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Introduction: 
This document provides a comprehensive foundation in the mathematical and physical 

principles essential for understanding classical mechanics and related physical phenomena. It 

covers the fundamental concepts that link mathematics and physics to describe the behavior of 

the physical world. This document is an introductory reference for first-year science and 

technology students in general, and engineering students in particular. This document was 

written according to the curriculum for first-year science and technology students. 

The first chapter of this document is devoted to reviewing the mathematical concepts students 

need, in addition to studying physical quantities, their dimensions, and dimensional analysis, 

which ensures the consistency of physical equations. The first chapter also discusses advanced 

mathematical tools, such as functions of several variables, partial derivatives, and vector 

operations, which are essential tools for modeling physical systems. Coordinate systems—

Cartesian, polar, cylindrical, and spherical—are introduced to describe positions and motions 

in various contexts. 

Other chapters focus on kinematics and dynamics, detailing the motion of point particles in 

various frames of reference, including uniform, uniformly accelerated, sinusoidal, and 

curvilinear motion. Newton's laws of motion, forces (such as friction, tension, buoyancy, and 

spring forces), momentum, work, energy, and rotational dynamics are also explored, providing 

a robust framework for analyzing mechanical systems. 

Through clear definitions, mathematical derivations, examples, and problem sets, this 

document provides readers with the tools to systematically analyze physical systems, making 

it a valuable resource for the study of mechanics and related fields of physics. 
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Analysis dimensional and Mathematical background 

I.1 Analysis dimensional: 

I.1.1 Introduction: 

Human beings have realized the importance of measurements in daily life and the development 

of societies since the dawn of history. This prompted ancient civilizations to develop simple 

measurement systems necessary to simplify life. At first, the human being relied on parts of his 

body to measure lengths and distances. For example, the cubit was a commonly used unit of 

measurement. This measurement tool was first used by the Egyptians around 3000 BC. The 

size of the cubit in Egyptian civilization is equal to the length between the elbow and the tip of 

the middle finger. This unit of measurement played an important role in Pharaonic engineering, 

especially in the construction of the pyramids. Other ancient civilizations such as the 

Babylonian, Roman, and Greek civilizations developed other measurement systems such as the 

foot and the inch. Despite this, the development of trade systems between peoples with the 

beginning of the Industrial Revolution and the European Renaissance led to the need to unify 

measurement systems between societies. The French Revolution was one of the most 

significant turning points in the history of measurement systems. In 1799, France officially 

adopted the metric system. The meter was then defined as one ten-millionth of the distance 

from the North Pole to the Equator via Paris. This system remains the cornerstone of modern 

measurement systems. 

I.1.2 Physical quantity: 

A physical quantity "P" is any property or characteristic of an object or a physical phenomenon 

that can be measured or quantified using numbers and units. Examples include mass, length, 

time, temperature, electric current, force, and volume. 

I.1.2 a) Types of physical quantities: 

There are two types of physical quantities:  

Fundamental (base) quantities, such as length, mass, and time, are defined independently and 

measured directly. 

Derived quantities, these quantities are defined in terms of base quantities. 

I.1.2 b) International system IS: 

The International System of Units, known also by the abbreviation SI (from the French 

language Système international d'unités), is the modern form of the metric system and the 

world's most widely used system for measurement. The SI is coordinated by the International 

Bureau of Weights and Measures (BIPM)(Mills et al., 2011). 
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The basic dimensions in IS: 

Length (L) is measured by the meter. 

Mass (M) is measured by the kilogram. 

Time (T) is measured by the second. 

Electric current (I) is measured by amper. 

Temperature (θ) is measured by Kelvin. 

Amount of substance (N) is measured by mol. 

Luminous intensity (J).  

 

Figure 1 Fundamental unit 

Derived Units: All other units in the SI are derived from these base units through multiplication, 

division, and exponentiation. 

 

Table 1 Example of derived units: 

Derived Unit Symbol Physical Quantity Base Unit Expression 

Newton N Force kg·m/s² 

Joule J Energy, Work, Heat kg·m²/s² 

Watt W Power kg·m²/s³ 

Pascal Pa Pressure kg/m·s² 
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Coulomb C Electric charge A·s 

Volt V Electric potential kg·m²/s³·A⁻¹ 

Ohm Ω Electrical resistance kg·m²/s³·A⁻² 

Siemens S Electrical conductance s³·A²/kg·m² 

Farad F Capacitance s⁴·A²/kg·m² 

Hertz Hz Frequency s⁻¹ 

I. 1.3 Prefixes:  

The SI uses prefixes (such as kilo-, milli-, micro-) to denote multiples or fractions of the base 

units, making it suitable for expressing very large or very small quantities depending on the 

applications. 

Table 2 Prefixes 

Prefix Symbol Factor Scientific Notation 

tera T 1,000,000,000,000 10¹² 

giga G 1,000,000,000 10⁹ 

mega M 1,000,000 10⁶ 

kilo k 1 10³ 

hecto h 100 10² 

deca da 10 10¹ 

(base) — 1 10⁰ 

deci d 0.1 10⁻¹ 

centi c 0.01 10⁻² 

milli m 0.001 10⁻³ 

micro µ 0.000001 10⁻⁶ 

nano n 0.000000001 10⁻⁹ 

pico p 0.000000000001 10⁻¹² 
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femto f 0.000000000000001 10⁻¹⁵ 

atto a 0.000000000000000001 10⁻¹⁸ 

I.1.4 Definition of some unit in IS: 

The definitions of the SI units are based on fundamental constants of nature such as the speed 

of light, the Planck constant, and the cesium frequency. 

I.1.4. a) Meter: 

The meter is the most common unit for measuring lengths; the definition of this unit has 

undergone major changes since its development until the past few years.   The meter was 

initially defined as a unit of measurement equal to one ten-millionth of the distance from the 

equator to the North Pole via Paris. The first standard meter was created in 1799 in the form of 

a platinum rod. This platinum rod was changed to a platinum-iridium rod due to the fact that 

this alloy was more resistant to corrosion compared to the platinum rod. With the emergence 

of the quantum revolution at the beginning of the twentieth century and the development of 

technological systems, there was a need to change the definition of the meter. The definition of 

the meter was modified in 1960 to become as follows: 

“The meter is a length equal to 1,650,763.73 times the wavelength in a vacuum of the radiation 

emitted by a krypton atom when electrons transit between the atomic levels.”(Brzhezinskii et 

al., 1970) 

I.1.4. b) Second 

The second is the basic unit of time in the International System of Units (SI). The definition of 

this unit has undergone various developments over time. Its current official definition, in effect 

since 1967, is based on a fundamental property of the cesium-133 atom. 

The second is defined by taking the constant numerical value of the cesium frequency, the 

frequency of the unperturbed hyperfine transition in the ground state of the cesium-133 atom, 

to be exactly 9,192,631,770 when expressed in hertz (Hz), which is equal to s⁻¹. 

This definition means that “one second is equal to the duration of 9,192,631,770 cycles of 

radiation corresponding to the transition between the two hyperfine levels of the ground state 

of the cesium-133 atom”.(Gill, 2011) 

I.1.4. c) Kilogram: 

The kilogram is the base unit of mass in the International System of Units (SI). It is the last SI 

unit to be defined by linking it to a cosmological constant, just as the second and the meter 

were redefined. Since 2019, the kilogram has been defined by taking the numerical value of 

Planck's constant, h, to be exactly 6.62607015 × 10⁻³⁴ when expressed in joule-seconds (J⋅s), 
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which is equivalent to kg⋅m²⋅s⁻¹. This definition links the kilogram to the fundamental constants 

of nature, specifically Planck's constant, the speed of light, and the frequency of cesium.(Wood 

and Bettin, 2019) 

I.1.5 Dimensions:  

The physical nature of a quantity P is characterized by its dimension [P]. 

I.1.5. a) The Dimensions of the fundamental quantities: 

 

Table 3 The fundamental unit 

Physical Quantity SI Unit Dimension Symbol 

Length meter (m) L 

Mass kilogram (kg) M 

Time second (s) T 

Electric Current ampere (A) I 

Thermodynamic 

Temperature 
Kelvin (K) 𝜽 

Amount of Substance mole (mol) N 

Luminous Intensity candela (cd) J 

I.1.5. b) Equation of Dimensions 

The dimension of any physical quantity, whatever is fundamental or derived, [P] can be 

expressed by a combination of the seven basic dimensions. This combination is called the 

equation of dimensions and can be formulated as follows: 

[𝑃]  =  𝑀𝑎  𝐿𝑏 𝑇𝑐𝐼𝑑𝜃𝑒𝑁𝑓𝐽ℎ 

Where a,b,c,d,e,f, and g are real numbers. 

I.1.5. c) Homogeneity of a formula: 

A formula: A = B is said to be homogeneous if the two physical quantities A and B have the 

same dimensions. 

I.1.5. d) Fundamental Rules of Dimensional Analysis: 

1- Every term in a physical equation must have the same dimensions. 

2- In the dimensional analysis we use only fundamental dimensions when expressing 

physical quantities. 
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3- The dimension of any real number and functions is one. 

4- We cannot add or subtract quantities of different dimensions. 

Example: 

Find the dimension of velocity, acceleration, force, work, pressure, power, gravitational 

potential energy, electrical potential, gravitational constant, momentum, impulse, density, 

angular momentum, surface tension, dynamic viscosity, magnetic field, electrical field, 

resistivity, and heat capacity 

Velocity: 

𝑣 =
𝑑

𝑡
,  [𝑣] =

𝐿

𝑇
= 𝐿𝑇−1 

Acceleration: 

𝑎 =
𝑣

𝑡
,  [𝑎] =

𝐿𝑇−1

𝑇
= 𝐿𝑇−2 

Force 

𝐹 = 𝑚 ⋅ 𝑎,  [𝐹] = 𝑀 ⋅ 𝐿𝑇−2 

Work 

𝑊 = 𝐹 ⋅ 𝑑,  [𝑊] = 𝑀 ⋅ 𝐿𝑇−2 ⋅ 𝐿 = 𝑀𝐿2𝑇−2 

Pressure: 

𝑃 =
𝐹

𝐴
,  [𝑃] =

𝑀𝐿𝑇−2

𝐿2
= 𝑀𝐿−1𝑇−2 

Power: 

𝑃 =
𝑊

𝑡
,  [𝑃] =

𝑀𝐿2𝑇−2

𝑇
= 𝑀𝐿2𝑇−3 

Gravitational potential energy 

𝑈 = 𝑚𝑔ℎ,  [𝑈] = 𝑀 ⋅ (𝐿𝑇−2) ⋅ 𝐿 = 𝑀𝐿2𝑇−2 

Electrical potential 

𝑉 =
𝑊

𝑄
,  [𝑉] =

𝑀𝐿2𝑇−2

𝐼𝑇
= 𝑀𝐿2𝑇−3𝐼−1 
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Gravitational constant 

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
⇒ 𝐺 =

𝐹𝑟2

𝑚1𝑚2
 

[𝐺] =
𝑀𝐿𝑇−2 ⋅ 𝐿2

𝑀2
= 𝑀−1𝐿3𝑇−2 

Momentum 

𝑝 = 𝑚𝑣,  [𝑝] = 𝑀 ⋅ 𝐿𝑇−1 

Impulse 

𝐽 = 𝐹𝑡,  [𝐽] = 𝑀𝐿𝑇−2 ⋅ 𝑇 = 𝑀𝐿𝑇−1 

Density 

ρ =
𝑚

𝑉
,  [ρ] =

𝑀

𝐿3
= 𝑀𝐿−3 

Angular momentum 

𝐿 = 𝐼ω,  [𝐿] = (𝑀𝐿2) ⋅ 𝑇−1 = 𝑀𝐿2𝑇−1 

Surface tension 

𝑇 =
𝐹

𝐿
,  [𝑇] =

𝑀𝐿𝑇−2

𝐿
= 𝑀𝑇−2 

Dynamic viscosity 

η =
𝐹𝑡

𝐴𝑥
,  [η] =

𝑀𝐿𝑇−2 ⋅ 𝑇

𝐿2 ⋅ 𝐿
= 𝑀𝐿−1𝑇−1 

Magnetic field 

𝐵 =
𝐹

𝑞𝑣
,  [𝐵] =

𝑀𝐿𝑇−2

𝐼𝑇 ⋅ 𝐿𝑇−1
= 𝑀𝑇−2𝐼−1 

Electric field 

𝐸 =
𝐹

𝑞
,  [𝐸] =

𝑀𝐿𝑇−2

𝐼𝑇
= 𝑀𝐿𝑇−3𝐼−1 

Resistivity 
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ρ = 𝑅
𝐴

𝐿
,  [ρ] = 𝑀𝐿2𝑇−3𝐼−2 ⋅

𝐿2

𝐿
= 𝑀𝐿3𝑇−3𝐼−2 

Heat capacity 

𝐶 =
𝑄

Δ𝑇
,  [𝐶] =

𝑀𝐿2𝑇−2

Θ
= 𝑀𝐿2𝑇−2Θ−1 

I.2 Mathematical background 

I.2.1 a) Functions of several variables: 

A function 𝑓 is said to be of several variables if it takes inputs from a domain in 𝑅𝑛, where 𝑛 

is the number of variables, and maps to a value in 𝑅 for scalar-valued functions or 𝑅𝑚 for 

vector-valued functions, where m is a natural number. 

Examples: 

Paraboloid Function: 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 

Temperature Distribution in 3D Space: 

𝑇(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 

Electric Potential in Cylindrical Coordinates: 

𝑉(𝑟, θ, 𝑧) =
1

√𝑟2 + 𝑧2
 

I.2.1 b) Partial derivatives of a function of several variables: 

The partial derivative measures how a mathematical function of multiple variables (x1, x2, ..., 

xn) changes when only one variable is varied, for example, x1, keeping the others constant (x2, 

..., xn). 

Notation 

Several notations are used: 

𝜕𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑥
 

𝑓𝑥(𝑥, 𝑦, 𝑧) 

𝜕𝑓𝑥(𝑥, 𝑦, 𝑧) 

We will use the first notation in this course. 
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Example: 

Find the partial derivatives of the following functions: 

𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 3𝑦2) 

∂𝑓

∂𝑥
= 2𝑥𝑦,  

∂𝑓

∂𝑦
= 𝑥2 + 6𝑦 

 𝑓(𝑥, 𝑦)  =  𝑒𝑥𝑦  

∂𝑓

∂𝑥
= 𝑦𝑒𝑥𝑦,  

∂𝑓

∂𝑦
= 𝑥𝑒𝑥𝑦 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 + 𝑥2𝑧 

∂𝑓

∂𝑥
= 𝑦𝑧 + 2𝑥𝑧,  

∂𝑓

∂𝑦
= 𝑥𝑧,  

∂𝑓

∂𝑧
= 𝑥𝑦 + 𝑥2 

𝑓(𝑥, 𝑦) = ln(𝑥2 + 𝑦2) 

∂𝑓

∂𝑥
=

2𝑥

𝑥2 + 𝑦2
,  
∂𝑓

∂𝑦
=

2𝑦

𝑥2 + 𝑦2
 

𝑓(𝑥, 𝑦) = sin(𝑥𝑦) 

∂𝑓

∂𝑥
= 𝑦 cos(𝑥𝑦) ,  

∂𝑓

∂𝑦
= 𝑥 cos(𝑥𝑦) 

𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 + 3𝑥𝑦 

∂𝑓

∂𝑥
= 3𝑥2 + 3𝑦,  

∂𝑓

∂𝑦
= 3𝑦2 + 3𝑥 

𝑓(𝑥, 𝑦) = tan−1 (
𝑦

𝑥
) 

∂𝑓

∂𝑥
= −

𝑦

𝑥2 + 𝑦2
,  
∂𝑓

∂𝑦
=

𝑥

𝑥2 + 𝑦2
 

𝑓(𝑥, 𝑦) = 𝑥𝑦 

∂𝑓

∂𝑥
= 𝑦𝑥𝑦−1,  

∂𝑓

∂𝑦
= 𝑥𝑦 ln 𝑥 

𝑓(𝑥, 𝑦) = ln(𝑥𝑦 + 1) 
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∂𝑓

∂𝑥
=

𝑦

𝑥𝑦 + 1
,  
∂𝑓

∂𝑦
=

𝑥

𝑥𝑦 + 1
 

I.2.1 c) Total differential of a function of several variables: 

The total differential of a function of several variables (x1, x2, ..., xn) gives the approximate 

change in the function due to small changes in all its variables. 

𝑑𝑓 (𝑥, 𝑦)  =  
𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
 𝑑𝑥  + 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑦
 𝑑𝑦 

I.2.2 Vectors: 

I.2.2.a) Definition 

A vector is a mathematical quantity that has magnitude, sense, and direction. It is represented 

geometrically as an arrow and algebraically as an ordered set of components. 

For example, in 3D space: 

𝑉⃗  =  𝑥 𝑖  +  𝑦 𝑗 ⃗⃗ +  𝑧 𝑘⃗   

 

Figure 2 Vector characteristics 

Table 4 Characteristics of vectors 

Type Description 

Zero vector Magnitude = 0, direction undefined 

Unit vector Magnitude = 1, represents direction only 

Position vector Points from the origin to a location in space 

Equal vectors Same magnitude and direction 

Opposite vectors Same magnitude, opposite direction 

I.2.2 b) Vector Magnitude: 

The magnitude or length of a vector is how long the vector is, regardless of its direction. The 

mathematical expression of the magnitude represents as: 
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|𝑉|  =  √𝑥2 + 𝑦2 + 𝑧2 

Examples: 

𝑣1⃗⃗⃗⃗ = 3 𝑖  +  4 𝑗 ⃗⃗  

|𝑣1⃗⃗⃗⃗ | = √(3)2 + (4)2 = √9 + 16 = √25 = 5 

𝑣1⃗⃗⃗⃗ = − 𝑖  +  2 𝑗 ⃗⃗  + 2 𝑘⃗  

|𝑣2⃗⃗⃗⃗ | = √(−1)
2 + 22 + 22 = √1 + 4 + 4 = √9 = 3 

I.2.2 c) Cartesian coordinate system: 

The Cartesian coordinate system is the first system developed historically, successfully linking 

both branches of geometry and algebra. It was developed in the 17th century by René 

Descartes, the famous mathematician who proposed the idea of using algebra to describe 

geometry. In his 1637 book, Geometry, Descartes (Descartes, 1954) demonstrated how points 

on a plane can be represented by ordered pairs of numbers (x, y), measured along two 

perpendicular axes. At roughly the same time, Pierre de Fermat independently developed 

similar ideas, and their combined work laid the foundations of analytic geometry. This system 

revolutionized mathematics by allowing geometric problems to be solved using algebraic 

equations. Over time, the system was expanded to include three dimensions and became 

fundamental in fields such as physics, engineering, computer science, and economics. 
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Figure 3 Position of point M in Cartesian coordinates 

1.2.2. d) Cartesian reference: 

In a three-dimensional space, the Cartesian coordinate system consists of an origin (point O) 

and directed and orthogonal (perpendicular to each other) axes passing through this origin. 

x-axis (denoted Ox); 

y-axis (denoted Oy); 

z-axis (denoted Oz); 

Orthonormal Cartesian Basis: 

In a three-dimensional space, the Cartesian coordinate system has an orthonormal vector basis 

consisting of three pairwise orthogonal unit vectors denoted as follows: 

𝑖   : carried by the Ox axis and oriented along its orientation. 

𝑗   : carried by the Oy axis and oriented along its orientation. 

𝑘⃗   : carried by the Oz axis and oriented along its orientation. 

Vector Representation of the Displacement from Point A to Point B in Cartesian basis: 

Let A, and B tow point in the space where A (xa, ya, za) and B (xb, yb, zb). The vector (𝐴𝐵⃗⃗⃗⃗  ⃗), 

representing the displacement from point A to point B, is given by: 
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𝐴𝐵⃗⃗⃗⃗  ⃗ = (𝑥𝑏 − 𝑥𝑎) 𝑖 + (𝑦𝑏 − 𝑦𝑎) 𝑗 + (𝑧𝑏 − 𝑧𝑎) 𝑘⃗  

 

Figure 4 Displacement 

Examples: 

Let 𝐴(1,2,3) and 𝐵(4,6,8). 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 3𝑖 + 4𝑗 + 5𝑘⃗  

Let A(-2, 0, 5) and B(1, -3, 2). 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 3𝑖 − 3𝑗 − 3𝑘⃗  

1.2.2 e) Vector operation: 

Let 𝑢⃗  and 𝑣  two vectors: 

𝑢⃗ = 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘⃗ ,  𝑣 = 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘⃗  

The sum of these two vectors is: 

𝑢⃗ + 𝑣 = (𝑢1 + 𝑣1)𝑖 + (𝑢2 + 𝑣2)𝑗 + (𝑢3 + 𝑣3)𝑘⃗  

Vector Subtraction: 

𝑢⃗ − 𝑣 = (𝑢1 − 𝑣1)𝑖 + (𝑢2 − 𝑣2)𝑗 + (𝑢3 − 𝑣3)𝑘⃗  

Examples: 

Let 𝑢⃗  and 𝑣  two vectors: 
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𝑢⃗ = 2𝑖 + 3𝑗 − 𝑘⃗ ,  𝑣 = 𝑖 − 4𝑗 + 2𝑘⃗  

𝑢⃗ + 𝑣 = (2 + 1)𝑖 + (3 − 4)𝑗 + (−1 + 2)𝑘⃗ = 3𝑖 − 𝑗 + 𝑘⃗  

𝑎 = −𝑖 + 2𝑗 + 4𝑘⃗ ,  𝑏⃗ = 3𝑖 − 𝑗 + 𝑘⃗  

𝑎 − 𝑏⃗ = (−1 − 3)𝑖 + (2 + 1)𝑗 + (4 − 1)𝑘⃗ = −4𝑖 + 3𝑗 + 3𝑘⃗  

Properties of Vector Addition: 

Existence of Additive Inverse: 

The result of adding a vector to its opposite is nil vector: 

𝑣  + (−𝑣 )  =  0 ⃗⃗⃗   

Commutativity: 

The order in which vectors are added does not affect the result. 

(𝐴 + 𝐵⃗ ) + 𝐶 = 𝐴 + (𝐵⃗ + 𝐶 ) 

Associativity: 

When adding three or more vectors, the grouping of the vectors does not affect the result. 

(𝐴 + 𝐵⃗ ) + 𝐶 = 𝐴 + (𝐵⃗ + 𝐶 ) 

Existence of Zero Vector: 

There exists a zero vector 0⃗  such that adding it to any vector 𝐴  does not change the vector 𝐴 : 

𝐴 + 0⃗ = 𝐴  

Distributivity of Scalar Multiplication over Vector Addition: 

Scalar multiplication distributes over vector addition. If ccc is a scalar and 𝐴 , 𝐵⃗  are vectors: 

𝑐(𝐴 + 𝐵⃗ ) = 𝑐𝐴 + 𝑐𝐵⃗  

Distributivity of Scalar Addition over Vector Addition: 

Scalar addition distributes over vector addition: 

𝑐(𝐴 + 𝐵⃗ ) = 𝑐𝐴 + 𝑐𝐵⃗  

Examples: 

𝐴 = 𝑖 + 2𝑗 ,  𝐵⃗ = 3𝑖 − 𝑗  
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𝐴 + 𝐵⃗ = (1 + 3)𝑖 + (2 − 1)𝑗 = 4𝑖 + 𝑗  

𝐴 + 𝐵⃗ = (1 + 3)𝑖 + (2 − 1)𝑗 = 4𝑖 + 𝑗  

𝐵⃗ + 𝐴 = (3 + 1)𝑖 + (−1 + 2)𝑗 = 4𝑖 + 𝑗  

 𝐴 = 𝑖 ,  𝐵⃗ = 2𝑖 + 𝑗 ,  𝐶 = −𝑖 + 3𝑗  

(𝐴 + 𝐵⃗ ) + 𝐶 = (3𝑖 + 𝑗 ) + (−𝑖 + 3𝑗 ) = 2𝑖 + 4𝑗  

𝐴 + (𝐵⃗ + 𝐶 ) = 𝑖 + (𝑖 + 4𝑗 ) = 2𝑖 + 4𝑗  

𝐴 = 4𝑖 − 2𝑗 ,  0⃗ = 0𝑖 + 0𝑗  

𝐴 + 0⃗ = (4 + 0)𝑖 + (−2 + 0)𝑗 = 4𝑖 − 2𝑗  

 𝐴 = 2𝑖 − 5𝑗 ,  −𝐴 = −2𝑖 + 5𝑗  

𝐴 + (−𝐴 ) = (2 − 2)𝑖 + (−5 + 5)𝑗 = 0𝑖 + 0𝑗 = 0⃗  

𝐴 = 𝑖 + 𝑗 ,  𝐵⃗ = 2𝑖 − 𝑗 ,  𝑐 = 3 

𝐴 + 𝐵⃗ = (1 + 2)𝑖 + (1 − 1)𝑗 = 3𝑖  

𝑐(𝐴 + 𝐵⃗ ) = 3 ⋅ 3𝑖 = 9𝑖  

𝑐𝐴 + 𝑐𝐵⃗ = 3(𝑖 + 𝑗 ) + 3(2𝑖 − 𝑗 ) = (3𝑖 + 3𝑗 ) + (6𝑖 − 3𝑗 ) = 9𝑖  

Example: 𝐴 = 𝑖 + 2𝑗 ,  𝑐 = 2,  𝑑 = 5 

(𝑐 + 𝑑)𝐴 = 7(𝑖 + 2𝑗 ) = 7𝑖 + 14𝑗  

𝑐𝐴 + 𝑑𝐴 = 2(𝑖 + 2𝑗 ) + 5(𝑖 + 2𝑗 ) = (2𝑖 + 4𝑗 ) + (5𝑖 + 10𝑗 ) = 7𝑖 + 14𝑗  

The dot product: 

The dot product, also known as the scalar product, is an algebraic operation that takes two 

vectors and gives a single scalar, a real number. This product measures how much one vector 

extends in the direction of another. 

The analytic expression: 

Let 𝑎  and 𝑏⃗  two vectors were, 

𝑎 = 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘⃗ , 
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𝑏⃗ = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘⃗  

The analytic expression of the dot product of these two vectors is:  

𝑎 ⋅ 𝑏⃗ = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 

Alternatively, we can use magnitudes and angle 𝜃 between the vectors to find the dot product: 

𝑎 ⋅ 𝑏⃗ = |𝑎 | |𝑏⃗ | cos 𝜃 

Examples: 

𝑎 = 1𝑖 + 2𝑗 ,  𝑏⃗ = 3𝑖 + 4𝑗  

𝑎 ⋅ 𝑏⃗ = (1)(3) + (2)(4) = 3 + 8 = 11 

𝑎 = 1𝑘⃗ ,  𝑏⃗ = 1𝑖 + 2𝑗 + 3𝑘⃗  

𝑎 ⋅ 𝑏⃗ = 0 + 0 + 3 = 3 

𝑎 = 1𝑖 − 1𝑗 ,  𝑏⃗ = −1𝑖 + 1𝑗  

𝑎 ⋅ 𝑏⃗ = (1)(−1) + (−1)(1) = −1 − 1 = −2 

𝑎 = 2𝑖 + 2𝑗 ,  𝑏⃗ = 2𝑖 + 2𝑗  

𝑎 ⋅ 𝑏⃗ = 4 + 4 = 8 

The cross product  

The cross product (𝑎 × 𝑏⃗ ) of two vectors (𝑎 ) and (𝑏⃗ ) is a vector perpendicular to both (𝑎 ) and 

(𝑏⃗ ), with magnitude equal to the area of the parallelogram formed by (𝑎 ) and (𝑏⃗ ), and 

direction given by the right-hand rule. 

Analytic expression in terms of basis vectors: 

Let 𝑎 , and 𝑏⃗  

𝑎 = 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘⃗ , 

𝑏⃗ = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘⃗  

𝑎  × 𝑏⃗  = (𝑎2𝑏3 − 𝑎3𝑏2)𝑖 − (𝑎1𝑏3 − 𝑎3𝑏1)𝑗 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑘⃗  

Also, we can calculate the magnitude of 𝑎  × 𝑏⃗  as: 

|𝑎 × 𝑏⃗ | = |𝑎 | |𝑏⃗ | sin 𝜃 
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Examples: 

𝑎 = 𝑖 + 2𝑗 ,  𝑏⃗ = 3𝑖 + 4𝑗  

𝑎 × 𝑏⃗ = (2 ⋅ 0 − 0 ⋅ 4)𝑖 − (1 ⋅ 0 − 0 ⋅ 3)𝑗 + (1 ⋅ 4 − 2 ⋅ 3)𝑘⃗ = −2𝑘⃗  

𝑎 = 𝑘⃗ ,  𝑏⃗ = 𝑖 + 𝑗 + 𝑘⃗  

𝑎 × 𝑏⃗ = (0 ⋅ 1 − 1 ⋅ 1)𝑖 − (0 ⋅ 1 − 1 ⋅ 1)𝑗 + (0 ⋅ 1 − 0 ⋅ 1)𝑘⃗ = −𝑖 + 𝑗  

I.2.3 Coordinate systems: 

1.2.3. a) The Cartesian coordinates: 

In the Cartesian coordinate system, the position vector of a point M is given as: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗  

 

Figure 5 Position in Cartesian coordinates 

The magnitude of the position vector: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   =  √𝑥2 + 𝑦2 + 𝑧2 

The direction  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   est le segment de droite M O, and the sens of 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   is from the point O to 

the point M. 

1.2.3. b) The Polar coordinates: 

Polar coordinate is a two-dimensional coordinate system in which the position of a point M in 

the plane is described by: 

A distance from a fixed point called the origin, denoted by 𝜌, and an angle from a fixed 

direction, typically the positive x-axis, denoted by 𝜃. 
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Figure 6 Position in polar coordinates 

As shown in FIG. |𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  |  =  𝜌 which is the distance between M and O.  

𝜌 is the radial coordinate, and 𝜃 is the angular coordinate. 

The base of the polar coordinates is 𝑢𝜌⃗⃗⃗⃗  and 𝑢θ⃗⃗⃗⃗  , here 𝑢𝜌⃗⃗⃗⃗  is the unit vector of the vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   

𝑢ρ⃗⃗⃗⃗ =
𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

|𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  |
 

The relation between the polar coordinates and the Cartesian coordinates: 

Based on the FIG, we can find that the relation between the Cartesian coordinates (x, y) is: 

x =  𝜌 co s θ 

𝑦 =  𝜌 si n θ 

Therefore, 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝜌 co s θ 𝑖 + 𝜌 si n θ 𝑗  

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =  𝜌 𝑢𝜌⃗⃗⃗⃗  

𝜌 =  √𝑥2 + 𝑦2 

θ =  arctan(
𝑦

𝑥
) 

The unit vector of 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   becomes 

𝑢ρ⃗⃗⃗⃗ =
𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝜌
= cos θ 𝑖 + sin θ 𝑗  

Also,  

𝑢θ⃗⃗⃗⃗  =  −sin 𝜃  𝑖 + cos 𝜃  𝑗   
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Unlike the fixed unit vectors in the Cartesian coordinate system, the unit vectors in the polar 

coordinate system are position-dependent; thus, as the point M moves, the polar unit vectors 

also change their direction accordingly. The derivation with respect to the polar angle of the 

unit vectors 𝑢𝜌⃗⃗⃗⃗  and 𝑢θ⃗⃗⃗⃗  , gives us: 

𝑑𝑢ρ⃗⃗⃗⃗ 

𝑑θ
 

=  
𝑑

𝑑θ
 (  cos θ 𝑖   +   sin θ 𝑗  )  

= −sin θ 𝑖 + cos θ 𝑗  

= 𝑢𝜃⃗⃗ ⃗⃗  

𝑑𝑢θ⃗⃗⃗⃗ 

𝑑θ
 

=
𝑑

𝑑θ
(− sin θ 𝑖 + cos θ 𝑗 ) 

= −cos θ 𝑖 − sin θ 𝑗  

= −𝑢𝜌⃗⃗⃗⃗  

1.2.3. c) cylindrical coordinates: 

In the cylindrical coordinate system, the position of a point M is identified by  3D coordinate 

system that extends polar coordinates by adding a vertical height component z. 

 

Figure 7 position in cylindrical coordinates 

The relation between cylindrical coordinates and Cartesian coordinates: 

𝑥 = 𝜌 cos θ 
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𝑦 = 𝜌 sin 𝜃 

𝑍 =  𝑧 

From Cylindrical to Cartesian: 

𝜌 =  √𝑥2 + 𝑦2 

θ =  arctan(
𝑦

𝑥
) 

𝑍 =  𝑧 

The unit vector of the cylindrical coordinates: 

𝑢𝜌⃗⃗⃗⃗  =  cos 𝜃  𝑖 + sin 𝜃  𝑗  

𝑢θ⃗⃗⃗⃗  =  −sin 𝜃  𝑖 + cos 𝜃  𝑗   

 𝑘⃗ =    𝑘⃗  

The position vector: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =  𝜌 𝑢𝜌⃗⃗⃗⃗  +  𝑧 𝑘⃗   

Example: 

Convert the point (x, y, z) = (3, 4, 5) to cylindrical coordinates: 

𝜌 = √𝑥2 + 𝑦2 = √32 + 42 = √9 + 16 = √25 = 5 

θ = tan−1 (
𝑦

𝑥
) = tan−1 (

4

3
) ≈ 0.93 radians 

Z = 5 

1.2.3. d) Spherical coordinates: 

In three-dimensional space, the position of a point M is located in the spherical coordinate 

system by: 

The radial distance r is given by: 

𝑟 = |𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  | 

r is the distance between O and M. 

The angle θ is the angle between the vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   and the axe Oz. 
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The angle 𝜑 is the angle between the projection of 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   on the plane (x,y) and the axis Ox. 

The spherical coordinates use radial distance and two angles to locate point M. 

 

Figure 8 Spherical coordinates 

The relation between the spherical coordinates and the Cartesian coordinates: 

From Cartesian to spherical coordinates: 

𝑥 = 𝑟 𝑠𝑖𝑛 θ cos 𝜑 

𝑦 = 𝑟 𝑠𝑖𝑛 θ sin𝜑 

𝑧 =  𝑟 𝑐𝑜𝑠 θ 

From the spherical to Cartesian coordinates: 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

θ = arccos (
𝑧

𝑟
) 

𝜑 = arctan (
𝑦

𝑥
)  (with quadrant adjustment) 

The unit vector of the spherical coordinates: 

Radial Unit Vector: 

𝑈𝑟⃗⃗⃗⃗ = sin θ cos𝜑  𝑖 + sin θ sin𝜑  𝑗 + cos θ  𝑘⃗  

Polar Angle Unit Vector: 

𝑈θ⃗⃗ ⃗⃗  = cos θ cos𝜑  𝑖 + cos θ sin𝜑  𝑗 − sin θ  𝑘⃗  
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Azimuthal Angle Unit Vector: 

𝑈𝜑⃗⃗⃗⃗  ⃗ = − sin𝜑  𝑖 + cos𝜑  𝑗  

Algebraic Properties 

Orthonormality: 

𝑈𝑟⃗⃗⃗⃗ ⋅ 𝑈θ⃗⃗ ⃗⃗  = 𝑈θ⃗⃗ ⃗⃗  ⋅ 𝑈𝜑⃗⃗⃗⃗  ⃗ = 𝑈𝜑⃗⃗⃗⃗  ⃗ ⋅ 𝑈𝑟⃗⃗⃗⃗ = 0 

𝑈𝑟⃗⃗⃗⃗ × 𝑈θ⃗⃗ ⃗⃗  = 𝑈𝜑⃗⃗⃗⃗  ⃗ 

Cross Product Relations: 

𝑈𝑟⃗⃗⃗⃗ × 𝑈θ⃗⃗ ⃗⃗  = 𝑈𝜑⃗⃗⃗⃗  ⃗ 

𝑈θ⃗⃗ ⃗⃗  × 𝑈𝜑⃗⃗⃗⃗  ⃗ = 𝑈𝑟⃗⃗⃗⃗  

𝑈𝜑⃗⃗⃗⃗  ⃗ × 𝑈𝑟⃗⃗⃗⃗ = 𝑈θ⃗⃗ ⃗⃗   

Examples: 

Convert the following point coordinates from Cartesian to Spherical system: 

M (2, 0, 0) 

P (3, 4, 0) 

B (1, 1, √2) 

Point M: 

𝑟 = √22 + 02 + 02 = 2 

θ = arccos (
0

2
) =

π

2
 

𝜑 = arctan (
0

2
) = 0 

Point P: 

𝑟 = √32 + 42 + 02 = 5 

θ = arccos (
0

5
) =

π

2
 

𝜑 = arctan (
4

3
) ≈ 0.927 rad 

Point B: 

𝑟 = √12 + 12 + (√2)
2
= 2 
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θ = arccos (
√2

2
) =

π

4
 

𝜑 = arctan (
1

1
) =

π

4
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Kinematics of the Material Point 
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Kinematics of the material point  

II.1 Introduction: 
Kinematics is one of the fundamental branches of classical mechanics. It describes the motion 

of objects, focusing solely on geometric and temporal aspects without considering the forces 

causing the motion. The Kinematics is based on some principal physical quantities: position, 

time, velocity, acceleration, and trajectory.  

II.2 Definition: 

II.2.1 Point particle:  

In kinematics, motion problems are simplified by approximating the dimensions of a body into 

a point particle. A point particle is a point-like mass with no volume, internal structure, or 

dimensions. This simplification is valid when the size and rotation of the body are negligible 

compared to its overall motion. 

II.2.2 Reference Frame:  

To describe the motion of a point particle, we need a reference frame or coordinate system. 

This is a set of axes, such as x, y, and z axes in Cartesian coordinates, or r, θ, and z in cylindrical 

coordinates, with a defined origin (0,0,0), from which all positions and motions are measured. 

Motion and rest are relative to the chosen reference frame. 

II.2.3 Position:  

The location of a point particle in space at a specific time, relative to the chosen origin of the 

reference frame. It is a vector quantity, which means it has both magnitude; its distance from 

the origin, and a direction. 

 

Figure 9 Position 

Mathematical expression of the position in Cartesian coordinates: 

𝑟 (𝑡) = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡) = 𝑥𝑀(𝑡) 𝑖 + 𝑦𝑀(𝑡) 𝑗 + 𝑧𝑀(𝑡) 𝑘⃗  
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Mathematical expression of the position in Polar coordinates: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =  𝜌 𝑢𝜌⃗⃗⃗⃗  

Mathematical expression of the position in cylindrical coordinates: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =  𝜌 𝑢𝜌⃗⃗⃗⃗  +  𝑧 𝑘⃗   

Mathematical expression of the position in spherical coordinates: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =  𝑟 𝑢𝑟⃗⃗⃗⃗  

II.2.4 Displacement 𝚫𝒓⃗ (𝒕):  

It is the change in the particle's point position. It's the straight-line vector drawn from the initial 

position of the particle's point to its final position. the displacement is a vector quantity. 

Δ𝑟 (𝑡) = 𝑟 (𝑡2) − 𝑟 (𝑡1) 

 

Figure 10 Displacement 

II.2.5 Velocity (𝐯⃗ ):  

It is the rate of change of a particle's displacement with respect to time. It's a vector quantity, 

which means it has both magnitude (speed) and direction. 

Average velocity: 

𝑣avg⃗⃗⃗⃗⃗⃗  ⃗ =
Δ𝑟 

Δ𝑡
=
𝑟 (𝑡2) − 𝑟 (𝑡1)

𝑡2 − 𝑡1
 

𝑣 (𝑡) =
𝑑𝑟 

𝑑𝑡
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II.2.5.a) Vector velocity in Cartesian coordinates: 

The vector velocity in the Cartesian coordinate system is expressed as a vector with 

components along the x, y, and z axes. It describes the rate of change of the position vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   

with respect to time, as follows. 

𝑣 (𝑡) =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡)

𝑑𝑡
 

Velocity vector in component form (Leibniz notation): 

𝑣 (𝑡) =
𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘⃗  

Velocity vector in component form (Newton notation): 

𝑣 (𝑡) = 𝑥̇(𝑡)𝑖 + 𝑦̇(𝑡)𝑗 + 𝑧̇(𝑡)𝑘⃗  

We note here that the base (𝑖 , 𝑗 , 𝑘⃗ ) is characterized by: 

𝑑𝑖 

𝑑𝑡
= 0⃗ ,  

𝑑𝑗 

𝑑𝑡
= 0⃗ ,  

𝑑𝑘⃗ 

𝑑𝑡
= 0⃗  

Example: 

Let a point M move in space such that its position vector (relative to origin O) is: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡) = (2𝑡2)𝑖 + (3𝑡)𝑗 + (5)𝑘⃗  

Calculate the velocity vector. 

Solution 

𝑑𝑥

𝑑𝑡
= 4𝑡,  

𝑑𝑦

𝑑𝑡
= 3,  

𝑑𝑧

𝑑𝑡
= 0 

𝑣 (𝑡) =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡)

𝑑𝑡
= 4𝑡𝑖 + 3𝑗  

Let the position vector of a point M be: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡) = 𝑅 cos(ω𝑡) 𝑖 + 𝑅 sin(ω𝑡) 𝑗  

Calculate the velocity vector. 

Solution 

𝑣 (𝑡) =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡)

𝑑𝑡
= −𝑅ωsin(ω𝑡) 𝑖 + 𝑅ω cos(ω𝑡) 𝑗  
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II.2.5 b) Vector velocity in polar coordinates: 

Vector velocity in polar coordinates is the rate of change of a particle point position with respect 

to time, expressed using radial and angular components.  

The relation of the velocity is given as: 

𝑣 =
𝑑

𝑑𝑡
(ρ 𝑢ρ⃗⃗⃗⃗ ) 

=
𝑑ρ

𝑑𝑡
𝑢ρ⃗⃗⃗⃗ + ρ

𝑑𝑢ρ⃗⃗⃗⃗ 

𝑑𝑡
 (Product Rule) 

= 𝜌 ̇ 𝑢𝜌⃗⃗⃗⃗ + 𝜌
𝑑𝑢𝜌⃗⃗⃗⃗ 

𝑑𝑡
 

The unit vector derivative is: 

𝑑𝑢ρ⃗⃗⃗⃗ 

𝑑𝑡
=
𝑑θ

𝑑𝑡
𝑢θ⃗⃗⃗⃗ = θ̇𝑢𝜃⃗⃗ ⃗⃗  

Therefore, 

𝑣 = ρ̇𝑢ρ⃗⃗⃗⃗ ⏟
Radial

+ ρθ̇𝑢θ⃗⃗⃗⃗ ⏟
Tangential

 

𝑣ρ = ρ̇  

𝑣θ = ρθ̇  

Conversion to Cartesian coordinates: 

𝑣𝑥 = ρ̇ cos θ − ρθ̇ sin θ 

𝑣𝑦 = ρ̇ sin θ + ρθ̇ cos θ 

II.2.5.c) Vector velocity in cylindrical coordinates: 

𝑣 =
𝑑𝑟 

𝑑𝑡
=
𝑑

𝑑𝑡
(ρ𝑢ρ⃗⃗⃗⃗ + 𝑧𝑘⃗ ) 

𝑑ρ

𝑑𝑡
𝑢ρ⃗⃗⃗⃗ + ρ

𝑑𝑢ρ⃗⃗⃗⃗ 

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
𝑘⃗  (Product Rule) 

The unit vector derivative is: 

𝑑𝑢ρ⃗⃗⃗⃗ 

𝑑𝑡
=
𝑑𝜃

𝑑𝑡
𝑢𝜃⃗⃗ ⃗⃗ = 𝜃̇𝑢𝜃⃗⃗ ⃗⃗  

Therefore, 

𝑣 = ρ̇𝑢ρ⃗⃗⃗⃗ ⏟
Radial

+ ρ𝜃̇𝑒𝜃⃗⃗⃗⃗ ⏟
Angular

+ 𝑧̇𝑘⃗ ⏟
Vertical

 

𝑣ρ = ρ̇  

𝑣𝜃 = ρ𝜃̇  

𝑣𝑧 = 𝑧̇  
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Conversion to Cartesian: 

𝑣𝑥 = ρ̇ cos 𝜃 − ρ𝜃̇ sin 𝜃 

𝑣𝑦 = ρ̇ sin 𝜃 + ρ𝜃̇ cos 𝜃 

𝑣𝑧 = 𝑧̇ 

Example: 

A drone moves with the following cylindrical coordinates as functions of time: 

ρ(𝑡) = 2𝑡 m 

𝜃(𝑡) =
π

4
𝑡 rad 

𝑧(𝑡) = 3𝑡2 m 

Find its velocity vector in cylindrical and Cartesian coordinates at (t = 2s). 

Solution: 

𝜌(𝑡) = 2𝑡 m 

ρ̇ = 2 m/s 

𝜃(𝑡) =
𝜋

4
𝑡 rad 

𝜃̇ =
π

4
 rad/s 

𝑧(𝑡) = 3𝑡2 m 

𝑧̇ = 6(2) = 12 m/s 

Using the fundamental equation of the velocity: 

𝑣 = ρ̇𝑢ρ⃗⃗⃗⃗ + ρ𝜃̇𝑢𝜃⃗⃗ ⃗⃗ + 𝑧̇𝑘⃗  

𝑣 = 2𝑢ρ⃗⃗⃗⃗ + π𝑢𝜃⃗⃗ ⃗⃗ + 12𝑘⃗  m/s  

In cartesian coordinates: 

𝑣 = −π𝑖 + 2𝑗 + 12𝑘⃗  m/s ≈ −3.14𝑖 + 2𝑗 + 12𝑘⃗  m/s  

II.2.5.d) Vector velocity in spherical coordinates: 

𝑣 =
𝑑𝑟 

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑟 𝑢𝑟⃗⃗⃗⃗ ) 

= 𝑟𝑈𝑟⃗⃗⃗⃗ 
̇ + 𝑟

𝑑𝑈𝑟⃗⃗⃗⃗ 

𝑑𝑡
 

The unit vector derivative is: 

𝑑𝑈𝑟⃗⃗⃗⃗ 

𝑑𝑡
= θ̇ 𝑈θ⃗⃗ ⃗⃗  + φ̇ sin θ 𝑈φ⃗⃗⃗⃗  ⃗ 

𝑈θ⃗⃗ ⃗⃗  : Polar unit vector 
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𝑈φ⃗⃗⃗⃗  ⃗: Azimuthal unit vector 

𝑣 = 𝑟̇ 𝑈𝑟⃗⃗⃗⃗ ⏟
Radial

+ 𝑟θ̇ 𝑈θ⃗⃗ ⃗⃗  ⏟  
Polar

+ 𝑟φ̇ sin θ 𝑈φ⃗⃗⃗⃗  ⃗⏟      
Azimuthal

 

𝑣𝑟 = 𝑟̇  

𝑣θ = 𝑟θ̇  

𝑣φ = 𝑟φ̇ sin θ  

Conversion to Cartesian: 

𝑣𝑥 = 𝑟̇ sin θ cosφ + 𝑟θ̇ cos θ cosφ − 𝑟φ̇ sin θ sinφ 

𝑣𝑦 = 𝑟̇ sin θ sinφ + 𝑟θ̇ cos θ sinφ + 𝑟φ̇ sin θ cosφ 

𝑣𝑧 = 𝑟̇ cos θ − 𝑟θ̇ sin θ 

Example: 

A weather balloon moves with the following spherical coordinates as functions of time: 

𝑟(𝑡)  =  3𝑡2  +  1 m  

θ(𝑡) =
π

12
𝑡 rad 

φ(𝑡) =
π

6
𝑡 rad 

Find its velocity vector in spherical and Cartesian coordinates at t = 2 s. 

Solution: 

𝑟 = 3(2)2 + 1 = 13 m 

𝑟̇ = 6(2) = 12 m/s 

θ =
π

12
(2) =

π

6
 rad 

θ̇  =  
π

12
 rad/s  

φ =
π

6
(2) =

π

3
 rad 

φ̇ =
π

6
 rad/s 

𝑣 = 𝑟̇ 𝑈𝑟⃗⃗⃗⃗ + 𝑟θ̇ 𝑈θ⃗⃗ ⃗⃗  + 𝑟φ̇ sin θ 𝑈φ⃗⃗⃗⃗  ⃗ 

𝑣 = 12𝑈𝑟⃗⃗⃗⃗ + 3.40𝑈θ⃗⃗ ⃗⃗  + 3.40𝑈φ⃗⃗⃗⃗  ⃗ m/s  

II.2.6 Acceleration (𝑎 ):  

This is the rate of change of an object's velocity with respect to time. Mathematically, it is the 

second derivative of a particle's position vector with respect to time, therefore, the acceleration 

is also a vector quantity. 
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II.2.6.a) Acceleration vector in Cartesian coordinates: 

The acceleration can be defined as the second derivative of the position: 

𝑎 (𝑡) =
𝑑𝑣 

𝑑𝑡
=
𝑑2𝑟 

𝑑𝑡2
 

For a position vector : 

𝑟 (𝑡) = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘⃗  

The acceleration vector can be given as: 

𝑎 (𝑡) =
𝑑2𝑥

𝑑𝑡2
𝑖 +

𝑑2𝑦

𝑑𝑡2
𝑗 +

𝑑2𝑧

𝑑𝑡2
𝑘⃗  

= 𝑥𝑖 ̈ + 𝑦𝑗 ̈ + 𝑧𝑘⃗ 
̈
 

Example: 

Given the position functions: 

𝑥(𝑡) = 2𝑡3 − 4𝑡 

𝑦(𝑡)  =  5𝑐𝑜𝑠(𝜋 𝑡)  

𝑧(𝑡) = 3𝑒0.2𝑡 

Find the acceleration vector at t = 1s. 

Solution : 

The second derivatives 

𝑥̈(𝑡) =
𝑑2

𝑑𝑡2
(2𝑡3 − 4𝑡) = 12𝑡 

𝑦̈(𝑡) =
𝑑2

𝑑𝑡2
(5 cos π 𝑡) = −5π2 cos π 𝑡 

𝑧̈(𝑡) =
𝑑2

𝑑𝑡2
(3𝑒0.2𝑡) = 3(0.2)2𝑒0.2𝑡 = 0.12𝑒0.2𝑡 

At t = 1s. 

𝑥̈(1) = 12(1) = 12 m/s2 

𝑦̈(1) = −5π2 cos(π ⋅ 1) = 5π2 ≈ 49.35 m/s2 

𝑧̈(1) = 0.12𝑒0.2 ≈ 0.146 m/s2 

Therefore, the acceleration vector is: 

𝑎 (1) = 12𝑖 + 49.35𝑗 + 0.146𝑘⃗  m/s2  

II.2.6. b) Acceleration polar coordinates: 

The acceleration vector in polar coordinates is derived from the second time derivative of the 

position vector. 

𝑎 =
𝑑𝑣 

𝑑𝑡
=
𝑑2𝑟 

𝑑𝑡2
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From the velocity vector in polar coordinates 

𝑎 =
𝑑

𝑑𝑡
(ρ̇𝑈𝜌⃗⃗ ⃗⃗  + ρθ̇𝑈𝜃⃗⃗ ⃗⃗  ) 

 =  ρ̈𝑈𝜌⃗⃗ ⃗⃗  + ρ̇
𝑑𝑈ρ⃗⃗ ⃗⃗ 

𝑑𝑡
+
𝑑

𝑑𝑡
(ρθ̇)𝑈θ⃗⃗ ⃗⃗  + ρθ̇

𝑑𝑈θ⃗⃗ ⃗⃗  

𝑑𝑡
 

Using unit vector derivatives:  

𝑑𝑈ρ⃗⃗ ⃗⃗ 

𝑑𝑡
= θ̇ 𝑈𝜃⃗⃗ ⃗⃗   

𝑑𝑈θ⃗⃗ ⃗⃗  

𝑑𝑡
= −θ̇ 𝑈𝜌⃗⃗ ⃗⃗   

Therefore, 

𝑎 = (ρ̈ − ρθ2̇)𝑈ρ⃗⃗ ⃗⃗ ⏟        
Radial

+ (ρθ̈ + 2ρθ̇̇) 𝑈θ⃗⃗ ⃗⃗  ⏟        
Angular

 

For uniform circular motion 

ρ̇ = 0, θ̈ = 0 

𝑎ρ = −ρθ2̇ (Centripetal) 

𝑎θ = 0 

𝑎 = −ρω2𝑈ρ⃗⃗ ⃗⃗  where ω = θ̇ 

II.2.6.c) Acceleration in cylindrical coordinates: 

The acceleration vector in cylindrical coordinates is derived from the second time derivative 

of the position vector. 

𝑎 =
𝑑𝑣 

𝑑𝑡
=
𝑑2𝑟 

𝑑𝑡2
 

𝑟 = ρ 𝑈ρ⃗⃗ ⃗⃗ + 𝑧 𝑘⃗  

𝑎 =
𝑑

𝑑𝑡
(𝜌̇𝑈𝜌⃗⃗ ⃗⃗  + ρθ̇𝑈θ⃗⃗ ⃗⃗  + 𝑧̇ 𝑈𝑧⃗⃗⃗⃗ ) 

= ρ̈𝑈𝜌⃗⃗ ⃗⃗  + ρ̇
𝑑𝑈ρ⃗⃗ ⃗⃗ 

𝑑𝑡
+
𝑑

𝑑𝑡
(ρθ̇)𝑈θ⃗⃗ ⃗⃗  + ρθ̇

𝑑𝑈θ⃗⃗ ⃗⃗  

𝑑𝑡
+ 𝑧̈ 𝑘⃗  

𝑑𝑈ρ⃗⃗ ⃗⃗ 

𝑑𝑡
= θ̇ 𝑈θ⃗⃗ ⃗⃗   

𝑑𝑈θ⃗⃗ ⃗⃗  

𝑑𝑡
= −θ ̇  𝑈𝜌⃗⃗ ⃗⃗   

𝑑𝑘⃗ 

𝑑𝑡
= 0 

Therefore, 



40 
 

 

𝑎  =  (𝜌̈ − 𝜌𝜃̇
2
)𝑈𝜌⃗⃗⃗⃗  +  (𝜌𝜃̈  +  2ρ ̇ 𝜃̇) 𝑈θ⃗⃗ ⃗⃗   + +𝑧̈ 𝑘⃗  

 II.2.6.d) Acceleration in spherical coordinates: 

In spherical coordinates, the position vector is: 

𝑟 = 𝑟𝑈𝑟⃗⃗⃗⃗  

The acceleration vector in spherical coordinates is derived from the second time derivative of 

the position vector. 

 

 

II.3. Movement (motion) of a particle point: 
The motion or the movement of a particle point ‘material point’ refers to a phenomenon in 

which the change in the position of a material mass of negligible dimensions relative to a frame 

of reference over time is studied(Chow, 2024). 

II.3.1. Type of movement (motion) of a particle point: 

The types of motion of a material point can be classified based on path, velocity, acceleration, 

and force. 

II.3.1.a) Rectilinear Motion (Straight Line) 

In the rectilinear motion, the particle moves along a straight path.  

The vector position: For motion along the ( 𝑥 ) −axis, the position vector of a material point at 

time ( 𝑡 ) is: 

𝑟 (𝑡) = 𝑥(𝑡) 𝑖  

𝑥(𝑡) is the position function, 𝑖 , is the unit vector in 𝑥 axis. 

  In this case, the motion is purely along the (𝑖 )-direction: therefore, 𝑦(𝑡) = 0, 𝑎𝑛𝑑 𝑧(𝑡) = 0. 

The vector velocity: The vector velocity is the time derivative of the position. 

𝑣 (𝑡) = 𝑥̇(𝑡) 𝑖  

The vector acceleration: The vector acceleration is the time derivative of the velocity. 

𝑎 (𝑡) = 𝑥̈(𝑡) 𝑖  
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From acceleration to velocity: 

𝑣 (𝑡) = 𝑣0⃗⃗⃗⃗ + ∫ 𝑎 (t)
𝑡

𝑡0

 𝑑𝑡 

Where, 𝑣0⃗⃗⃗⃗  is the initial velocity of the particle. 

𝐼𝑓(𝑎 (𝑡) = 𝑎0 𝑖 ) 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡: 

𝑣 (𝑡) = 𝑣0⃗⃗⃗⃗ + 𝑎0(𝑡 − 𝑡0) 𝑖  

From the velocity to position: 

𝑟 (𝑡) = 𝑟0⃗⃗  ⃗ + ∫ 𝑣 (t)
𝑡

𝑡0

 𝑑𝑡 

Where, 𝑟0⃗⃗  ⃗ 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 

𝑟 (𝑡) = 𝑟0⃗⃗  ⃗ + 𝑣0⃗⃗⃗⃗ (𝑡 − 𝑡0) +
1

2
𝑎0(𝑡 − 𝑡0)

2 𝑖  

II.3.1.b) Uniform rectilinear motion: 

Uniform Rectilinear Motion (URM) is the motion of a material point along a straight line with 

the following characteristics: 

1-  A constant velocity (𝑣 (𝑡) = 𝑣0⃗⃗⃗⃗ ). 

2- A zero acceleration 𝑎 (𝑡)  =  0. 

3- A linear trajectory along one axis (𝑒. 𝑔. , 𝑡ℎ𝑒 ( 𝑥 ) − 𝑎𝑥𝑖𝑠). 

Analysis: 

Let the motion be along the ( 𝑥 ) −axis. The position vector at time ( 𝑡 ) is: 

𝑟 (𝑡) = 𝑥(𝑡) 𝑖  

Since the velocity is constant: 

𝑣 (𝑡) = 𝑥̇(𝑡) 𝑖 = 𝑣0 𝑖  

If the initial position is (𝑟0⃗⃗  ⃗ = 𝑥0 𝑖 ), then: 

𝑟 (𝑡) = 𝑥0 𝑖 + 𝑣0(𝑡 − 𝑡0) 𝑖 = [𝑥0 + 𝑣0(𝑡 − 𝑡0)]𝑖  

Therefore,  

𝑥(𝑡) = 𝑥0 + 𝑣0(𝑡 − 𝑡0) 
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The acceleration: 

𝑎 (𝑡) = 𝑣0̇ 𝑖 = 0⃗  

 

Figure 11 Uniform rectilinear motion 

II.3.1.c) Uniformly varied rectilinear movement: 

Uniformly varying rectilinear motion refers to the motion of a material point along a straight 

line under the following conditions: 

1- Constant acceleration (𝑎 (𝑡) = 𝑎0⃗⃗⃗⃗ ) 

2- A changing velocity linearly over time. 

3- A motion along a single direction, assumed here to be the ( 𝑥 ) −axis. 

Analysis: 

We consider motion only along the ( 𝑥 ) −axis: 

𝑟 (𝑡) = 𝑥(𝑡) 𝑖  

The acceleration vector given as : 

𝑎 (𝑡) = 𝑎0⃗⃗⃗⃗ = 𝑎0 𝑖  

Velocity is the time integral of acceleration: 

𝑣 (𝑡) = 𝑣0⃗⃗⃗⃗ + ∫ 𝑎 (t)
𝑡

𝑡0

 𝑑𝑡 
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Therefore,  

𝑣 (𝑡) = 𝑣0⃗⃗⃗⃗ + 𝑎0⃗⃗⃗⃗ (𝑡 − 𝑡0) 

𝐼𝑓(𝑣0⃗⃗⃗⃗ = 𝑣0 𝑖 )𝑎𝑛𝑑(𝑎0⃗⃗⃗⃗ = 𝑎0 𝑖 ), 𝑡ℎ𝑒𝑛: 

𝑣 (𝑡) = [𝑣0 + 𝑎0(𝑡 − 𝑡0)]𝑖  

Position is the integral of velocity 

𝑟 (𝑡) = 𝑟0⃗⃗  ⃗ + ∫ 𝑣 (t)
𝑡

𝑡0
 𝑑t 

Substitute (𝑣 (t) = 𝑣0⃗⃗⃗⃗ + 𝑎0⃗⃗⃗⃗ (t − 𝑡0)) 

𝑟 (𝑡) = 𝑟0⃗⃗  ⃗ + ∫ [𝑣0⃗⃗⃗⃗ + 𝑎0⃗⃗⃗⃗ (t − 𝑡0)]𝑑t
𝑡

𝑡0

 

𝑇ℎ𝑢𝑠, 𝑖𝑓(𝑟0⃗⃗  ⃗ = 𝑥0 𝑖 ), (𝑣0⃗⃗⃗⃗ = 𝑣0 𝑖 ), 𝑡0  =  0 𝑠 𝑎𝑛𝑑(𝑎0⃗⃗⃗⃗ = 𝑎0 𝑖 ), 𝑡ℎ𝑒𝑛: 

𝑟 (𝑡) = [𝑥0 + 𝑣0(𝑡) +
1

2
𝑎0(𝑡)

2] 𝑖  

Example: 

The initial conditions of the motion of a particle are: 

𝑥0 = 0 m, 

𝑣0 = 5 m/s, 

𝑎0 = 2 m/s2, 

𝑡0 = 0 s 

So: 

𝑥(𝑡) = 𝑥0 + 𝑣0(𝑡) +
1

2
𝑎0(𝑡)

2 = 5𝑡 + 𝑡2 

𝑣(𝑡) = 𝑣0 + 𝑎0(𝑡 − 𝑡0) = 5 + 2𝑡 

𝑎(𝑡) = 𝑎0 = 2 m/s
2, 

The variation of the position function, the velocity function, and the acceleration function with 

time presented in the following figure. 
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Figure 12 Uniformly varied rectilinear movement 

II.3.1.d) Sinusoidal rectilinear motion : 

Sinusoidal Rectilinear Motion refers to the oscillatory movement of a particle point along a 

straight line where its displacement "position", velocity, and acceleration follow a sinusoidal 

pattern which means sine or cosine functions. 

Analysis: 
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The displacement of a particle M moving along a straight line be given by: 

𝑥 (𝑡) = 𝐴 sin(ω𝑡 + ϕ) 𝑖  

Here,  

A is the amplitude of the motion of the particle M, which is defined as the maximum 

displacement from equilibrium. 

𝜙 is the phase angle. 

t is the time. 

The velocity: 

The velocity is the first derivative of the position: 

𝑣 (𝑡) = 𝐴ω cos(ω𝑡 + ϕ) 𝑖  

The acceleration : 

The acceleration is the time derivative of velocity: 

𝑎 (𝑡) = −𝐴ω2 sin(ω𝑡 + ϕ) 𝑖  

This relation can be given as : 

𝑎 (𝑡) = −ω2𝑥 (𝑡) 

Characteristics of the motion : 

1- 𝑇 =
2π

ω
 Period 

2- 𝑓 =
1

𝑇
=

ω

2π
 Frequency 

3- 𝑣max = 𝐴ω maximum velocity 

4- 𝑎max = 𝐴ω
2 maximum acceleration 

Example: 

Let's take a particle that moves according to the following equation : 

𝑥 (𝑡) = 𝐴 sin(𝜔𝑡 + 𝜙) 𝑖  

Were A is the amplitude A = 3 m and 𝜔 is the angular frequency 𝜔 =  2 and 𝜙 =  0 

1-Find the velocity and acceleration of the particle 
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2- plot the variation of the position, velocity, and acceleration as a function of time. 

Solution: 

The velocity is the first derivative of the position: 

𝑣 (𝑡) = 6 cos(2𝑡) 𝑖  

The acceleration is the time derivative of velocity: 

𝑎 (𝑡) = −12 sin(2𝑡) 𝑖  
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Figure 13 Sinusoidal rectilinear motion 

II.3.2. Curvilinear Motion  

Curvilinear Motion refers to the movement of an object (in our study, a particle point) along a 

curved path in two or three dimensions. Contrary to rectilinear motion, where the motion of 
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the particle is described as a straight-line motion, the trajectory in curvilinear motion is 

characterized by continuous changes in direction of the object. 

 

Figure 14 Curvilinear Motion 

 To analyze the motion of a particle that moves along a curved path, we use the intrinsic ‘Frenet-

Serret’ coordinates. These coordinates are defined by the following unit vector: 

II.3.2.a) Curvilinear abscissa: 

Let M be a material point that moves along a curvilinear trajectory (C). The intrinsic position 

of M at time t, relative to an initial position M0, is defined by the curvilinear abscissa. 

 

Figure 15 Curvilinear abscissa 
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II.3.2.b) The unit vectors: 

The tangential unit vector:  

The tangential unit vector is a vector that is tangent to the trajectory at a given point and 

oriented in the direction of increasing arc length along the curve. 

𝑈𝑡⃗⃗⃗⃗ =
𝑑𝑟 

𝑑𝑠
 

Here, the arc length s is a scalar quantity that measures the distance traveled along a curve from 

a fixed reference point (curvilinear abscissa), and the differential ds represents an infinitesimal 

element of arc length along the curve. 

Normal unit vector: 

The normal unit vector is a vector that points in the direction of the tangent vector 𝑈𝑡⃗⃗⃗⃗  is 

changing. It is perpendicular to the tangent vector and lies in the osculating plane of the curve. 

𝑈𝑛⃗⃗ ⃗⃗  =

𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑠

|
𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑠
|

 

The binormal vector: 

The binormal vector is the vector product (cross product ×) of the tangent vector 𝑈𝑡⃗⃗⃗⃗  and the 

normal vector 𝑈𝑛⃗⃗ ⃗⃗  . 

Properties of the Unit Vectors: 

𝑈𝑡⃗⃗⃗⃗ ⋅ 𝑈𝑛⃗⃗ ⃗⃗  = 0, 

𝑈𝑛⃗⃗ ⃗⃗  ⋅ 𝑈𝑏⃗⃗ ⃗⃗ = 0, 

𝑈𝑏⃗⃗ ⃗⃗ ⋅ 𝑈𝑡⃗⃗⃗⃗ = 0 

𝑈𝑡⃗⃗⃗⃗ × 𝑈𝑛⃗⃗ ⃗⃗  = 𝑈𝑏⃗⃗ ⃗⃗  

II.3.2. c) Velocity and Acceleration in Intrinsic Coordinates: 

Let the position of a particle moving along a space curve be given by the vector function 𝑟 (𝑡). 

The velocity and acceleration vectors can be expressed in terms of intrinsic coordinates using 

the arc length 𝑠(𝑡) as an intermediate variable. 

𝑣 (𝑡) =
𝑑𝑟 

𝑑𝑡
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We introduce the arc length 𝑠(𝑡) , and apply the chain rule: 

𝑣 (𝑡) =
𝑑𝑟 

𝑑𝑠
⋅
𝑑𝑠

𝑑𝑡
 

Since (
𝑑𝑟 

𝑑𝑠
) is the unit tangent vector (𝑈𝑡⃗⃗⃗⃗ ), and (

𝑑𝑠

𝑑𝑡
= 𝑣) is the speed: 

𝑣 (𝑡) = 𝑣𝑈𝑡⃗⃗⃗⃗  

Acceleration vector: 

𝑎 (𝑡) =
𝑑𝑣 

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑣𝑈𝑡⃗⃗⃗⃗ ) 

Apply the product rule: 

𝑎 (𝑡) =
𝑑𝑣

𝑑𝑡
𝑈𝑡⃗⃗⃗⃗ + 𝑣

𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑡
 

We compute now 
𝑑𝑈𝑡⃗⃗ ⃗⃗  

𝑑𝑡
. Use the chain rule again: 

𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑡
=
𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑠
⋅
𝑑𝑠

𝑑𝑡
=
𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑠
⋅ 𝑣 

We have: 

𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑠
= κ𝑈𝑛⃗⃗ ⃗⃗   

𝑑𝑈𝑡⃗⃗⃗⃗ 

𝑑𝑡
= κ𝑣𝑈𝑛⃗⃗ ⃗⃗   

Substitute back into the expression for (𝑎 (𝑡): 

𝑎 (𝑡) =
𝑑𝑣

𝑑𝑡
𝑈𝑡⃗⃗⃗⃗ + 𝑣(κ𝑣𝑈𝑛⃗⃗ ⃗⃗  ) 

So,  

𝑎 (𝑡) =
𝑑𝑣

𝑑𝑡
𝑈𝑡⃗⃗⃗⃗ + κ𝑣

2𝑈𝑛⃗⃗ ⃗⃗   

𝑣 (𝑡) = 𝑣𝑈𝑡⃗⃗⃗⃗  

𝑎 (𝑡) =
𝑑𝑣

𝑑𝑡
𝑈𝑡⃗⃗⃗⃗ + κ𝑣

2𝑈𝑛⃗⃗ ⃗⃗   
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III. Relative motion 

III.1 Introduction 
Relative motion refers to the motion of a particle point with respect to another moving 

particle point or frame of reference. 

III.2 Example from real life: 
Walking on a Moving Walkway (like in an airport) 

• You're walking forward on a moving walkway. 

• To someone standing on the walkway, you're just walking normally. 

• To someone standing on the ground, you’re moving faster because the walkway 

adds speed. 

 

Figure 16 Walking on a moving walkway 

Cars Passing Each Other 

You're sitting in a car on the highway going 100 km/h. 

Another car passes you going 120 km/h. 

Even though both cars are moving fast, the other car looks like it’s moving slowly past you 

— just at 20 km/h. 
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Figure 17 Cars passing each other 

III.3. Definitions: 
We consider two reference frames R (O, x, y, z) and R’ (O‘, x’,y’,z’) with the basis: 

𝑖 ,  𝑗 ,  𝑘⃗ , and 𝑖′⃗⃗ ,  𝑗′⃗⃗ ,  𝑘′⃗⃗  ⃗ respectively 

III.3.1. The absolute frame of reference: 

An absolute frame of reference, also known as an inertial frame, is a coordinate system in 

which Newton's laws of motion apply without the need to introduce imaginary forces. It is 

considered stationary in space and unaccelerated. 

In this reference, the unit vectors are fixed, that means the magnitude and the direction of the 

unit vectors do not change with time: 

𝑑𝑖 

𝑑𝑡
= 0⃗ ,   

𝑑𝑗 

𝑑𝑡
= 0⃗ ,   

𝑑𝑘⃗ 

𝑑𝑡
= 0⃗  

III.3.2. Relative reference: 

A relative reference frame is a coordinate system that is moving or rotating with respect to an 

absolute (inertial) frame. 

III.3.3. The absolute motion: 

Absolute motion refers to the motion of an object as observed from a fixed, non-moving 

(inertial) reference frame. 

Vector Position in Absolute reference: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡) = 𝑟 (𝑡) = 𝑥(𝑡) 𝑖 + 𝑦(𝑡) 𝑗 + 𝑧(𝑡) 𝑘⃗  

Vector position in Relative reference: 

𝑟′⃗⃗  ⃗(𝑡) = 𝑥′(𝑡) 𝑖 ′⃗⃗ + 𝑦′(𝑡) 𝑗 ′⃗⃗⃗  + 𝑧′(𝑡) 𝑘  ′⃗⃗⃗⃗  

III.3.4. Motion of a Relative Reference Frame with Respect to an Absolute Reference Frame: 

Absolute frame unit vectors: 

𝑖 ,  𝑗 ,  𝑘⃗  

Relative frame origin and unit vectors: 
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𝑂′,  𝑖 ′⃗⃗ (𝑡),  𝑗 ′⃗⃗⃗  (𝑡),  𝑘  ′⃗⃗⃗⃗ (𝑡) 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡) = 𝑟 (𝑡) = 𝑥(𝑡) 𝑖 + 𝑦(𝑡) 𝑗 + 𝑧(𝑡) 𝑘⃗  

𝑟𝑂′⃗⃗⃗⃗  ⃗(𝑡) (position of 𝑂′ in absolute frame), 

𝑟′⃗⃗  ⃗(𝑡) (position of 𝑀 in relative frame) 

Case 1: 

If there is only translation and no rotation, then 

𝑖 ′⃗⃗ = 𝑖 ,  𝑗 ′⃗⃗⃗  = 𝑗 ,  𝑘  ′⃗⃗⃗⃗ = 𝑘⃗  

 

𝑟 (𝑡) = 𝑟𝑂′⃗⃗⃗⃗  ⃗(𝑡) + 𝑟′⃗⃗  ⃗(𝑡) = 𝑟𝑂′⃗⃗⃗⃗  ⃗(𝑡) + 𝑥
′(𝑡)𝑖 + 𝑦′(𝑡)𝑗 + 𝑧′(𝑡)𝑘⃗  

Case 2 

III.3.5 Rotation: 

In this case: 

(
𝑑𝑖′⃗⃗ 

𝑑𝑡
)

ℛ

≠ 0⃗ , 

(
𝑑𝑗′⃗⃗ 

𝑑𝑡
)

ℛ

≠ 0⃗ , 

(
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)

ℛ

≠ 0⃗  

When the relative frame rotates with angular velocity ω⃗⃗ (𝑡), the unit vectors vary as: 

𝑑𝑖 ′⃗⃗ 

𝑑𝑡
= ω⃗⃗ × 𝑖 ′⃗⃗  , 

𝑑𝑗 ′⃗⃗⃗  

𝑑𝑡
= ω⃗⃗ × 𝑗 ′⃗⃗⃗  , 

𝑑𝑘  ′⃗⃗⃗⃗ 

𝑑𝑡
= ω⃗⃗ × 𝑘  ′⃗⃗⃗⃗  

The position vector of point M in the absolute frame is: 

𝑟 (𝑡) = 𝑟𝑂′⃗⃗⃗⃗  ⃗(𝑡) + 𝑥
′(𝑡)𝑖 ′⃗⃗ (𝑡) + 𝑦′(𝑡)𝑗 ′⃗⃗⃗  (𝑡) + 𝑧′(𝑡)𝑘  ′⃗⃗⃗⃗ (𝑡) 

The position vector of M in relative frame: 

𝑟′⃗⃗  ⃗(𝑡) = 𝑥′(𝑡) 𝑖 ′⃗⃗ + 𝑦′(𝑡) 𝑗 ′⃗⃗⃗  + 𝑧′(𝑡) 𝑘  ′⃗⃗⃗⃗  
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Figure 18 Absolute and relative frame 

Velocity in Case of Translation: 

In this case, we study the translation of reference R’. 

𝑖 ′⃗⃗ = 𝑖 ,  𝑗 ′⃗⃗⃗  = 𝑗 ,  𝑘  ′⃗⃗⃗⃗ = 𝑘⃗  

The position vector of the point M: 

𝑟𝑀⃗⃗⃗⃗ = 𝑟𝑂′⃗⃗ ⃗⃗  ⃗ + 𝑟𝑀
′⃗⃗⃗⃗  

 

𝑉(𝑀/ℛ)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝑑𝑟𝑀⃗⃗⃗⃗ 

𝑑𝑡
=
𝑑𝑟𝑂′⃗⃗ ⃗⃗  ⃗

𝑑𝑡
+
𝑑𝑟𝑀

′⃗⃗⃗⃗ 

𝑑𝑡
= 𝑣𝑂′⃗⃗⃗⃗⃗⃗ + 𝑉(𝑀/ℛ′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

𝑣𝑂′⃗⃗⃗⃗⃗⃗  =  
𝑑𝑂′𝑂⃗⃗⃗⃗⃗⃗  ⃗

𝑑𝑡
 

𝑣𝑂′⃗⃗⃗⃗⃗⃗ =  𝑉𝑒⃗⃗  ⃗ the motion of reference R’ compared to R 

 

𝑉(𝑀/ℛ′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (
𝑑𝑟𝑀

′⃗⃗⃗⃗ 

𝑑𝑡
)

ℛ′

=
𝑑𝑥′

𝑑𝑡
 𝑖′⃗⃗ +

𝑑𝑦′

𝑑𝑡
 𝑗′⃗⃗ +

𝑑𝑧′

𝑑𝑡
 𝑘′⃗⃗  ⃗ 

𝑉(𝑀/ℛ′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥′̇  𝑖′⃗⃗ + 𝑦′̇  𝑗′⃗⃗ + 𝑧 ′̇ 𝑘′⃗⃗  ⃗ 

𝑉(𝑀/ℛ′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑉𝑟⃗⃗  ⃗ The relative velocity  

𝑉(𝑀/ℛ)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  
𝑑𝑂′𝑂⃗⃗⃗⃗⃗⃗  ⃗

𝑑𝑡
+ 𝑥′̇  𝑖′⃗⃗ + 𝑦′̇  𝑗′⃗⃗ + 𝑧 ′̇ 𝑘′⃗⃗  ⃗ 

𝑉(𝑀/ℛ)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   =  𝑉𝑎⃗⃗  ⃗ The absolute velocity 
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In this case: 

𝑑𝑖 ′⃗⃗ 

𝑑𝑡
= 0⃗ , 

𝑑𝑗 ′⃗⃗⃗  

𝑑𝑡
= 0⃗ , 

𝑑𝑘  ′⃗⃗⃗⃗ 

𝑑𝑡
= 0⃗  

𝑉(𝑀/ℛ)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑉𝑎⃗⃗  ⃗ = (
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
)
ℛ

 

= 𝑥̇𝑖 + 𝑦̇𝑗 + 𝑧̇𝑘⃗ + 𝑥 (
𝑑𝑖 

𝑑𝑡
)
ℛ

+ 𝑦(
𝑑𝑗 

𝑑𝑡
)
ℛ

+ 𝑧 (
𝑑𝑘⃗ 

𝑑𝑡
)
ℛ

 

= 𝑥̇𝑖 + 𝑦̇𝑗 + 𝑧̇𝑘⃗  (since 
𝑑𝑖 

𝑑𝑡ℛ
=
𝑑𝑗 

𝑑𝑡ℛ
=
𝑑𝑘⃗ 

𝑑𝑡ℛ
= 0⃗ ) 

As we mentioned before, the velocity of ( 𝑀 ) with respect to the moving reference frame (ℛ′) 

is called the relative velocity, obtained by differentiating the position vector (𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗  ) in frame 

(ℛ′): 

𝑉(𝑀/ℛ′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑉𝑟⃗⃗  ⃗ = (
𝑑𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗  

𝑑𝑡
)
ℛ′

 

= 𝑥′𝑖′⃗⃗ ̇ + 𝑦′𝑗′⃗⃗ ̇ + 𝑧′𝑘′⃗⃗  ⃗
̇
+ 𝑥′ (

𝑑𝑖′⃗⃗ 

𝑑𝑡
)
ℛ′

+ 𝑦′ (
𝑑𝑗′⃗⃗ 

𝑑𝑡
)
ℛ′

+ 𝑧′ (
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)
ℛ′

 

As we mentioned before 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗   

(
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
)
ℛ

= (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
ℛ

+ (
𝑑𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗  

𝑑𝑡
)
ℛ

 

⇒ 𝑉𝑎⃗⃗  ⃗ = (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
ℛ

+ 𝑥′𝑖′⃗⃗ ̇ + 𝑦′𝑗′⃗⃗ ̇ + 𝑧′𝑘′⃗⃗  ⃗
̇
+ 𝑥′ (

𝑑𝑖′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑦′ (
𝑑𝑗′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑧′ (
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)
ℛ

 

= (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
ℛ

+ 𝑉𝑟⃗⃗  ⃗ + 𝑥
′(ω⃗⃗ × 𝑖′⃗⃗ ) + 𝑦′(ω⃗⃗ × 𝑗′⃗⃗ ) + 𝑧′(ω⃗⃗ × 𝑘′⃗⃗  ⃗) 
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= 𝑉𝑟⃗⃗  ⃗ + (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
ℛ

+ ω⃗⃗ × (𝑥′𝑖′⃗⃗ + 𝑦′𝑗′⃗⃗ + 𝑧′𝑘′⃗⃗  ⃗) = 𝑉𝑟⃗⃗  ⃗ + (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
ℛ

+ ω⃗⃗ × 𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗   

𝑉𝑎⃗⃗  ⃗ = 𝑉𝑟⃗⃗  ⃗ + 𝑉𝑒⃗⃗  ⃗ 

With, 

𝑉𝑒⃗⃗  ⃗ = (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗ 

𝑑𝑡
)

ℛ

+ ω⃗⃗ × 𝑂′𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Called the transport (or entrainment) velocity. 

The acceleration: 

The absolute acceleration of a point 𝑀  is obtained by differentiating its absolute velocity with respect 

to time in the reference frame (ℛ): 

𝑎(𝑀/ℛ)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑎𝑎⃗⃗ ⃗⃗ = (
𝑑𝑉𝑎⃗⃗  ⃗

𝑑𝑡
)
ℛ

= =  𝑥̈ 𝑖   +  𝑦̈ 𝑗   +  𝑧̈ 𝑘⃗  

The relative acceleration of ( 𝑀 ) is obtained by differentiating the relative velocity in the rotating 

reference frame (ℛ′): 

𝑎(𝑀/ℛ′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑎𝑟⃗⃗⃗⃗ = (
𝑑𝑉𝑟⃗⃗  ⃗

𝑑𝑡
)
ℛ′

 

= 𝑥′𝑖′⃗⃗ 
̈
+ 𝑦′𝑗′⃗⃗ 

̈
+ 𝑧′𝑘′⃗⃗  ⃗

̈
 

The time derivative of the velocity composition relation: 

𝑉𝑎⃗⃗  ⃗ = (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
ℛ

+ 𝑥′𝑖′⃗⃗ 
̇
+ 𝑦′𝑗′⃗⃗ 

̇
+ 𝑧′𝑘′⃗⃗  ⃗

̇
+ 𝑥′ (

𝑑𝑖′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑦′ (
𝑑𝑗′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑧′ (
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)
ℛ

 

(
𝑑𝑉𝑎⃗⃗  ⃗

𝑑𝑡
)
ℛ

 = (
𝑑2𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡2
)
ℛ

+ 𝑥′𝑖′⃗⃗ 
̈
+ 𝑦′𝑗′⃗⃗ 

̈
+ 𝑧′𝑘′⃗⃗  ⃗

̈
 +  2 (𝑥′̇ (

𝑑𝑖′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑦′̇ (
𝑑𝑗′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑧 ′̇ (
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)
ℛ

)  

+ 𝑥′ (
𝑑2𝑖′⃗⃗ 

𝑑𝑡2
)
ℛ

+ 𝑦′ (
𝑑2𝑗′⃗⃗ 

𝑑𝑡2
)
ℛ

+ 𝑧′ (
𝑑2𝑘′⃗⃗  ⃗

𝑑𝑡2
)
ℛ

 

 

With: 

𝑥′̇ (
𝑑𝑖′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑦′̇ (
𝑑𝑗′⃗⃗ 

𝑑𝑡
)
ℛ

+ 𝑧 ′̇ (
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)
ℛ

= 𝑥′̇ (𝜔⃗⃗ × 𝑖′⃗⃗ ) + 𝑦′̇ (𝜔⃗⃗ × 𝑗′⃗⃗ ) + 𝑧 ′̇(𝜔⃗⃗ × 𝑘′⃗⃗  ⃗) 

= 𝜔⃗⃗ × (𝑥′𝑖′⃗⃗ 
̇
+ 𝑦′𝑗′⃗⃗ 

̇
+ 𝑧′𝑘′⃗⃗  ⃗

̇
) 

= 𝜔⃗⃗ × 𝑉𝑟⃗⃗  ⃗ 
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(
𝑑

𝑑𝑡
(
𝑑𝑖′⃗⃗ 

𝑑𝑡
)
ℛ

)  =
𝑑

𝑑𝑡
(𝜔⃗⃗ × 𝑖′⃗⃗ ) 

=
𝑑𝜔⃗⃗ 

𝑑𝑡
× 𝑖′⃗⃗ + 𝜔⃗⃗ ×

𝑑𝑖′⃗⃗ 

𝑑𝑡
 

=
𝑑𝜔⃗⃗ 

𝑑𝑡
× 𝑖′⃗⃗ + 𝜔⃗⃗ × (𝜔⃗⃗ × 𝑖′⃗⃗ ) 

And similarly: 

(
𝑑2𝑗′⃗⃗ 

𝑑𝑡2
)
ℛ

=
𝑑𝜔⃗⃗ 

𝑑𝑡
× 𝑗′⃗⃗ + 𝜔⃗⃗ × (𝜔⃗⃗ × 𝑗′⃗⃗ ) 

(
𝑑2𝑘′⃗⃗  ⃗

𝑑𝑡2
)
ℛ

=
𝑑𝜔⃗⃗ 

𝑑𝑡
× 𝑘′⃗⃗  ⃗ + 𝜔⃗⃗ × (𝜔⃗⃗ × 𝑘′⃗⃗  ⃗) 

⇒  𝑥′ ⋅
𝑑

𝑑𝑡
(
𝑑𝑖′⃗⃗ 

𝑑𝑡
)
(𝑅)

+ 𝑦′ ⋅
𝑑

𝑑𝑡
(
𝑑𝑗′⃗⃗ 

𝑑𝑡
)
(𝑅)

+ 𝑧′ ⋅
𝑑

𝑑𝑡
(
𝑑𝑘′⃗⃗  ⃗

𝑑𝑡
)
(𝑅)

 

=
𝑑𝜔⃗⃗ 

𝑑𝑡
∧ (𝑥′ ⋅ 𝑖′⃗⃗ + 𝑦′ ⋅ 𝑗′⃗⃗ + 𝑧′ ⋅ 𝑘′⃗⃗  ⃗)  + 𝜔⃗⃗  ∧  (𝜔⃗⃗  ∧  (𝑥′𝑖′⃗⃗ + 𝑦′ ⋅ 𝑗′⃗⃗ + 𝑧′ ⋅ 𝑘′⃗⃗  ⃗) 

𝑑𝜔⃗⃗ 

𝑑𝑡
∧ 𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗ + 𝜔⃗⃗  ∧  (𝜔⃗⃗ ∧ 𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗ ) 

𝑎𝑠⃗⃗⃗⃗ = 𝑎𝑟⃗⃗⃗⃗ +
𝑑2𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡2
+
𝑑𝜔⃗⃗ 

𝑑𝑡
∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ + 𝜔⃗⃗ ∧ (𝜔⃗⃗ ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ) + 2 ⋅ 𝜔⃗⃗ ∧ 𝑉𝑟⃗⃗  ⃗ 

𝑎𝑠⃗⃗⃗⃗ = 𝑎𝑟⃗⃗⃗⃗ + 𝑎𝑒⃗⃗⃗⃗ + 𝑎𝑐⃗⃗⃗⃗  

𝑎𝑒⃗⃗⃗⃗ =
𝑑2𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡2 (𝑅)
+
𝑑𝜔⃗⃗ 

𝑑𝑡
∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ + 𝜔⃗⃗ ∧ (𝜔⃗⃗ ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ) 

𝑎𝑐⃗⃗⃗⃗ = 2 ⋅ 𝜔⃗⃗ ∧ 𝑉𝑟⃗⃗  ⃗ 
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Material Point Dynamics 
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Material point dynamics 

IV.1. Introduction: 
Dynamics is a branch of classical mechanics. It studies the motion of objects and the forces that cause 

them. Unlike kinematics, which we studied in previous chapters, which is limited to describing how 

objects move (position, velocity, acceleration), dynamics seeks to explain why they move by linking 

motion to its causes, primarily forces, primarily through Newton's laws of motion. 

There are two main types of dynamics: 

Translational dynamics, which studies the linear motion of objects under the influence of forces. 

Rotational dynamics, which focuses on the motion of rotating objects, taking into account torque and 

angular momentum. 

In this chapter, we will limit ourselves to studying translational dynamics. 

IV.2. Definition: 

IV.2.1.The force: 
 it is any mechanical action exerted by one body on another, which results in one or all of the 

following changes: 

a change in its speed (moving it or stopping it); 

a change in its trajectory; 

a change in its shape (deforming it). 

Force is represented by a vector (𝑜𝑓𝑡𝑒𝑛 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝐹 ) which has the same characteristics (direction, 

sense, magnitude) and is linked to its point of application. 

Forces can be classified according to their range of action into contact forces and distance (field) forces. 

The resultant of all forces acting on a body is the vector sum of all the forces acting on it. 

IV.2.2. Mass: 
 A scalar quantity representing the amount of matter in an object. It also measures its inertia. 

IV.2.3. Acceleration:  
Variation of speed with respect to time. It is a vector quantity. 

IV.2.4. Velocity:  
Variation of position with respect to time. It is a vector quantity. 

IV.2.5. Inertia: 
 An object's tendency to maintain its state of motion or rest. 

V.2.6. Newton's Laws:  
Three fundamental laws that describe the relationship between motion and the forces acting on an 

object. 

IV.2.7. Principle of Inertia: (also known as Newton's First Law of Motion): 
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A body remains at rest or in uniform straight-line motion unless acted upon by an external 

force. 

IV.3. Inertial Reference Frame: 
An inertial reference frame is a frame of reference in which Newton’s first law (the principle 

of inertia) holds true. 

Examples of Galilean (Inertial) Reference Frames: 

A car moving at constant speed in a straight line (on a smooth road, no acceleration): 

Inside the car, if you toss a ball straight up, it comes back down in your hand — just like when 

you're standing still. This is an example of an inertial frame. 

IV.4.Momentum: 

Momentum (also called linear momentum) is a vector quantity defined as the product of a 

body’s mass and its velocity. 

𝑝 = 𝑚 ⋅ 𝑣  

It represents the quantity of motion of a body.  

IV.4.1. Superposition Principle of Momentum: 

The total momentum of a system is the vector sum of the momenta of all particles: 

𝑃total⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝑝𝑖⃗⃗⃗  

𝑛

𝑖=1

=∑𝑚𝑖𝑣𝑖⃗⃗⃗  

𝑛

𝑖=1

 

  (𝑃total⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) is the total momentum of the system, 

  (𝑝𝑖⃗⃗⃗  )is the momentum of particle ( 𝑖 ), 

   (𝑚𝑖)is the mass of particle ( 𝑖 ), 

   (𝑣𝑖⃗⃗⃗  ) is the velocity of particle ( 𝑖 ). 

This principle allows us to treat the motion of each particle separately and then combine their 

contributions to get the overall momentum of the system. 

IV.4.2. Principle of conservation of momentum: 

In a closed and isolated system (no external forces), the total linear momentum remains 

constant: 

𝑃initial⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑃final⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

∑𝑚𝑖𝑣𝑖,initial⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑛

𝑖=1

=∑𝑚𝑖𝑣𝑖,final⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑛

𝑖=1
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(𝑃initial⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ): total momentum before the interaction, 

(𝑃final⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ): total momentum after the interaction, 

(𝑚𝑖): mass of particle ( 𝑖 ), 

(𝑣𝑖,initial⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗): velocity of particle 𝑖 before, 

(𝑣𝑖,final⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ): velocity of particle 𝑖 after. 

IV.5. Newton laws: 

IV.5.1. First Law: 

An object at rest stays at rest, and an object in motion continues to move in a straight line at a 

constant speed, unless acted upon by a net external force. 

Mathematically; 

∑𝐹 = 0
𝑑𝑣 

𝑑𝑡
= 0⃗  

𝑎 =
𝑑𝑣 

𝑑𝑡
= 0⃗  

IV.5.2. Second Law: 
The force applied to an object is equal to the mass of the object multiplied by its acceleration. 

Mathematically, it is written as: 

𝐹 = 𝑚𝑎  

This law directly relates the force acting on an object to the change in its velocity. 

IV.5.3. Third Law: 

For every action, there is an equal and opposite reaction. This means if object A exerts a force 

on object B, then object B exerts a force of equal magnitude but opposite direction on object 

A. 

𝐹𝐴→𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝐹𝐵→𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

IV.6. Fundamental Principle of Translational Dynamics: 
The rate of change of linear momentum of a particle is equal to the net external force applied 

to it: 

∑𝐹 =
𝑑𝑝 

𝑑𝑡
 

where (𝑝 = 𝑚𝑣 ) is the linear momentum. 

If the mass (𝑚) is constant, then: 

∑𝐹 = 𝑚
𝑑𝑣 

𝑑𝑡
= 𝑚𝑎  
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IV.7. Free fall 
Free fall is the motion of an object under the influence of gravitational force only. When an 

object is dropped near the Earth's surface and air resistance is negligible, it accelerates 

downward due to gravity with a constant acceleration g = 9.81 m/s2. 

 

Figure 19 Free fall 

The equations of motion for free fall, taking downward direction as positive, are: 

𝑣 = 𝑔𝑡 + 𝑣0 

Displacement as a function of time 

𝑦 = 𝑦0 + 𝑣0𝑡 +
1

2
𝑔𝑡2 

IV.8. Normal force: 
The normal force is the contact force exerted by a surface perpendicular (normal) to the object 

resting on it. 

Key points: 

Acts perpendicular to the surface. 

Balances the perpendicular component of other forces like weight. 

Varies depending on the situation (flat surface, incline, additional forces). 

For an object of mass m resting on a horizontal surface without other vertical forces: 

N = mg 

For an object on an inclined plane at angle (𝜃): 

N = mg cos 𝜃 
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Figure 20 Inclined plane 

IV.9. Friction force: 

Friction is a contact force that opposes the relative motion (or tendency of motion) between 

two surfaces in contact. It acts parallel to the surface. 

 

Figure 21 Inclined plane friction force 

There are two main types of friction: 

Static friction: Acts when the object is at rest. It prevents the object from starting to move. 

𝑓𝑠 ≤ μ𝑠𝑁 

Where (𝑓𝑠) is the static friction force, (μ𝑠) is the coefficient of static friction, and \(N\) is the 

normal force. 

The maximum static friction is: 

𝑓𝑠,max = μ𝑠𝑁 

IV.10. Kinetic (or dynamic) friction:  

Acts when the object is already moving. 

𝑓𝑘 = μ𝑘𝑁 

Where (𝑓𝑘) is the kinetic friction force, and (μ𝑘) is the coefficient of kinetic friction. 

The tension: 
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IV.11. Tension is the force transmitted through a string, rope, cable, or wire when it is pulled 

tight by forces acting from opposite ends. 

Tension always acts away from the object along the direction of the rope. 

 In an ideal rope (massless and inextensible), the tension is the same throughout. 

 

Figure 22 Tension force 

IV.12. Archimedes’ Principle states: 
Any object fully or partially submerged in a fluid experiences an upward force (called buoyant 

force or Archimedes’ thrust) equal to the weight of the fluid it displaces. 

𝐹𝐴 = ρ𝑓  𝑉𝑑  𝑔 

(𝐹𝐴) is the buoyant force, 

(ρ𝑓) is the density of the fluid, 

(𝑉𝑑) is the volume of the displaced fluid, 

(𝑔) is the gravitational acceleration. 

IV.13. The restoring force of a spring: 
The restoring force of a spring is the force that brings the spring back to its equilibrium 

(unstretched) position when it is compressed or stretched. 

𝐹 =  −𝑘 𝑥 

(𝐹) is the restoring force (in newtons), 

(𝑘) is the spring constant (in N/m), 

(𝑥) is the displacement from the equilibrium position (in meters), 

 The negative sign indicates that the force acts in the direction opposite to the displacement. 

If (𝑥 >  0): the spring is stretched, and the force pulls back. 
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If (𝑥 <  0): the spring is compressed, and the force pushes outward. 

IV.14. Hooke’s Law: 
The restoring force exerted by a spring is directly proportional to the displacement from its 

equilibrium position and acts in the opposite direction. 

 
Figure 23 Restoring force 

 

IV.15. Rotational dynamics 

IV.15.1. Definition: 

Rotational dynamics studies the motion of objects that rotate around an axis and the torques 

(rotational forces) that cause or change this motion. 

IV.15.2. Moment of a force  

The moment of a force (also called torque) measures the tendency of a force to cause a body 

to rotate around a point or an axis. 

𝜏 = 𝑟 × 𝐹  

(𝜏 ) is the torque (moment of the force), 

(𝑟 ) is the position vector from the axis (or point) to the point of force application, 

(𝐹 ) is the applied force, 

(×) denotes the cross product. 

The SI unit of moment is the newton-meter (N·m). 

IV.15.3. Angular momentum: 

Angular momentum is the rotational analog of linear momentum. It measures the amount of 

rotation a body has, taking into account its mass distribution and angular velocity. 

𝐿⃗ = 𝑟 × 𝑝 = 𝑟 × (𝑚𝑣 ) 

(𝐿⃗ ) is the angular momentum, 
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(𝑟 ) is the position vector from the rotation point to the particle, 

(𝑣 ) is the velocity, 

(𝑚) is the mass of the particle. 

IV.15.4. The Angular Momentum Theorem : 

The Angular Momentum Theorem states that the rate of change of angular momentum of a 

system (about a point or axis) is equal to the net external torque acting on the system with 

respect to that point or axis. 

𝑑𝐿⃗ 

𝑑𝑡
= 𝜏ext⃗⃗ ⃗⃗ ⃗⃗  

(𝐿⃗ ) is the angular momentum, 

(𝜏ext⃗⃗ ⃗⃗ ⃗⃗ ) is the net external torque. 
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Work and Energy 
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Work and energy 

V.1. Introduction: 
In this chapter, we explore two fundamental concepts of classical mechanics: work and energy. 

These quantities are essential for understanding how forces influence motion and how physical 

systems store and transfer the capacity to perform tasks. 

V.2. Work: 
Work is a measure of the energy transferred by a force when it moves an object through a 

displacement 𝑟 . 

If a constant force (𝐹 )is applied, and the object moves through a displacement (𝑟 ), the work 

done is: 

𝑊 = 𝐹 ⋅ 𝑟 = 𝐹𝑟 cos 𝜃 

Where, 

(𝑊) is the work, 

(𝐹 ) is the applied force, 

(𝑟 ) is the displacement, 

(θ) is the angle between (𝐹 ) and (𝑟 ). 

If the force is variable: 

𝑊 = ∫ 𝐹 (𝑥)
𝑥2

𝑥1

⋅ 𝑑𝑥  

The SI unit of work is the joule (J). 

Example: 

A box of mass 10 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚is pushed along a horizontal surface by a constant force of 50 N 

over a distance of 5 m The force is applied in the same direction as the motion. Calculate the 

work done by the force. 

𝑊 = 𝐹 ⋅ 𝑟 ⋅ cos(θ) 

𝑊 =  250 𝐽 

V.3. Power: 
Power is the rate at which work is done. 

Average Power: 
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𝑃avg  =
∆𝑊

∆𝑡
  

Instantaneous Power: 

𝑃 =
𝑑𝑊

d𝑡
 =  𝐹 ⋅

d𝑟 

dt
 

𝑃 = 𝐹 ⋅ 𝑣  

(𝑣 ) is the velocity at the point of application. 

V.4. Kinetic Energy: 
Kinetic energy is the energy possessed by an object due to its motion. 

Translational: 

𝐸kin =
1

2
𝑚𝑣2 

Rotational 

𝐸rot =
1

2
𝐼ω2 

Where, 

 (𝑚) is the mass, 

(𝑣) is the velocity, 

(𝐼) is the moment of inertia, 

(ω) is the angular velocity. 

In the case of a system with n particles, the kinetic energy of the system is the sum of the kinetic 

energy of each i particle. 

𝐸kinT =∑
1

2
𝑚𝑖𝑣

2
𝑖

𝑛

𝑖=0

 

If no force is applied to the particle (or particles), its velocity and mass remain constant; 

therefore, the kinetic energy also remains constant. The kinetic energy changes only if the 

speed or the mass of the particle changes. 

Rotational: 

𝐸rotT =∑
1

2
𝐼𝑖ω

2
𝑖

𝑛

𝑖=1
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V.5. Kinetic Energy Theorem 
The net work done by all the forces acting on a particle is equal to the change in its kinetic 

energy. 

𝑊net = Δ𝐸kin =
1

2
𝑚𝑣𝐵

2 −
1

2
𝑚𝑣𝐴

2 

V.6.Gravitational Potential Energy: 
It is the energy stored in an object due to its position in a gravitational field. 

V.6.1. Uniform Gravitational Field (Near Earth's Surface): 

If the position of an object is near the Earth’s surface, we define potential energy as the negative 

work done by gravity to move an object from a reference point h0 to position h. 

𝐸pot(ℎ) = −∫ 𝐹𝑔⃗⃗⃗⃗  ⃗
ℎ

ℎ0

⋅ 𝑑𝑟⃗  

𝐸pot(ℎ) = 𝑚𝑔(ℎ − h0) 

= −∫ (−𝑚𝑔)
ℎ

ℎ0

 𝑑𝑧 

= 𝑚𝑔(ℎ − ℎ0) 

m: mass of the particle 

g: acceleration due to gravity 

h: height above a reference level  

Characteristics: 

1- This expression is valid only near Earth’s surface, where the acceleration of gravity is 

approximately constant. 

2- Epot increases with height. 

3- Gravity is a conservative force. 

V.6.2. General Gravitational Field (Newtonian Gravity): 

When distances are large, for example, planetary motion, the gravitational field is non-uniform 

and follows Newton’s inverse-square law. 

𝐹𝑔⃗⃗  ⃗ = −𝐺
𝑀𝑚

𝑟2
𝑢𝑟⃗⃗⃗⃗  

Potential Energy Function: 

𝐸pot(𝑟) = −∫ 𝐹𝑔⃗⃗⃗⃗  ⃗
𝑟

∞
⋅ 𝑑𝑟⃗  
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= −∫ (−𝐺
𝑀𝑚

𝑟′2
) 𝑑𝑟′

𝑟

∞

 

= 𝐺𝑀𝑚∫
1

𝑟′2

𝑟

∞

𝑑𝑟′ 

𝐸pot(𝑟) = −𝐺
𝑀𝑚

𝑟
 

V.7. Elastic (Spring) Potential Energy: 
Elastic potential energy is the energy stored in a spring or elastic object when it is stretched or 

compressed. 

For an ideal spring, the restoring force is: 

𝐹spring⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝑘(𝑥 − 𝑥0⃗⃗⃗⃗ ) 

 ( 𝑘 ) is the spring constant, 

𝑥  is the current position of the mass attached to the spring, 

𝑥0⃗⃗⃗⃗  is the equilibrium (unstretched) position, 

Derivation of Potential Energy: 

The potential energy is the negative work done by the spring force: 

𝐸spring(𝑥 ) = −∫ 𝐹spring⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑥 

𝑥0⃗⃗ ⃗⃗  

⋅ 𝑑𝑥  

= −∫ [−𝑘(𝑥′⃗⃗  ⃗ − 𝑥0⃗⃗⃗⃗ )]
𝑥 

𝑥0⃗⃗ ⃗⃗  

⋅ 𝑑𝑥′⃗⃗  ⃗ 

= 𝑘∫ (𝑥′⃗⃗  ⃗ − 𝑥0⃗⃗⃗⃗ )
𝑥 

𝑥0⃗⃗ ⃗⃗  

⋅ 𝑑𝑥′⃗⃗  ⃗ 

𝐿𝑒𝑡(𝑢⃗ = 𝑥′⃗⃗  ⃗ − 𝑥0⃗⃗⃗⃗ ⇒ 𝑑𝑢⃗ = 𝑑𝑥′⃗⃗  ⃗): 

𝐸spring(𝑥 ) = 𝑘∫ 𝑢⃗ 
𝑥 −𝑥0⃗⃗ ⃗⃗  

0⃗⃗ 
⋅ 𝑑𝑢⃗  
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𝐸spring =
1

2
𝑘𝑥2 

V.8. Mechanical energy: 
Mechanical energy is the sum of a system’s kinetic energy and potential energy. It represents 

the total energy available to perform mechanical work. 

𝐸mec = 𝐸kin + 𝐸pot 

V.9. Conservative Forces 
A conservative force is a force for which the work done is independent of the path and depends 

only on the initial and final positions. 

𝑊 = ∫ 𝐹 
𝑟2⃗⃗⃗⃗ 

𝑟1⃗⃗⃗⃗ 

⋅ 𝑑𝑟  

For a closed loop: 

∮𝐹 ⋅ 𝑑𝑟 = 0 

A conservative force can be written as the negative gradient of a scalar potential energy 

function. 

𝐹 = −∇𝐸𝑝𝑜𝑡(𝑟 ) 

Properties: 

Work done is recoverable. 

Associated with potential energy. 

The mechanical energy is conserved. 

Example: 

Gravitational force  

Spring force      

Electrostatic force 

V.12. Non-Conservative Forces: 
A non-conservative force is a force for which the work done depends on the path taken between 

two points. 

∮𝐹 ⋅ 𝑑𝑟 ≠ 0 

Properties: 

Work depends on the path. 
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Converts mechanical energy into other forms (e.g., heat). 

Mechanical energy is not conserved. 

Often results in energy dissipation. 

Examples: Kinetic friction, air resistance:  

V.11. Conservation of Mechanical Energy: 
In the absence of non-conservative forces, the mechanical energy of a system is conserved: 

𝐸mec, initial = 𝐸mec, final  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Example: 

A block of mass 𝑚 = 2 kg slides on a frictionless horizontal surface. It is moving with an initial 

speed 𝑣0= 3 m/s when it strikes a massless spring of spring constant 𝑘=200 N/m fixed at a wall. 

What is the maximum compression 𝑥max of the spring? 

Solution: 

In this problem the force which does, work on the block is the spring force (conservative), No 

friction therefore mechanical energy conserved: 

𝐸initial =
1

2
𝑚𝑣0

2, 

𝐸final =
1

2
𝑘𝑥max

2  

⇒
1

2
𝑚𝑣0

2 =
1

2
𝑘𝑥max

2  

⇒ 𝑚𝑣0
2 = 𝑘𝑥max

2  

⇒ 𝑥max = √
𝑚

𝑘
𝑣0 

𝑥max = 0.30 m  
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Problems and solutions: 
Problem 1: 

Find the dimension of these quantities: 

The velocity, acceleration, force, energy, pressure, density, electrical field, and electrical 

potential. 

[𝑉] =
[𝑙]

[𝑡]
=
𝐿

𝑇
= 𝐿𝑇−1 

[𝑎] =
[𝑑𝑉]

[𝑑𝑡]
=  
𝐿𝑇−1

𝑇
=  𝐿𝑇−2  

[𝐹] = [𝑚][𝑎] =  𝑀𝐿𝑇−2  

[𝐸] =
1

2
 [𝑚][𝑉2] = 𝑀 𝐿2 𝑇−2 

[𝑃] =
[𝐹]

[𝑆]
=  
𝑀𝐿𝑇−2

𝐿2
= 𝑀𝐿−1𝑇−2 

[𝜌] =  
[𝑚]

[𝑉]
=  
𝑀

𝐿3
= 𝑀𝐿−3 

Problem 2: 

Check if these equations are dimensionally consistent: 

E = mc². 

E = mgh. 

[𝐸] = 𝑀 𝐿2 𝑇−2 

[mc2] = [𝑚][c2] = 𝑀 𝐿2 𝑇−2  

[𝑚𝑔ℎ] = [𝑚][𝑔][ℎ] = 𝑀𝐿𝑇−2𝐿 = 𝑀 𝐿2 𝑇−2  

Problem 3: 

 If v = at2 + bt + c, find the dimensions of a, b, and c. 

[v] = [at2] = [bt] = c = LT-1 

So [a] = [v]/[t]2  
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Therefore, [a] = LT-3 

[b] = LT-2 

[c] = LT-1 

Dimension of some physical quantities: 

# Physical Quantity Dimensional Formula SI Unit 

1 Length L meter (m) 

2 Mass M kilogram (kg) 

3 Time T second (s) 

4 Electric Current I ampere (A) 

5 Temperature Θ kelvin (K) 

6 Amount of Substance N mole (mol) 

7 Luminous Intensity J candela (cd) 

8 Area L² square meter (m²) 

9 Volume L³ cubic meter (m³) 

10 Density ML⁻³ kg/m³ 

11 Velocity LT⁻¹ m/s 

12 Acceleration LT⁻² m/s² 

13 Momentum MLT⁻¹ kg·m/s 

14 Force MLT⁻² newton (N) 

15 Pressure ML⁻¹T⁻² pascal (Pa) 

16 Energy/Work ML²T⁻² joule (J) 

17 Power ML²T⁻³ watt (W) 

18 Frequency T⁻¹ hertz (Hz) 

19 Charge TI coulomb (C) 
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20 Voltage ML²T⁻³I⁻¹ volt (V) 

21 Capacitance M⁻¹L⁻²T⁴I² farad (F) 

22 Resistance ML²T⁻³I⁻² ohm (Ω) 

23 Conductance M⁻¹L⁻²T³I² siemens (S) 

24 Magnetic Flux ML²T⁻²I⁻¹ weber (Wb) 

25 
Magnetic Field Strength 

(B) 
MT⁻²I⁻¹ tesla (T) 

26 
Magnetic Field Intensity 

(H) 
L⁻¹I ampere/meter (A/m) 

27 Inductance ML²T⁻²I⁻² henry (H) 

28 Angular Displacement — radian (rad) 

29 Angular Velocity T⁻¹ rad/s 

30 Angular Acceleration T⁻² rad/s² 

31 Moment of Inertia ML² kg·m² 

32 Torque ML²T⁻² newton·meter (N·m) 

33 Surface Tension MT⁻² N/m 

34 Heat ML²T⁻² joule (J) 

35 Specific Heat Capacity L²T⁻²Θ⁻¹ J/(kg·K) 

36 Thermal Conductivity MLT⁻³Θ⁻¹ W/(m·K) 

37 Latent Heat L²T⁻² J/kg 

38 Electric Field MLT⁻³I⁻¹ V/m 

39 Electric Potential Energy ML²T⁻² joule (J) 

40 Electric Dipole Moment LTI C·m 

41 Permittivity (ε) M⁻¹L⁻³T⁴I² F/m 
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42 Permeability (μ) MLT⁻²I⁻² H/m 

43 Refractive Index — dimensionless 

44 Luminous Flux J lumen (lm) 

45 Illuminance JL⁻² lux (lx) 

46 Radiant Intensity ML²T⁻³ watt/steradian (W/sr) 

47 Radiance MT⁻³ W/(sr·m²) 

48 Entropy ML²T⁻²Θ⁻¹ J/K 

49 Thermal Resistance M⁻¹L⁻²T³Θ K/W 

50 Strain — dimensionless 
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