o dy o dr
/R =\ "t R,_dtl t ) T de

Vo = X'+ T4 T

Vimyzn = Vr) The relative velocity

Vi s = d00+x"7+ T+ 72k
(M/R) dt Yy

Viyr) = VZ The absolute velocity
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In this case:

d?_6
dt
' -
Y
dP_B
dt

. (dOM
Voum = Ve =g

=xi+yj+zZk+x|— y|— z|—
dt 2 t 2 t 2

vt (since &Y _dk _
=xi+yj+zk (since dtn ~ dtn  dtm )

As we mentioned before, the velocity of ( M ) with respect to the moving reference frame (R")
is called the relative velocity, obtained by differentiating the position vector (0’'M) in frame

(R":

. (dO'M
Viurny =V = T
R,

T T T ,<d7> . ,<d7’> . <dl7>
=xV"+y') +2z x| — y' = z'|—
dt ). dt ) dt ) .

As we mentioned before

OM =00"+0'M
(doW) _ (dW) . <d0’M>
at ), \dt ), \ dt },

L (dW) Ty T T <d7> N <d7> . (d?)
= = x't yr]r 7'k’ xl _ yl _J Z,
t ), dt )., dt ), dt ),

d0o’ - - . _,
(7) 4+ (@x7) +y (@ X)) + 2 (@ x k)
R
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g d dOO, — —_— —_— dOO’ — —_—
=V + dx(x"V+y ) +2'k) =V, + +wx0'M
dt dt
R R
Vo=V +V,

With,

_, {(doo e
V.= 7 +wX0M
R

Called the transport (or entrainment) velocity.

The acceleration:

The absolute acceleration of a point M is obtained by differentiating its absolute velocity with respect
to time in the reference frame (R):

dV, -
a(M/R)=@’=<—a> ==5f?+j}f+2k
R

The relative acceleration of ( M ) is obtained by differentiating the relative velocity in the rotating
reference frame (R'):
S CM)
Am/ry = 4 =\ 7~
dt /.

=x'V + y’? +z'k

The time derivative of the velocity composition relation:

e (5 i) () (5
R R R R
dVg\ _ (00N | o e oo (TY L (Y
<E>R :< ar? );’” ryyEle 2l <E>R+Y (E>R+ 7 (ﬂﬁ)

k

) oo D) (48
X 2 y 2 z 2
dt 2 dt 2 dt 2

With:

(VN (A (AR
x<E> +y <E> +Z(dt> —x(wx1)+y(w><])+z(ka)
R R R
:&)*x(x’.7+y"7+z"l_c7)

=w XV,
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do -
=d—(:x1’+5x(5><1’)

And similarly:

d?j’ da  _ .
—]> =d—(:><]’+5><(5><]’)
R

@ —daxf’#*x(“xk_’))
dt? R_dt @2

L d(d?) Ly d(d}’) y d(dk‘")
x  — — y . — — Z  —
de\dt ), de\ dt de\dt )

da — — — — — —
=EA(x’-l’+y’-]’+z’-k’) + A (@A EV+Y ) +2 k)
E/\OM'{'(U/\((U/\OM)
a5 = +— +E/\0M+a)/\(a)/\0M)+2-w/\Vr

a, =a,+a,+a,

o Lo +d5/\0—1\/1>+_’/\(_’/\0_M))
e = dt? (R) dt @ @

a.=2-BAV,






60

Material point dynamics

IV.1. Introduction:
Dynamics is a branch of classical mechanics. It studies the motion of objects and the forces that cause

them. Unlike kinematics, which we studied in previous chapters, which is limited to describing how
objects move (position, velocity, acceleration), dynamics seeks to explain why they move by linking
motion to its causes, primarily forces, primarily through Newton's laws of motion.

There are two main types of dynamics:

Translational dynamics, which studies the linear motion of objects under the influence of forces.
Rotational dynamics, which focuses on the motion of rotating objects, taking into account torque and
angular momentum.

In this chapter, we will limit ourselves to studying translational dynamics.

IV.2. Definition:

IV.2.1.The force:
it is any mechanical action exerted by one body on another, which results in one or all of the

following changes:

a change in its speed (moving it or stopping it);

a change in its trajectory;

a change in its shape (deforming it).

Force is represented by a vector (0 ften denoted F ) which has the same characteristics (direction,
sense, magnitude) and is linked to its point of application.

Forces can be classified according to their range of action into contact forces and distance (field) forces.

The resultant of all forces acting on a body is the vector sum of all the forces acting on it.

IV.2.2. Mass:
A scalar quantity representing the amount of matter in an object. It also measures its inertia.

IV.2.3. Acceleration:
Variation of speed with respect to time. It is a vector quantity.

IV.2.4. Velocity:

Variation of position with respect to time. It is a vector quantity.

IV.2.5. Inertia:
An object's tendency to maintain its state of motion or rest.

V.2.6. Newton's Laws:
Three fundamental laws that describe the relationship between motion and the forces acting on an

object.

IV.2.7. Principle of Inertia: (also known as Newton's First Law of Motion):
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A body remains at rest or in uniform straight-line motion unless acted upon by an external
force.

IV.3. Inertial Reference Frame:

An inertial reference frame is a frame of reference in which Newton’s first law (the principle
of inertia) holds true.

Examples of Galilean (Inertial) Reference Frames:

A car moving at constant speed in a straight line (on a smooth road, no acceleration):

Inside the car, if you toss a ball straight up, it comes back down in your hand — just like when
you're standing still. This is an example of an inertial frame.
IV.4.Momentum:
Momentum (also called linear momentum) is a vector quantity defined as the product of a
body’s mass and its velocity.

p=m-v
It represents the quantity of motion of a body.

IV.4.1. Superposition Principle of Momentum:
The total momentum of a system is the vector sum of the momenta of all particles:

n n
= — —_—
Protal = p. = m;v,
i=1 i=1

(Peotal) 18 the total momentum of the system,
(p,)is the momentum of particle (i),
(m;)is the mass of particle (i),

(v,) is the velocity of particle (i).
This principle allows us to treat the motion of each particle separately and then combine their
contributions to get the overall momentum of the system.
IV.4.2. Principle of conservation of momentum:
In a closed and isolated system (no external forces), the total linear momentum remains
constant:

_—

Pinitial - Pfinal

n n
E M;Vy initial — E M;V, final
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(Piiian): total momentum before the interaction,
(m): total momentum after the interaction,
(m;): mass of particle (i),

(Vyininiar): Velocity of particle i before,

(V. final): Velocity of particle i after.

IV.5. Newton laws:

IV.5.1. First Law:
An object at rest stays at rest, and an object in motion continues to move in a straight line at a

constant speed, unless acted upon by a net external force.

Mathematically;

IV.5.2. Second Law:
The force applied to an object is equal to the mass of the object multiplied by its acceleration.

Mathematically, it is written as:
F=md
This law directly relates the force acting on an object to the change in its velocity.

IV.5.3. Third Law:
For every action, there is an equal and opposite reaction. This means if object A exerts a force

on object B, then object B exerts a force of equal magnitude but opposite direction on object
A.

Fyop = —Fp_a

IV.6. Fundamental Principle of Translational Dynamics:
The rate of change of linear momentum of a particle is equal to the net external force applied

. dp
F==—
2P =%

where (p = m?) is the linear momentum.

to it:

If the mass (m) is constant, then:

Q

F: —_— =
mdt m
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IV.7. Free fall
Free fall is the motion of an object under the influence of gravitational force only. When an

object is dropped near the Earth's surface and air resistance is negligible, it accelerates

downward due to gravity with a constant acceleration g = 9.81 m/s?.

. Ball

-—

Figure 19 Free fall

The equations of motion for free fall, taking downward direction as positive, are:
v=gt+v,

Displacement as a function of time

1
y=y0+v0t+§gt2

IV.8. Normal force:
The normal force is the contact force exerted by a surface perpendicular (normal) to the object

resting on it.

Key points:

Acts perpendicular to the surface.

Balances the perpendicular component of other forces like weight.

Varies depending on the situation (flat surface, incline, additional forces).

For an object of mass m resting on a horizontal surface without other vertical forces:
N =mg

For an object on an inclined plane at angle (6):

N = mg cos 6
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P

Figure 20 Inclined plane

I\V.9. Friction force:

Friction is a contact force that opposes the relative motion (or tendency of motion) between
two surfaces in contact. It acts parallel to the surface.

—_—

N

Figure 21 Inclined plane friction force
There are two main types of friction:
Static friction: Acts when the object is at rest. It prevents the object from starting to move.
fs < usN

Where (f;) is the static friction force, () is the coefficient of static friction, and \(N\) is the
normal force.

The maximum static friction is:
fsmax = UsN
IV.10. Kinetic (or dynamic) friction:
Acts when the object is already moving.
fio = wmN
Where (f}) is the kinetic friction force, and () is the coefficient of kinetic friction.

The tension:
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IV.11. Tension is the force transmitted through a string, rope, cable, or wire when it is pulled
tight by forces acting from opposite ends.

Tension always acts away from the object along the direction of the rope.

In an ideal rope (massless and inextensible), the tension is the same throughout.

P
Figure 22 Tension force

IV.12. Archimedes’ Principle states:
Any object fully or partially submerged in a fluid experiences an upward force (called buoyant

force or Archimedes’ thrust) equal to the weight of the fluid it displaces.

Fy=psVag
(E,) is the buoyant force,

(py) is the density of the fluid,
(V4) is the volume of the displaced fluid,

(g) is the gravitational acceleration.

IV.13. The restoring force of a spring:
The restoring force of a spring is the force that brings the spring back to its equilibrium

(unstretched) position when it is compressed or stretched.
F = —kx

(F) is the restoring force (in newtons),

(k) is the spring constant (in N/m),

(x) is the displacement from the equilibrium position (in meters),

The negative sign indicates that the force acts in the direction opposite to the displacement.

If (x > 0): the spring is stretched, and the force pulls back.
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If (x < 0): the spring is compressed, and the force pushes outward.

IV.14. Hooke’s Law:
The restoring force exerted by a spring is directly proportional to the displacement from its

equilibrium position and acts in the opposite direction.

Figure 23 Restoring force

IV.15. Rotational dynamics

IV.15.1. Definition:
Rotational dynamics studies the motion of objects that rotate around an axis and the torques

(rotational forces) that cause or change this motion.

IV.15.2. Moment of a force
The moment of a force (also called torque) measures the tendency of a force to cause a body

to rotate around a point or an axis.

N
Il
=N
X
™

(7) is the torque (moment of the force),

(7) is the position vector from the axis (or point) to the point of force application,
(F) is the applied force,

(X) denotes the cross product.

The Sl unit of moment is the newton-meter (N-m).

IV.15.3. Angular momentum:
Angular momentum is the rotational analog of linear momentum. It measures the amount of

rotation a body has, taking into account its mass distribution and angular velocity.

L=7xp=7%x(mb)

(Z) is the angular momentum,
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(7) is the position vector from the rotation point to the particle,
(D) is the velocity,

(m) is the mass of the particle.

IV.15.4. The Angular Momentum Theorem :
The Angular Momentum Theorem states that the rate of change of angular momentum of a

system (about a point or axis) is equal to the net external torque acting on the system with
respect to that point or axis.

dL

E = Text

(L) is the angular momentum,

(Text) is the net external torque.
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Work and energy

V.1. Introduction:
In this chapter, we explore two fundamental concepts of classical mechanics: work and energy.

These quantities are essential for understanding how forces influence motion and how physical

systems store and transfer the capacity to perform tasks.

V.2. Work:
Work is a measure of the energy transferred by a force when it moves an object through a

displacement 7.

If a constant force (ﬁ)is applied, and the object moves through a displacement (7), the work

done is:
W=F-#=Frcos@
Where,

(W) is the work,

(F) is the applied force,

(7) is the displacement,
() is the angle between (F) and (7).

If the force is variable:

X

2
sz F(x)-dx

The Sl unit of work is the joule (J).

Example:

A box of mass 10 kilogramis pushed along a horizontal surface by a constant force of 50 N
over a distance of 5 m The force is applied in the same direction as the motion. Calculate the
work done by the force.
W =F-r-cos(0)
W = 250J

V.3. Power:

Power is the rate at which work is done.
Average Power:
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b AW
avg — At
Instantaneous Power:
_W_p &
dt dt
P=F-%

() is the velocity at the point of application.

V.4. Kinetic Energy:
Kinetic energy is the energy possessed by an object due to its motion.

Translational:

Exin = Emv

Rotational
1
Erot = E 1(1)2

Where,

(m) is the mass,

(v) is the velocity,

(I) is the moment of inertia,

(w) is the angular velocity.
In the case of a system with n particles, the kinetic energy of the system is the sum of the kinetic

n
1 2
Eyint = S iV
i=0

If no force is applied to the particle (or particles), its velocity and mass remain constant;

energy of each i particle.

therefore, the kinetic energy also remains constant. The kinetic energy changes only if the

speed or the mass of the particle changes.

n
1
rot Z E
i=1

Rotational:
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V.5. Kinetic Energy Theorem
The net work done by all the forces acting on a particle is equal to the change in its kinetic

energy.
1 1

Wnet = AEkin = Emvl?? - Emvi

V.6.Gravitational Potential Energy:
It is the energy stored in an object due to its position in a gravitational field.

V.6.1. Uniform Gravitational Field (Near Earth's Surface):
If the position of an object is near the Earth’s surface, we define potential energy as the negative

work done by gravity to move an object from a reference point ho to position h.

h
Ey(h) =— | Fy- dr
ho

Epot(h) = mg(h —ho)

h
=—1 (-mg) dz
ho
=mg(h — hy)

m: mass of the particle
g: acceleration due to gravity
h: height above a reference level
Characteristics:
1- This expression is valid only near Earth’s surface, where the acceleration of gravity is
approximately constant.
2- Epot increases with height.

3- Gravity is a conservative force.

V.6.2. General Gravitational Field (Newtonian Gravity):
When distances are large, for example, planetary motion, the gravitational field is non-uniform

and follows Newton’s inverse-square law.

g P
bg==G—u

Potential Energy Function:



"1
=GMmf TZdT"
.

Mm
Epot(r) = _GT

V.7. Elastic (Spring) Potential Energy:
Elastic potential energy is the energy stored in a spring or elastic object when it is stretched or

compressed.

For an ideal spring, the restoring force is:

Fspring = —k(x — x—O))

( k) is the spring constant,
X is the current position of the mass attached to the spring,
X, is the equilibrium (unstretched) position,

Derivation of Potential Energy:

The potential energy is the negative work done by the spring force:

-

X

Espring(f) = _f Fspring - dX

—

X0

x
= - | [k -®)] - d¥
X

f—) —
=kJ (x" —%5) - dx’

X0

Let(i = x' —xg = dil = dx'):

.

X—Xq

Eqpring () = k L - di
0
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1

Espring = E kx?

V.8. Mechanical energy:
Mechanical energy is the sum of a system’s kinetic energy and potential energy. It represents

the total energy available to perform mechanical work.
Emec = Ekin + Epot

V.9. Conservative Forces
A conservative force is a force for which the work done is independent of the path and depends

only on the initial and final positions.

For a closed loop:
35 F-dif=0

A conservative force can be written as the negative gradient of a scalar potential energy

function.
F = —VEy,.(7)

Properties:
Work done is recoverable.

Associated with potential energy.
The mechanical energy is conserved.
Example:

Gravitational force

Spring force

Electrostatic force
V.12. Non-Conservative Forces:
A non-conservative force is a force for which the work done depends on the path taken between

two points.

Properties:

Work depends on the path.



74

Converts mechanical energy into other forms (e.g., heat).
Mechanical energy is not conserved.

Often results in energy dissipation.

Examples: Kinetic friction, air resistance:

V.11. Conservation of Mechanical Energy:
In the absence of non-conservative forces, the mechanical energy of a system is conserved:

Ernec, initial = Emec, final = constant
Example:
A block of mass m = 2 kg slides on a frictionless horizontal surface. It is moving with an initial
speed vo= 3 m/s when it strikes a massless spring of spring constant k=200 N/m fixed at a wall.
What is the maximum compression xmax of the spring?
Solution:
In this problem the force which does, work on the block is the spring force (conservative), No

friction therefore mechanical energy conserved:
Eiitial = =MV
initial — 2 0

— 2
Efinal - E kxmax

1 2_1, 5
= 5 mvp =EkxmaX

= mvé = kxZ,
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Problems and solutions:
Problem 1:
Find the dimension of these quantities:

The velocity, acceleration, force, energy, pressure, density, electrical field, and electrical

potential.
L
V] = m =5= LT
B [aV] B LT?! _ _
[a] = m = T = LT
[F] = [m][a] = MLT?
[E] = 5 [m[V2] = M 12 T2
[F] MLT 2 L
Pl=fg=—p— =M 172
[m] M _
[p] = M- rE" ML™3
Problem 2:

Check if these equations are dimensionally consistent:

E =mc?.
E = mgh.
[E] = M L2 T2
[mc?] = [m][c?] =M L?> T2
[mgh] = [m][g][h] = MLT 2L = M L?> T2
Problem 3:

If v = at’> + bt + ¢, find the dimensions of a, b, and c.
[v]=[at’] =[bt] =c=LT"!

So [a] = [VI/[t]’
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Therefore, [a] = LT
[b] = LT
[c] =LT"

Dimension of some physical quantities:

# Physical Quantity Dimensional Formula
1 Length L

2 Mass M

3 Time T

4 Electric Current I

5 Temperature ]

6 Amount of Substance N

7 Luminous Intensity J

8 Area L?

9 Volume L3

10 Density ML

11 Velocity LT

12 Acceleration LT

13 Momentum MLT!
14 Force MLT2
15 Pressure ML'T
16 Energy/Work ML>T™
17 Power ML=T
18 Frequency T

19 Charge TI

SI Unit

meter (m)
kilogram (kg)
second (s)
ampere (A)
kelvin (K)

mole (mol)
candela (cd)
square meter (m?)
cubic meter (m?)
kg/m?

m/s

m/s?

kg-m/s

newton (N)
pascal (Pa)
joule (J)

watt (W)

hertz (Hz)

coulomb (C)



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Voltage
Capacitance
Resistance
Conductance

Magnetic Flux

Magnetic Field Strength

(B)

Magnetic Field Intensity

(H)

Inductance

Angular Displacement
Angular Velocity
Angular Acceleration
Moment of Inertia
Torque

Surface Tension

Heat

Specific Heat Capacity
Thermal Conductivity
Latent Heat

Electric Field

Electric Potential Energy
Electric Dipole Moment

Permittivity ()
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ML*T>I™!

M™'L2T*I

ML?TI?

M'L?T°I?

ML2T2T

MT?I!

LI

ML2T2[2

ML?

ML2T2

MT™

ML2T2

L*T?O™

MLT>®™

LT

MLT>I!

ML>T™

LTI

M™'L7T?

volt (V)
farad (F)
ohm (Q)
siemens (S)

weber (Wb)

tesla (T)

ampere/meter (A/m)

henry (H)
radian (rad)
rad/s

rad/s?

kg -m?
newton-meter (N-m)
N/m

joule (J)
J/(kg-K)
W/(m-K)
J/kg

V/m

joule (J)
C'm

F/m



42

43

44

45

46

47

48

49

50

Permeability (p)
Refractive Index
Luminous Flux
[Nluminance
Radiant Intensity
Radiance

Entropy

Thermal Resistance

Strain
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MLT™?I?

JL=

ML2T™

MT>

ML2T 20!

M'L7?T°®

H/m

dimensionless

lumen (Im)

lux (Ix)
watt/steradian (W/sr)
W/(sr-m?)

J/K

K/W

dimensionless
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