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Introduction

This handout is intended for second-year engineering science students. It illustrates the

Analysis 3 curriculum of the second year in the field of Science and Technology. It can

be used by students from various fields such as Mathematics and Computer Science.

It will consist of six chapters, namely: vector analysis, infinite series, power series,

Fourier series, Fourier transform, and Laplace transform. Each chapter includes funda-

mental definitions and results in the form of theorems or propositions. There are also

illustrative examples, relevant remarks, and detailed solved exercises aimed at assimilat-

ing the course material and acquiring problem-solving techniques.

The goal of the first part is to introduce the concept of curvilinear integrals and surface

integrals, to understand their properties, and especially to know how to calculate them,

as well as the different theorems related to this type of integral.

The objective of the second part is to highlight the main tools used in the study of

the nature of numerical series, more specifically their convergence or divergence.

The fourth chapter is dedicated to power series, their definition, domain of conver-

gence, and their applications.

The objective of the fifth chapter is to examine Fourier series, which are a very im-

portant tool for engineers.

The sixth chapter covers Fourier transforms and their applications.

The last chapter presents the Laplace transform and its applications in solving differ-

ential equations.
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Chapter 1

Vector analysis

1.1 Scalar and Vector fields

Definition 1.1.1 Scalar fields (Scalar functions)

A function f is called scalar function on R3, if it assins a number real to each point

X = (x, y, z) ∈ R3.

f : R3 → R

(x, y, z) 7−→ f (x, y, z) .

Example 1.1.1

1) The temperature

The temperature T (x, y, z) as a function of special coordinates in space is scalar func-

tion.

T : R3 → R

(x, y, z) 7−→ T (x, y, z) .

2) Ecludian distance

Let X0 ∈ R3 and f (X) =
∥∥∥−−→X0X

∥∥∥ the distance of X ∈ R3 from the fixed point X0.
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Vector analysis

f defines a scalar field (function) in space.

f : R3 → R

X 7−→ f (X) =
∥∥∥−−→X0X

∥∥∥ =

√
(x− x0)2 + (y − y0)2 + (x− z0)2.

Definition 1.1.2 Vector fields (Vector functions)

A function f is called Vector function on R3, if to each point X = (x, y, z) ∈ R3 is

assined to a vector f (X) ∈ R3.

f : R3 → R3

(x, y, z) 7−→ f (x, y, z) = (f1 (x, y, z) , f2 (x, y, z) , f3 (x, y, z)) ,

where f1, f2 and f3 are the components of f .

Example 1.1.2

The following function is a vector function.

f : R3 → R3

(x, y, z) 7−→ f (x, y, z) =
(
x+ 2y, x2 − y + z, 2xy + z2

)
.

Remark 1.1.3 More generally, we have

i) g : Rn → R is a scalar field.

ii) f : Rn → Rn is also a vector field, with

f (x, y, z) = (f1 (x, y, z) , ..., fn (x, y, z)) ,

where f1, ..., fn are the components of f .

If n = 2, g (resp. f) is scalar (resp. vector) field in the plane. If n = 3, g (resp. f) is

scalar (resp. vector) field in the space.
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Vector analysis

1.2 Circulation and gradient of a vector field

1.2.1 The gradient of a scalar field

Consider the scalar field f : R3 → R. The gradient of the scalar field is defined by

grad (f) = ∇f =
∂f

∂x

−→
i +

∂f

∂y

−→
j +

∂f

∂z

−→
k =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

where
∂f

∂x
,
∂f

∂y
and

∂f

∂z
are the partial derivatives of f with respect to x, y and z respec-

tively.

Remark 1.2.1

1) For f : D ⊂ R3 → R. If grad (f) is defined at each point of D, then

∇f : R3 → R3

(x, y, z) 7−→ ∇f (x, y, z) =

(
∂f (x, y, z)

∂x
,
∂f (x, y, z)

∂y
,
∂f (x, y, z)

∂z

)
,

is a vector field.

2) In general, for f : Rn → R, the grad (f) is defined at each point (x1, ..., xn) by

∇f (x1, ..., xn) =

(
∂f (x1, ..., xn)

∂x1
,
∂f (x1, ..., xn)

∂x2
, ...,

∂f (x1, ..., xn)

∂xn

)
.

Example 1.2.1

1) Let the scalar field f : R2 → R defined by

f (x, y) = x2 + 2y,

we have
∂f (x, y)

∂x
=
∂ (x2 + 2y)

∂x
= 2x,

and
∂f (x, y)

∂y
=
∂ (x2 + 2y)

∂y
= 2,
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Vector analysis

then

∇f (x, y) =

(
∂f (x, y)

∂x
,
∂f (x, y)

∂y

)
= (2x, 2) .

2) Let the scalar field f : R3 → R defined by

f (x, y, z) = xyz + sinx+ yz,

we have

∂f (x, y, z)

∂x
= yx+ cosx,

∂f (x, y, z)

∂y
= xz + z and

∂f (x, y, z)

∂z
= xz + y,

then

∇f (x, y, z) =

(
∂f (x, y, z)

∂x
,
∂f (x, y, z)

∂y
,
∂f (x, y, z)

∂z

)
= (yx+ cosx, xz + z, xz + y) .

1.2.2 Gradient field

A gradient field is a vector field that can be written as the gradient of another function,

i.e: a vector field g : R3 → R3 is a gradient field if there exists a scalar field f : R3 → R

such that

g = ∇f.

Example 1.2.2

The vector field g : R3 → R3 defined by

g (x, y, z) = (yx+ cosx, xz + z, xz + y) ,

is a gradient field, because it is a gradient of the scalar field f : R3 → R defined by

f (x, y, z) = xyz + sinx+ yz,

and we have g = ∇f.
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Vector analysis

1.3 Divergence and Rotation of a Vector Field

1.3.1 Divergence of a Vector Field

For f : R3 → R3 a vector field, the divergence of the vector field f is a differential operator

that measures the intensity with which a vector field ”diverges” or ”flows out” from a

given point. The divergence of f is given by

div (f) = ∇.f =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

.

If the divergence is positive at a point, it means there is a source generating flux at

that location. If it is negative, it indicates a ”sink” that absorbs the flux.

Example 1.3.1

Let f : R3 → R3 a vector field defined by

f (x, y, z) = (f1 (x, y, z) , f2 (x, y, z) , f3 (x, y, z)) =
(
x2y, 3y + z, z3

)
,

div (f) the divergence of f is a scalar field from R3 to R defined at each point (x, y, z) by

div (f) (x, y, z) = ∇.f (x, y, z) =
∂f1 (x, y, z)

∂x
+
∂f2 (x, y, z)

∂y
+
∂f3 (x, y, z)

∂z
,

we have
∂f1 (x, y, z)

∂x
= 2xy,

∂f2 (x, y, z)

∂y
= 3 and

∂f3 (x, y, z)

∂z
= 2z2,

then

div (f) (x, y, z) =
∂f1 (x, y, z)

∂x
+
∂f2 (x, y, z)

∂y
+
∂f3 (x, y, z)

∂z

= 2xy + 2z2 + 3.

For example, for (1, 1, 1) and (1,−6, 2), we have

div (f) (1, 1, 1) = 7, and div (f) (1,−6, 2) = −1.
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Vector analysis

1.3.2 Rotation and rotational field

Rotation of a vector Field

For f : R3 → R3 a vector field, the curl of the vector field f is a differential operator that

measures the tendency of a vector field to rotate around a point, meaning the amount of

”rotation” of the field at a given point. The curl of the vector field f is given by

curl (f) = ∇× f =

(
∂f3
∂y
− ∂f2

∂z
,
∂f1
∂z
− ∂f3
∂x

,
∂f2
∂x
− ∂f1

∂y

)
.

curl (f) the curl of f is a vector field from R3 to R3.

Example 1.3.2

Let f : R3 → R3 a vector field defined by

f (x, y, z) = (f1 (x, y, z) , f2 (x, y, z) , f3 (x, y, z)) =
(
xy2, 3yz + z, x2 + z

)
.

The curl of f is a vector field from R3 to R3 defined at each point (x, y, z) by

curl (f) = ∇× f =

(
∂f3
∂y
− ∂f2

∂z
,
∂f1
∂z
− ∂f3
∂x

,
∂f2
∂x
− ∂f1

∂y

)
,

we have

f1 (x, y, z) = xy2, f2 (x, y, z) = 3yz + z and f3 (x, y, z) = x2 + z,

then

curl (f) (x, y, z) = ∇× f (x, y, z)

= (0− 3y − 1, 0− 2x, 0− 2xy)

= (−3y − 1,−2x,−2xy) .

For example, for (1, 0, 1), we have

curl (f) (1, 0, 1) = ∇× f (1, 0, 1) = (−1,−2, 0) .
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Vector analysis

Rotational fields

A rotational field is a vector field that can be described as the curl of another vector

field. This means that there exists a vector field whose curl produces the given field, i.e:

a vector field g : R3 → R3 is curl field, if there exists a scalar field f : R3 → R3 such that

g = ∇× f.

Example 1.3.3

Let g : R3 → R3 a vector field defined by

g (x, y, z) = (−3y − 1,−2x,−2xy) .

The function g is a rotaional field, because it is the the curl of the vector field f : R3 → R3

defined by

f (x, y, z) =
(
xy2, 3yz + z, x2 + z

)
,

and we have

(g1, g2, g3) = ∇× f =

(
∂f3
∂y
− ∂f2

∂z
,
∂f1
∂z
− ∂f3
∂x

,
∂f2
∂x
− ∂f1

∂y

)
.

1.3.3 Laplacian of a scalar field

For f : R3 → R a scalar field, the Laplacian of f is denoted by ∇2f and it is defined as

the divergence of the gradient of f

∇2f = ∇. (∇f) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
,

where
∂2f

∂2x
,
∂2f

∂2y
and

∂2f

∂2z
are the second partial derivatives of f with respect to x, y and

z respectively.

∇2f the Laplacian of f is a scalar field from R3 to R.

10



Vector analysis

Example 1.3.4

Let the scalar field f : R3 → R defined by

f (x, y, z) = xyz2 + sinx+ yz,

we have

∂f (x, y, z)

∂x
= yz2 + cosx,

∂f (x, y, z)

∂y
= xz2 + z and

∂f (x, y, z)

∂z
= 2xyz + y,

then
∂2f (x, y, z)

∂x2
= − sinx,

∂2f (x, y, z)

∂y2
= 0 and

∂2f (x, y, z)

∂z2
= 2xy,

and

∇2f (x, y, z) =
∂2f (x, y, z)

∂x2
+
∂2f (x, y, z)

∂y2
+
∂2f (x, y, z)

∂z2

= 2xy − sinx.

1.4 Scalar potentials and vector potentials

1.4.1 Scalar potential

Let f : R3 → R3 a vector field. f is called a scalar potential, if there exists g : R3 → R a

scalar field such us

f = −∇g.

Example 1.4.1

1)The electric field in an electrostatic field can be derived from a scalar potential φ, called

the electric potential:

E = −∇φ.

This equation indicates that the electric field E is the negative gradient of the scalar

potential φ.

2) Let g : R3 → R the scalar field defined by

g (x, y, z) = xyz + sinx+ yz,

11



Vector analysis

we have

∇g (x, y, z) =

(
∂g (x, y, z)

∂x
,
∂g (x, y, z)

∂y
,
∂g (x, y, z)

∂z

)
= (yx+ cosx, xz + z, xz + y) .

The vector field f : R3 → R3 defined by

f (x, y, z) = (−yx− cosx,−xz − z,−xz − y) ,

is a scalar potential, because

f = −∇g.

1.4.2 Vector potential

Let f : R3 → R.3 a vector field. g : R3 → R3 is called the vector potential associated with

f if

f = curl (g) = ∇× g.

Example 1.4.2

1) The magnetic field B in electromagnetism can be derived from a vector potential A,

called the magnetic vector potential:

B = curl (A) .

This equation shows that the magnetic field B is the curl of the vector potential A.

2) Let g : R3 → R3 a vector field defined by

g (x, y, z) =
(
xy2, 3yz + z, x2 + z

)
.

The curl of f is defined by

curl (g) = ∇× g =

(
∂g3
∂y
− ∂g2

∂z
,
∂g1
∂z
− ∂g3
∂x

,
∂g2
∂x
− ∂g1

∂y

)
,

12



Vector analysis

then

curl (g) (x, y, z) = ∇× g (x, y, z)

= (−3y − 1,−2x,−2xy) .

Let f : R3 → R3 a vector field defined by

g (x, y, z) = ∇× g (x, y, z)

= (−3y − 1,−2x,−2xy) ,

then, g is called the vector potential associated with f .

1.5 Curvilinear integral

1.5.1 Curve in space

Definition 1.5.1

A curve can be thought of as the trajectory traced by a point moving continuously in

space. It does not necessarily have to be straight and can have any form, such as a line,

circle, or more complex shapes.

Example 1.5.1

1) Line segment: A straight line between two points in space, such as the path from (0, 0, 0)

and (1, 1, 1).

2) A saddle-shaped curve in space: often represented by the equation z = x2 − y2.

Parametrized curve

A parametrized curve is a curve described by a vector-valued function that depends on

a parameter t. This parameter typically varies over a specific interval, and the curve is

defined as a function from t to a point in space. C is a parametrized curve that means it

13



Vector analysis

contains the points r (t) such as:

r : [a, b] → R3

t 7−→ r (t) = (x (t) , y (t) , z (t)) .

We can describe the curve C as follow

C (t) = {r (t) = (x (t) , y (t) , z (t)) , t ∈ [a, b]} .

Length of a curve

Let C (t) = {r (t) = (x (t) , y (t) , z (t)) , t ∈ [a, b]} a parametrized curve of class C1. The

length of the curve C is given by

l =

b∫
a

‖r′ (t)‖ dt =

b∫
a

√(
dx (t)

dt

)2

+

(
dy (t)

dt

)2

+

(
dz (t)

dt

)2

dt.

Example 1.5.2

1) Helix: A 3D parametrized curve that spirals along a cylinder can be represented

by the parametric equations:

r (t) = (r cos t, r sin t, ct) for t ∈ [0,∞[ .

Here, r is the radius of the helix, c controls the spacing between loops, and t is the param-

eter. As t increases, the helix moves along the z-axis while wrapping around the cylinder.

2) Parametrized Ellipse in Space: An ellipse lying in the xy-plane can be parametrized

as:

r (t) = (a cos t, b sin t, ct) for t ∈ [0, 2π] .

The length of this curve for a = b = 1 and c = 2 is

l =

2π∫
0

√(
dx (t)

dt

)2

+

(
dy (t)

dt

)2

+

(
dz (t)

dt

)2

dt

=

2π∫
0

√
(− sin t)2 + (cos t)2 + 4dt =

√
5

2π∫
0

dt

⇒ l = 2π
√

5.
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Closed Curve:

A closed curve is a curve that returns to its starting point, forming a loop, a cuvre C

parametrized by r (t) = (x (t) , y (t) , z) for t ∈ [a, b] is called closed if

r (a) = r (b) .

Example 1.5.3

1) Circle in 3D: A circle lying in a plane, such as the xy-plane, can be represented by:

r (t) = (r cos t, r sin t, 0) for t ∈ [0, 2π] .

This is a closed curve because the parameter t runs from 0 to 2π, and C returning to the

starting point (i.e r (0) = r (2π)).

2) The parametrized curve C defined by

r (t) =
(
t2, t4 − 4, 3

)
for t ∈ [−2, 2] ,

is a closed curve because r (−2) = r (2) .

1.5.2 Curvilinear integral

A line integral (or curvilinear integral) is a type of integral that evaluates a function along

a given curve in space. Instead of integrating a function over a flat region or within a

volume, this type of integral is performed over a curve (or path). Curvilinear integrals are

commonly used to compute physical quantities, such as the work done by a force along a

path, or to calculate the circulation of a vector field.

Let C a curve and f a function defined at points of C, then the curvilinear integral of

f along C is defined by ∫
C

fdl,

where dl is the infinitesimal element of length along the curve.

There are two main types of curvilinear integrals:

Curvilinear integral of a scalar field: A scalar function is integrated along a curve.

Curvilinear integral of a vector field: A vector field is integrated along a curve.

15
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Curvilinear integral of a scalar field

Let C a parametrized curve of class C1 defined by

C (t) = {r (t) = (x (t) , y (t) , z (t)) , t ∈ [a, b]} ,

and f : C → R is a scalar field. The Curvilinear integral of f along the curve C is given

by ∫
C

fdl =

b∫
a

f (x (t) , y (t) , z (t)) ‖r′ (t)‖ dt,

with dl = ‖r′ (t)‖ dt and

r′ (t) =

(
dx (t)

dt
,
dy (t)

dt
,
dz (t)

dt

)
and ‖r′ (t)‖ =

√(
dx (t)

dt

)2

+

(
dy (t)

dt

)2

+

(
dz (t)

dt

)2

.

Proposition 1.5.1 Elementary properties

From the properties of Riemann integrals, we have

i)

∫
C

kfdl = k

∫
C

fdl, where k is a constant.

ii)

∫
C

(f + g) dl =

∫
C

fdl +

∫
C

gdl,

iii)

∫
C

fdl =

∫
C1

fdl +

∫
C2

fdl, where C = C1 + C2.

Example 1.5.4

Let C = {r (t) = (cos t, sin t, t) , t ∈ [0, 2π]} a parametrized curve and f : C → R

defined by

f (x, y, z) = x2 + y2 + z2.

To calculate the curvilinear integral of f along the cuvre C, we need to calculate r′ (t) then

‖r′ (t)‖

r′ (t) =

(
dx (t)

dt
,
dy (t)

dt
,
dz (t)

dt

)
= (− sin t, cos t, 1) .

16



Vector analysis

Then

‖r′ (t)‖ =

√(
dx (t)

dt

)2

+

(
dy (t)

dt

)2

+

(
dz (t)

dt

)2

=

√
(− sin t)2 + (cos t)2 + 1 =

√
2.

Hence ∫
C

fdl =

2π∫
0

f (x (t) , y (t) , z (t)) ‖r′ (t)‖ dt,

=

2π∫
0

(
(cos t)2 + (sin t)2 + t2

)√
2dt

=

2π∫
0

(
1 + t2

)√
2dt =

√
2

[
2t+

1

3
t3
]2π
0

=
8

3

√
2π3 + 4

√
2π.

Curvilinear integral of a vector field

Let C a parametrized curve of class C1 defined by

C (t) = {r (t) = (x (t) , y (t) , z (t)) , t ∈ [a, b]} ,

and f : C → R3 a vector field. The curvilinear integral of f along the curve C is given by∫
C

fdl =

b∫
a

f (x (t) , y (t) , z (t)) r′ (t) dt,

with r′ (t) =

(
dx (t)

dt
,
dy (t)

dt
,
dz (t)

dt

)
and

f (x (t) , y (t) , z (t)) = (f1 (x (t) , y (t) , z (t)) , f2 (x (t) , y (t) , z (t)) , f3 (x (t) , y (t) , z (t))) ,

then∫
C

fdl =

b∫
a

(f1 (x (t) , y (t) , z (t)) , f2 (x (t) , y (t) , z (t)) , f3 (x (t) , y (t) , z (t)))

(
dx (t)

dt
,
dy (t)

dt
,
dz (t)

dt

)
dt,

=

b∫
a

[
f1 (x (t) , y (t) , z (t))

dx (t)

dt
+ f2 (x (t) , y (t) , z (t))

dy (t)

dt
+ f3 (x (t) , y (t) , z (t))

dz (t)

dt

]
dt.
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Example 1.5.5

Let C = {r (t) = (t, t2, t3) , t ∈ [0, 1]} a parametrized curve and f : C → R3 defined by

f (x, y, z) = (x, 2y, 3z) .

To calculate the curvilinear integral of f along the cuvre C, we need to calculate r′ (t)

r′ (t) =

(
dx (t)

dt
,
dy (t)

dt
,
dz (t)

dt

)
=

(
1, 2t, 3t2

)
.

The curvilinear integral of f along the cuvre C is given by the following relation∫
C

fd` =

1∫
0

f (x (t) , y (t) , z (t)) r′ (t) dt.

First, we calculate f (x (t) , y (t) , z (t)) r′ (t)

f (x (t) , y (t) , z (t)) r′ (t) = f
(
t, t2, t3

)
.
(
1, 2t, 3t2

)
=

(
t, 2t2, 3t3

)
.
(
1, 2t, 3t2

)
= t× 1 + 2t2 × 2t+ 3t3 × 3t2

= 9t5 + 4t4 + t.

Then ∫
C

fdl =

1∫
0

f (x (t) , y (t) , z (t)) r′ (t) dt

=

1∫
0

(
9t5 + 4t4 + t

)
dt

=

[
3t6 +

4

5
t5 +

1

2
t2
]1
0

=
43

10
.

1.5.3 Green’s theorem

Green’s Theorem is a fundamental result in vector calculus that relates a line integral

around a closed curve to a double integral over the region enclosed by the curve.
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Definition 1.5.2 Positively oriented, piecewise smooth, and simple curve

Let C = {r (t) = (x (t) , y (t) , z (t)) , t ∈ [a, b]} a parametrized curve.

i) C is simple curve, if it does not intersect itself, i.e

r (t1) 6= r (t2) , for t1, t2 ∈ ]a, b[ and t1 6= t2.

ii) C is closed curve, if r (a) = r (b).

iii) C is piecewise smooth curve, if C is composed of several smooth curves i.e

C = {C1, C2, ..., Cn} ,

where Ci, i = 1, ..., n is a smooth curve (meaning differentiable with a continuous deriva-

tive).

iv) C is positively oriented if it is counterclockwise. This means that the area bounded

by it is on the left side as you move along the curve.

Theorem 1.5.3 Green’s theorem

Let C be a positively oriented, piecewise smooth, simple closed curve in the plane, and

let D be the region enclosed by C (i.e ∂D = C, ∂D is the boundry of D). If f = (f1, f2) is

a continuously differentiable vector field on an open region containing D and its boundary

C, then Green’s Theorem states:∮
C

fdl =

∮
C

(f1dx+ f2dy) =

∫∫
D

(
∂f2
∂x
− ∂f1

∂y

)
dxdy.

Example 1.5.6 Work Done by a Force Field.

Let C is the positively oriented circle of radius 1 centered at the origin.

C = {r (t) = (cos t, sin t) , t ∈ [0, 2π]}

= {(x, y) (cos t, sin t) , t ∈ [0, 2π]}

⇒ x = cos t ∈ [−1, 1] and y = sin t ∈ [−1, 1] .

Let f : R2 → R2 a vector function defined by

f (x, y) =
(
x2 − y2, 2xy

)
.
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According to Green’s theorem, the curvilinear integral of f along the cuvre C is gievn by∮
C

fdl =

∮
C

(f1dx+ f2dy) =

∫∫
D

(
∂f2
∂x
− ∂f1

∂y

)
dxdy.

We have f1 (x, y) = x2 − y2 and f2 (x, y) = 2xy, then

∂f2 (x, y)

∂x
= 2y and

∂f1 (x, y)

∂y
= −2y,

then ∮
C

f (x, y) dl =

∫∫
D

(
∂f2 (x, y)

∂x
− ∂f1 (x, y)

∂y

)
dxdy

=

∫∫
D

4ydxdy

=

1∫
−1

dx×
1∫

−1

4ydy

= [x]1−1 ×
[
2y2
]1
−1

= 2× 0 = 0.

1.6 Surface integrals and Stokes theorem

In the first part, we introduce parametrized surfaces. This is the analogue of parametrized

curves, when the starting domain is a subset of R2, and not an interval of R. Then, we

define integration on parametrized surfaces. As in the case of parametrized curves, there

are two kinds of objects that can be integrated: scalar and vector fields defined on the

surface. Finally, we study the Stokes’ theorem.

Definition 1.6.1 Parametrized surface

Parametrized surface means that the coordinates of points on the surface are given as

functions of two variables. A parametrized surface S is represented by a vector-valued

function r : R2 → R3 as follows

r (u, v) = (x (u, v) , y (u, v) , z (u, v)) , (u, v) ∈ D ⊂ R2,
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we can also define S by

S =
{
r (u, v) = (x (u, v) , y (u, v) , z (u, v)) , (u, v) ∈ D ⊂ R2

}
.

Example 1.6.1

1) The following parametrized surface S is the sphere with radius R

r (u, v) = (R sinu cos v,R sinu sin v,R cosu) , (u, v) ∈ D = [0, π]× [0, 2π] .

We can write

S = {r (u, v) = (R sinu cos v,R sinu sin v,R cosu) , (u, v) ∈ D = [0, π]× [0, 2π]} .

2) The following parametrized surface S is the parameter torus a, b dans R3

r (u, v) = ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v) , (u, v) ∈ D = [0, 2π]× [0, 2π] .

Let S a surface and f a function defined at points of S, then the surface integral of f

over S is given by ∫
S

fdS,

where dS is the infinitesimal surface element.

There are two main types of surface integrals: a surface integral of a scalar field and a

surface integral of a vector field.

1.6.1 Surface integral of a scalar function

Let S a parametrized surface of class C1 defined by

S = {r (u, v) = (x (u, v) , y (u, v) , z (u, v)) , (u, v) ∈ D = [a, b]× [c, d]} ,

and f : S → R a scalar field.The surface integral of f over S is given by∫
S

fdS =

∫∫
D

f (r (u, v))

∥∥∥∥∂r∂u ∧ ∂r∂v
∥∥∥∥ dudv,
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with

dS =

∥∥∥∥∂r∂u ∧ ∂r∂v
∥∥∥∥ dudv,

where

∂r

∂u
=

(
∂x (u, v)

∂u
,
∂y (u, v)

∂u
,
∂z (u, v)

∂u

)
and

∂r

∂v
=

(
∂x (u, v)

∂v
,
∂y (u, v)

∂v
,
∂z (u, v)

∂v

)
,

and ∧ is the cross product i.e
a1

a2

a3

 ∧


b1

b2

b3

 =


a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 .

Example 1.6.2

Let the following parametrized surface S which is the sphere with radius R

S = {r (u, v) = (R sinu cos v,R sinu sin v,R cosu) , (u, v) ∈ D = [0, π]× [0, 2π]} ,

and f : R3 → R defined by

f (x, y, z) = x2 + y2 + z2.

To calculate the surface integral of f above S, we need to determine
∂r

∂u
,
∂r

∂v
then

∥∥∥∥∂r∂u ∧ ∂r∂v
∥∥∥∥

∂r (u, v)

∂u
= (R cosu cos v,−R cosu sin v,− sinu) ,

and
∂r (u, v)

∂v
= (−R sinu sin v,R sinu cos v,−R sinu) .

Then

∂r

∂u
∧ ∂r
∂v

= R2 sinu (sinu cos v, sinu sin v, )

⇒
∥∥∥∥∂r∂u ∧ ∂r∂v

∥∥∥∥ = R2 sinu.
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Now, we calculate the surface integral of f above S∫
S

f (x, y, z) dS =

∫∫
D

f (x, y, z)

∥∥∥∥∂r∂u ∧ ∂r∂v
∥∥∥∥ dudv

=

∫∫
D

R2

∥∥∥∥∂r∂u ∧ ∂r∂v
∥∥∥∥ dudv, (f (x, y, z) = R2, for (x, y, z) ∈ D)

=

π∫
0

2π∫
0

R2R2 sinududv

= R4

π∫
0

sinudu

2π∫
0

dv

= R4 × 2× 2π = 4R4π.

1.6.2 Surface integral of a vector function

Let S a parametrized surface of C1 class defined by

S = {r (u, v) = (x (u, v) , y (u, v) , z (u, v)) , (u, v) ∈ D} ,

and f : S → R3 a vector field. The surface integral of f over S is given by∫
S

fdS =

∫∫
D

f (r (u, v))×
(
∂r

∂u
∧ ∂r
∂v

)
dudv

with

dS =
∂r

∂u
∧ ∂r
∂v
dudv,

where

∂r

∂u
=

(
∂x (u, v)

∂u
,
∂y (u, v)

∂u
,
∂z (u, v)

∂u

)
and

∂r

∂v
=

(
∂x (u, v)

∂v
,
∂y (u, v)

∂v
,
∂z (u, v)

∂v

)
,

and ∧ is the cross product i.e
a1

a2

a3

 ∧


b1

b2

b3

 =


a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 .
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Example 1.6.3

Let the following parametrized surface S which is the sphere with radius R

S = {r (u, v) = (R sinu cos v,R sinu sin v,R cosu) , (u, v) ∈ D = [0, π]× [0, 2π]} ,

and f : R3 → R3 a vector field defined by

f (x, y, z) = (x, y, z) .

To calculate the surface integral of f above S, we need to calculate
∂r

∂u
,
∂r

∂v
then

∂r

∂u
∧ ∂r
∂v

∂r (u, v)

∂u
= (R cosu cos v,R cosu sin v,−R sinu) ,

and
∂r (u, v)

∂v
= (−R sinu sin v,R sinu cos v,−R sinu) ,

then
∂r

∂u
∧ ∂r
∂v

= R2 sinu (sinu cos v, sinu sin v, cosu) .

We have

f (x (t) , y (t) , z (t)) = (R sinu cos v,R sinu sin v,R cosu) ,

then

f (x (t) , y (t) , z (t))×
(
∂r

∂u
∧ ∂r
∂v

)
= (R sinu cos v,R sinu sin v,R cosu)×R2 sinu (sinu cos v, sinu sin v, cosu)

= R3 sinu
(
sin2 u cos2 v + sin2 u sin2 v + cos2 u

)
= R3 sinu

(
sin2 u

(
cos2 v + sin2 v

)
+ cos2 u

)
= R3 sinu

(
sin2 u+ cos2 u

)
= R3 sinu.
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Now, we calculate the surface integral of f above S∫
S

fdS =

∫∫
D

f (r (u, v))×
(
∂r

∂u
∧ ∂r
∂v

)
dudv

=

∫∫
D

R3 sinududv

= R3

π∫
0

2π∫
0

sinududv

= R4

π∫
0

sinudu

2π∫
0

dv

= R4 (2) (2π) = 4R4π.

Stokes’ theorem

Stokes’ theorem relates a surface integral of the curl of a vector field to a line integral

around the boundary of that surface.

Let S be a smooth surface with boundary ∂S, and let f be a continuously differentiable

vector field on an open region containing S.∫
S

(∇× f) dS =

∫
∂S

fdl,

where, ∇× f is the curl of f and dl is the differential line element around the curve ∂S.

Example 1.6.4

Let a circular disk S of radius R, centered at the origin in the xy-plane (at z = 0). The

boundary ∂S of this disk is the circle of radius R, also centered at the origin.

S =
{

(x, y, z) , x2 + y2 ≤ R and z = 0
}

= {r (u, v) = (u cos v, u sin v, 0) , (u, v) ∈ D = [0, R]× [0, 2π]} ,

then

∂S =
{

(x, y, z) , x2 + y2 = R and z = 0
}

= {r (t) = (R cos t, R sin t, 0) , t ∈ [0, 2π]} .
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Let f : R3 → R3 a vector function of class C1 defined by

f (x, y, z) = (−y, x, 0) .

According to Stokes’s theorem, we have∫
S

(∇× f) dS =

∫
∂S

fdl.

1) First, we calculate the left-hand side which is the surface integral of the curl of a

vector field f over the surface S ∫
S

(∇× f) dS,

we start whith ∇× f and dS

∇× f =

(
∂f3
∂y
− ∂f2

∂z
,
∂f1
∂z
− ∂f3
∂x

,
∂f2
∂x
− ∂f1

∂y

)
⇒ ∇× f (x, y, z) = (0, 0, 2) ,

and

dS =
∂r

∂u
∧ ∂r
∂v
dudv,

with
∂r (u, v)

∂u
= (cos v, sin v, 0) and

∂r (u, v)

∂v
= (−u sin v, u cos v, 0) ,

then
∂r

∂u
∧ ∂r
∂v

= u (0, 0, 1) .
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According to the definition of a surface integral of a vector field, we have∫
S

(∇× f) dS =

∫∫
D

(∇× f) (r (u, v))×
(
∂r

∂u
∧ ∂r
∂v

)
dudv

=

R∫
0

2π∫
0

(0, 0, 2)× u (0, 0, 1) dudv

=

R∫
0

2π∫
0

2ududv

= 2

R∫
0

udu×
2π∫
0

dv = 2

(
R2

2

)
(2π)

= 2πR2,

then ∫
S

(∇× f) dS = 2πR2.

2) Second, we calculate the right-hand side which is an integral of the vector field f

along the boundary of the surface ∂S.

∫
∂S

fdl =

2π∫
0

f (x (t) , y (t) , z (t)) r′ (t) dt,

we have

r′ (t) = (−R sin t, R cot t, 0) ,

and

f (x (t) , y (t) , z (t)) = (−R sin t, R cot t, 0) ,

then

f (x (t) , y (t) , z (t)) r′ (t) = R2.
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Now we calculate the integral of f along ∂S.∫
∂S

fdl =

2π∫
0

f (x (t) , y (t) , z (t)) r′ (t) dt

=

2π∫
0

R2dt = 2πR2,

then ∮
∂S

fdl = 2πR2.

Ostrogradsky’s theorem

Ostrogradsky’s theorem relates a surface integral of a vector field over a closed surface to

a volume integral of the divergence of the vector field inside the surface.

Let V be a volume enclosed by a smooth closed surface S, and let f be a continuously

differentiable vector field. The Divergence Theorem (Ostrogradsky’s Theorem) states:∫
S

fdS =

∫
V

∇.fdV,

where, ∇.f is the divergence of f and dV is the volume element inside the volume V .

Example 1.6.5

Let V be the volume of a sphere of radius R centered at the origin. The surface S is the

boundary of the sphere (i.e., the surface of the sphere) defined by

S = {r (u, v) = (R sinu cos v,R sinu sin v,R cosu) , (u, v) ∈ D = [0, π]× [0, 2π]} .

Let f : R3 → R3 be a continuously differentiable vector field defined by

f (x, y, z) = (x, y, z) .

According to Ostrogradsky’s theorem (Divergence Theorem), we have∫
S

fdS =

∫
V

∇.fdV.
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1) First, we calculate the left-hand side which is the surface integral of f above S∫
S

fdS =

∫∫
D

f (r (u, v))×
(
∂r

∂u
∧ ∂r
∂v

)
dudv,

we need to determine
∂r

∂u
,
∂r

∂v
then

∂r

∂u
∧ ∂r
∂v

∂r (u, v)

∂u
= (R cosu cos v,R cosu sin v,−R sinu) ,

and
∂r (u, v)

∂v
= (−R sinu sin v,R sinu cos v,−R sinu) ,

then
∂r

∂u
∧ ∂r
∂v

= R2 sinu (sinu cos v, sinu sin v, cosu) .

We have

f (x (t) , y (t) , z (t)) = (R sinu cos v,R sinu sin v,R cosu) ,

then

f (x (t) , y (t) , z (t))×
(
∂r

∂u
∧ ∂r
∂v

)
= (R sinu cos v,R sinu sin v,R cosu)×R2 sinu (sinu cos v, sinu sin v, cosu)

= R3 sinu
(
sin2 u cos2 v + sin2 u sin2 v + cos2 u

)
= R3 sinu

(
sin2 u

(
cos2 v + sin2 v

)
+ cos2 u

)
= R3 sinu

(
sin2 u+ cos2 u

)
= R3 sinu.

29



Vector analysis

Now, we calculate the surface integral of f above S∫
S

fdS =

∫∫
D

f (r (u, v))×
(
∂r

∂u
∧ ∂r
∂v

)
dudv

=

∫∫
D

R3 sinududv

= R3

π∫
0

2π∫
0

sinududv

= R3

π∫
0

sinudu

2π∫
0

dv

= R3 × 2× 2π = 4πR3.

2) Second, we calculate the right-hand side which is the total divergence of the vector

field inside the volume V . ∫
V

∇.fdV.

The vector field f is continuously differentiable vector, we cancalculate its divergence∇.f :

∇.f (x, y, z) =
∂f1 (x, y, z)

∂x
+
∂f2 (x, y, z)

∂y
+
∂f3 (x, y, z)

∂z
.

=
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3,

the element dV for this surface S (the sphere of radius R centered at the origin) is given

by

dV = dxdydz = R2 sinudRdudv.

Now, we calculate the integral of ∇.f over the volume V∫
v

∇.fdV =

R∫
0

π∫
0

2π∫
0

3R2 sinudRdudv

= 3

R∫
0

R2dR×
π∫

0

sinudu×
2π∫
0

dv

= 3

(
R3

3

)
(2) (2π) = 4πR3.
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Chapter 2

Infinite series

2.1 Sequences

A sequence is an ordered list of numbers, the numbers are called terms (or elements) of

the sequence. It is a function with domain the natural numbers N = {0, 1, 2, 3, ...} or the

non-negative integers Z+ = {0, 1, 2, 3, ...}. Usually, we denote a sequence by (un)n≥0 or

(vn)n≥0 where

U : N → R

n 7−→ Un.

Example 2.1.1

1) The sequence (un)n≥0 defined by

un = ln (n+ 1) , n ∈ N.

2) The sequence (un)n≥0 defined by

un = 3n+ 2, n ∈ N.

(un)n≥0 is called the arithmetic sequence of initial (or first) term u0 = 2 and the common

difference d = 3. (un = u0 + nd or un = u1 + (n− 1) d are the general term of the
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arithmetic sequence).

3) The sequence (vn)n≥0 defined by

vn = 4× 3n, n ≥ 0.

(vn)n≥0 is called the geometic sequence of initial (or first) term vo = 4 and the common

ratio q = 3. (vn = v0 × qn or vn = v1 × q(n−1) are the general term of the geometric

seauence).

2.2 Infinite series

A series is the sum of an infinite number of terms of the sequence (un)n≥0, i.e

S = u0 + u1 + u2 + ............

=
+∞∑
n=0

un.

Proposition 2.2.1

A series has the following properties

i)
+∞∑
n=0

(un + vn) =
+∞∑
n=0

un +
+∞∑
n=0

vn

ii)
+∞∑
n=0

aun = a
+∞∑
n=0

un.

Definition 2.2.1 Partial sum of a sequence

Let (un)n≥0 be a sequence. the partial sum of this sequence is given by

Sn = u0 + u1 + u2 + ...+ un

=
n∑
n=0

uk.

Example 2.2.1

1) For a sequence (un)n≥0, we have for example

S0 = u0, S1 = u0 + u1, and S5 = u0 + u1 + u2 + u3 + u4 + u5.
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2) For (un)n≥0 an arithmetic sequence of the initial (or first) term uo and the common

difference d, the partial sum is given by the following relation

Sn =
n∑
n=0

uk =
n+ 1

2
(u0 + un) .

If the initial term of this sequence is u1, then

Sn =
n∑
n=1

uk =
n

2
(u1 + un) .

3) For (un)n≥0 a geometic sequence of the initial term vo and the common ratio q, the

partial sum is given by the following relation

Sn =
n∑
n=0

uk =
1− qn+1

1− q
u0.

If the initial term of this sequence is u1, then

Sn =
n∑
n=1

uk =
1− qn

1− q
u1.

Proposition 2.2.2 Sum of a sequence whose partial sum is known

Let (un)n≥0 be a sequence and Sn is its partial sum, then S the sum of this sequence

is given by

S = lim
n→+∞

Sn.

Example 2.2.2

1) Let (un)n≥0 be a geometric sequence of the general term un = 4×
(
1
2

)n
, we have

Sn =
1− qn+1

1− q
u0 =

1−
(
1
2

)n+1

1− 1
2

× 4

= 8− 8

(
1

2

)n+1

.

By using the previous proposition, we can calculate the sum S of the sequence (un)n≥0

S = lim
n→+∞

Sn

= lim
n→+∞

(
8− 8

(
1

2

)n+1
)

= 8.
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2) Let (un)n≥0 be a sequence of a general term

un =
1

n+ 1
− 1

n+ 2
,

we have

Sn = u0 + u1 + u2 + ...+ un−1 + un

= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ ...+

1

n
− 1

n+ 1
+

1

n+ 1
− 1

n+ 2

= 1− 1

n+ 2
.

By using the previous proposition, we have

S = lim
n→+∞

Sn

= lim
n→+∞

(
1− 1

n+ 2

)
= 1.

2.3 Nature of a series

The nature of a series means that the series is either convergent or divergent. The nature

of a series can be determined from its sum or by using other techniques called convergence

criteria.

Proposition 2.3.1

Let (un)n≥0 be a sequence of a sum S, then

i) If S exists and finite, then the series
+∞∑
n=0

un is convergent.

ii) If S does not exist or is not finite, then the series
+∞∑
n=0

un is divergent.

Example 2.3.1

1) Let
+∞∑
n=0

un be a geometric series of general term

un = 4×
(

1

2

)n
.
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In the previous example, we proved that

S = lim
n→+∞

Sn

= lim
n→+∞

(
8− 8

(
1

2

)n+1
)

= 8,

then, the series
+∞∑
n=0

4×
(

1

2

)n
is convergent.

2) Let
+∞∑
n=0

un be a series of term general

un = a, a 6= 0.

The partial sum of this series is

Sn = u0 + u1 + u2 + ...+ un−1 + un

= a+ a+ a+ ...+ a

= an.

then

S = lim
n→+∞

Sn

= lim
n→+∞

an = +∞,

the series
+∞∑
n=0

a is divergent.

Lemma 2.3.1 Let
+∞∑
n=0

un and
+∞∑
n=0

vn be two infinite series,

i)
+∞∑
n=0

un and
+∞∑
n=0

α× un have the same nature, (α 6= 0).

ii)
+∞∑
n=0

un converges and
+∞∑
n=0

vn converges, then
+∞∑
n=0

(un + vn) converges.

iii)
+∞∑
n=0

un converges and
+∞∑
n=0

vn diverges, then
+∞∑
n=0

(un + vn) diverges.

iii)
+∞∑
n=0

un diverges and
+∞∑
n=0

vn diverges, then we cannot conclude anything about
+∞∑
n=0

(un + vn).
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Proposition 2.3.2 Convergence of geometric series
+∞∑
n=0

u0 × qn a geometic series of an initial term u0 and a common ratio q, then

+∞∑
n=0

u0 × qn
 is comvergent if − 1 < q < 1

is divergent if not

Proof.

i) For −1 < q < 1, we have

S = lim
n→+∞

Sn = lim
n→+∞

1− qn+1

1− q
u0 =

1

1− q
u0,

then
+∞∑
n=0

u0 × qn is convergent.

ii) For q ≥ 1, we have

S = lim
n→+∞

Sn = lim
n→+∞

1− qn+1

1− q
u0 = +∞, (= −∞ if u0 < 0) ,

then
+∞∑
n=0

u0 × qn is divergent.

iii) For q = 1, we have

Sn = (n+ 1)u0 ⇒ S = lim
n→+∞

Sn = +∞, (= −∞ if u0 < 0) ,

then
+∞∑
n=0

u0 × qn is divergent.

iv) For q ≤ −1, we have

S = lim
n→+∞

1− qn+1

1− q
u0 does not exist,

then
+∞∑
n=0

u0 × qn is divergent.

Theorem 2.3.1 Necessary condition for the convergent series

Let
+∞∑
n=0

un be a convergent series, then

lim
n→+∞

un = 0.
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Corollary 2.3.2

Let
+∞∑
n=0

un be a series, then

lim
n→+∞

un 6= 0⇒
+∞∑
n=0

un is divergent.

Example 2.3.2 Let the following series

1)
+∞∑
n=0

5n2 + 2n

4n2 − 9
, 2)

+∞∑
n=2

n2 + 2

lnn
.

1) For
+∞∑
n=0

5n2 + 2n

4n2 − 9
,with un =

5n2 + 2n

4n2 − 9
, we have

lim
n→+∞

un = lim
n→+∞

5n2 + 2n

4n2 − 9
=

5

4
6= 0,

then the series
+∞∑
n=0

un is divergent.

2)For
+∞∑
n=2

n2 + 2

lnn
, with un =

n2 + 2

lnn
, we have

lim
n→+∞

un = lim
n→+∞

n2 + 2

lnn
= +∞,

then the series
+∞∑
n=0

un is divergent.

Definition 2.3.3 Reimann’s series

The series
+∞∑
n=1

1

nα
is called Reimann’s series. Its convergence is related to the value of

α
+∞∑
n=1

1

nα
:

 is convergent if α > 1

is divergent if α ≤ 1
,

for α = 1, the series
+∞∑
n=1

1

n
is called harmonic series.
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2.3.1 Convergence’s criteria for series with positive terms

Comparison criteria

Let
+∞∑
n=0

un and
+∞∑
n=0

vn be two series with positive terms. If

un ≤ vn, ∀n ∈ N.

Then

+∞∑
n=0

vn is convergent ⇒
+∞∑
n=0

un is convergent

+∞∑
n=0

un is divergent ⇒
+∞∑
n=0

vn is divergent.

Example 2.3.3

1)
+∞∑
n=1

1

n3 + 3n
, with un =

1

n3 + 3n
.

We have un ≥ 0 for all n ≥ 1, and

1

n3 + 3n
≤ 1

n3
(car n3 ≤ n3 + 3n).

The series
+∞∑
n=1

1

n3
is Reimann series with α = 3 > 1, then it is convergent.

By using the comparison’s criteria, we conclude that
+∞∑
n=1

1

n3 + 3n
is convergent.

2)
+∞∑
n=1

en

n
, with un =

en

n
.

We have un ≥ 0 for all n ≥ 1, and

1

n
≤ en

n
(because en ≥ 1).

The series
+∞∑
n=1

1

n
is harmonic series, then it is divergent.

By using the comparison’s criteria, we conclude that
+∞∑
n=1

en

n
is divergent.

38



Infinite series

Equivalence’s criteria

Let
+∞∑
n=0

un and
+∞∑
n=0

vn be two series with strictly positive terms. If un is equivalent to vn

(we denote un ∼ vn):

un ∼
+∞

vn ⇔ lim
n→+∞

un
vn

= 1.

Then, the series
+∞∑
n=0

un and
+∞∑
n=0

vn are of the same nature.

Example 2.3.4

1)
+∞∑
n=1

5n2 + 4

3n3 + 2n
, with un =

5n2 + 4

3n3 + 2n
.

We have un > 0 for all n ≥ 1, and we know that

un =
5n2 + 4

3n3 + 2n
∼
+∞

5n2

3n3
=

5

3

1

n
= vn (because lim

n→+∞

un
vn

= 1).

The series
5

3

+∞∑
n=1

1

n
is a harmonic series which is divergent.

By using the equivalence’s creteria, we conclude that
+∞∑
n=1

5n2 + 4

3n3 + 2n
is divergent.

2)
+∞∑
n=1

ln

(
1 +

(
2

3

)n)
, with un = ln

(
1 +

(
2

3

)n)
We have un > 0 for all n ≥ 1, and we know that

un = ln

(
1 +

(
2

3

)n)
∼
+∞

(
2

3

)n
= vn (we know that ln (1 + y) ∼ y when y → 0).

The series
+∞∑
n=1

(
2

3

)n
is a geometric series with ratio q = 2

3
(−1 < q < 1), then it is

convergent

By using the equivalence′s creteria, we conclude that
+∞∑
n=1

5n2 + 4

3n3 + 2n
is convergent.

Cauchy’s criteria

Let
+∞∑
n=0

un be a series with positive terms. Suppose that

lim
n→+∞

n
√
un = l,
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then

1) If l < 1, the series
+∞∑
n=0

un is convergent.

2) If l > 1, the series
+∞∑
n=0

un is divergent.

3) If l = 1, we cannot say anything about the series
+∞∑
n=0

un.

Example 2.3.5

1)
+∞∑
n=1

(
5n+ 4

n2 + 2n

)n
with un =

(
5n+ 4

n2 + 2n

)n
We have un ≥ 0 for all n ≥ 1, and

lim
n→+∞

n
√
un = lim

n→+∞
n

√(
5n+ 4

n2 + 2n

)n
= lim

n→+∞

(
5n+ 4

n2 + 2n

)
= 0 = l.

By using Cauchy’s criteria, and since l = 0 < 1, the series
+∞∑
n=1

(
5n+ 4

n2 + 2n

)n
is convergent.

2)
+∞∑
n=2

( n

lnn

)n
with un =

( n

lnn

)n
We have un ≥ 0 for all n ≥ 2, and

lim
n→ +∞

n
√
un = lim

n→+∞
n

√( n

lnn

)n
= lim

n→+∞

( n

lnn

)
= +∞ = l.

By using Cauchy’s criteria, and since l > 1, the series
+∞∑
n=1

(
5n+ 4

n2 + 2n

)n
is divergent.

D’Alembert’s criteria

Let
+∞∑
n=0

un be a series with positive terms. Suppose that

lim
n→+∞

un+1

un
= l,

then

1) If l < 1, the series
+∞∑
n=0

un is convergent.
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2) If l > 1, the series
+∞∑
n=0

un is divergent.

3) If l = 1, we cannot say anything about the series
+∞∑
n=0

un.

Example 2.3.6

1)
+∞∑
n=0

3n

n!
with un =

3n

n!

We have un > 0 for all n ≥ 0, and

un+1 =
3n+1

(n+ 1)!
=

3× 3n

(n+ 1)n!
,

then
un+1

un
=

3× 3n

(n+ 1)n!
× n!

3n
=

3

(n+ 1)
,

so

lim
n→+∞

un+1

un
= lim

n→+∞

3

(n+ 1)
= 0.

By using D’Alembert’s criteria, and since l = 0 < 1, the series
+∞∑
n=1

3n

n!
is convergent.

2)
+∞∑
n=0

1× 3× 5× ...× (2n+ 3)

(n+ 1)!
with un =

1× 3× 5× ...× (2n+ 3)

(n+ 1)!

We have un > 0 for all n ≥ 0, and

un+1 =
1× 3× 5× ...× (2n+ 5)

(n+ 2)!
=

1× 3× 5× ...× (2n+ 3)× (2n+ 5)

(n+ 2) (n+ 1)!
,

then

un+1

un
=

1× 3× 5× ...× (2n+ 3)× (2n+ 5)

(n+ 2) (n+ 1)!
× (n+ 1)!

1× 3× 5× ...× (2n+ 3)

=
2n+ 5

n+ 2
,

so

lim
n→+∞

un+1

un
= lim

n→+∞

2n+ 5

n+ 2
= 2.

By using D’Alembert’s criteria, and since l = 2 > 1, then the series
+∞∑
n=1

1× 3× 5× ...× (2n+ 3)

(n+ 1)!

is divergent.
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2.3.2 Convergence’s creteria for series with real terms

Absolute convergence

Definition 2.3.4

Let
+∞∑
n=0

un be a series with real term. We say that
+∞∑
n=0

un is absolutely convergent if

and only if
+∞∑
n=0

|un| ,

is convergent.

1) Criteria of absolute convergence

Let
+∞∑
n=0

un is a series with real term. if
+∞∑
n=0

un is absolutely convergent then it is

convergent.

Remark 2.3.5

If
+∞∑
n=0

un is not absolutely convergent, we cannot directly conclude the nature of
+∞∑
n=0

un.

Example 2.3.7

1)
+∞∑
n=1

(−1)n

n3 + n
with un =

(−1)n

n3 + n
We have un is a real term, so we try to know the

nature of
+∞∑
n=1

|un|

|un| =
∣∣∣∣ (−1)n

n3 + n

∣∣∣∣ =
1

n3 + n
≤ 1

n3
.

The series
+∞∑
n=1

1

n3
is Reimann series with α = 3 > 1, then it is convergent.

By using the comparison criteria,
+∞∑
n=1

|un| is convergent. So,
+∞∑
n=1

(−1)n

n3 + n
is absolutely

convergent.

From Criteria of absolute convergence, we conclude that
+∞∑
n=1

(−1)n

n3 + n
is convergent.
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2)
+∞∑
n=1

sinn

2n
with un =

sinn

2n

We have un is a real term, so we try to know the nature of
+∞∑
n=1

|un|

|un| =
∣∣∣∣sinn2n

∣∣∣∣ =
|sinn|

2n
≤ 1

2n
=

(
1

2

)n
.

The series
+∞∑
n=1

(
1

2

)n
is a geometric series with ratio q = 1

2
(−1 < q < 1), then it is

convergent.

By using the comparison creteria,
+∞∑
n=1

|un| =
+∞∑
n=1

|sinn|
2n

is convergent. So,
+∞∑
n=1

sinn

2n
is

absolutly convergent.

From Criteria of absolute convergence, we conclude
+∞∑
n=1

sinn

2n
is convergent.

Leibniz’s creteria for alternating series

Definition 2.3.6 Alternating series
+∞∑
n=0

un is said alternating series if

un = (−1)n bn and bn ≥ 0, ∀n ≥ 0.

Leibniz’s creteria

Let
+∞∑
n=0

(−1)n bn be an alternating series. This
+∞∑
n=0

(−1)n bn is convergent if

i) lim
n→+∞

bn = 0.

ii) (bn)n is decreasing.

Example 2.3.8

1)
+∞∑
n=1

(−1)n√
n

with un =
(−1)n√

n
= (−1)n bn

We have un is an alternating term, and bn =
1√
n

i) lim
n→+∞

bn = lim
n→+∞

1√
n

= 0.
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ii) (bn)n is decreasing (bn+1 ≤ bn, ∀n ≥ 1).

By using Leibniz’s creteria, the series
+∞∑
n=1

(−1)n√
n

is convergent.

2)
+∞∑
n=2

(−1)n

lnn
with un =

(−1)n

lnn
= (−1)n bn

We have un is an alternating term, and bn =
1

lnn

i) lim
n→+∞

bn = lim
n→+∞

1

lnn
= 0.

ii) (bn)n is decreasing (bn+1 ≤ bn, ∀n ≥ 2).

By using Leibniz’s creteria, the
+∞∑
n=2

(−1)n

lnn
is convergent.

2.3.3 Semi-convergent series

Definition 2.3.7 Semi-convergent series

Let
+∞∑
n=0

un is a series with real term.
+∞∑
n=0

un is said semi-convergent (or conditionally

convergent) if

i)
+∞∑
n=0

|un| is divergent (
+∞∑
n=0

un does not converge absolutely).

ii)
+∞∑
n=0

un is convergent.

Example 2.3.9

1)
+∞∑
n=1

(−1)n√
n

with un =
(−1)n√

n
.

i) Study the absolute convergence of
+∞∑
n=1

(−1)n√
n

.

|un| =
∣∣∣∣(−1)n√

n

∣∣∣∣ =
1√
n

=
1

n
1
2

.

The series
+∞∑
n=1

1

n
1
2

is Reimann series with α =
1

2
< 1, then it is divergent.

Then,
+∞∑
n=1

(−1)n√
n

does not converge absolutely.
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ii) Study the convergence of
+∞∑
n=1

(−1)n√
n

.

We proved in the previous example that
+∞∑
n=1

(−1)n√
n

is convergent (Leibniz’s creteria).

Then, the series
+∞∑
n=1

(−1)n√
n

is semi-convergent (or conditionally convergent).

2)
+∞∑
n=2

(−1)n

lnn
with un =

(−1)n

lnn
.

i) Study the absolute convergence of
+∞∑
n=2

(−1)n

lnn
.

|un| =
∣∣∣∣(−1)n

lnn

∣∣∣∣ =
1

lnn
,

we have
1

n
≤ 1

lnn
.

The series
+∞∑
n=2

1

n
is divergent (harmonic series).

By using the comparison creteria,
+∞∑
n=2

|un| =
+∞∑
n=2

1

n
is divergent. So

+∞∑
n=2

(−1)n

lnn
does not

converge absolutely.

ii) Study the convergence of
+∞∑
n=1

(−1)n

lnn
.

We proved in the previous example that
+∞∑
n=2

(−1)n

lnn
is convergent (Leibniz’s creteria).

Then, the series
+∞∑
n=2

(−1)n√
n

is semi-convergent (or conditionally convergent).

45



Chapter 3

Power series

Definition 3.0.8 Power series

We say a power series, the series of the form

+∞∑
n=0

anx
n,

where x ∈ R and (an)n≥0 is a sequence (also we say that a0, ..., an are the coefficients of

the series).

More general, for x0 ∈ R, the power series associate to x0 is given by

+∞∑
n=0

an (x− x0)n .

Example 3.0.10

1) Polynomials of degree p are a particular type of power series where an = 0 for all

n > p.

3x2 − 2x+ 7 =
+∞∑
n=0

anx
n where

 a0 = 7, a1 = −2, a2 = 3

and an = 0 for all n > p

2)
+∞∑
n=0

xn

n2 + 1
with an =

1

n2 + 1
.
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3.1 Domain of convergence of a power series

Definition 3.1.1

The domain of convergence of a power series is

D =

{
x ∈ R, where

+∞∑
n=0

anx
n is convergent

}
.

Remark 3.1.2

Si x = 0, then anx
n = 0, we conclude that the power series

+∞∑
n=0

anx
n is convergent. So,

0 ∈ D, then

D 6= ∅.

Lemma 3.1.1 Abel’s lemma

If a power series
+∞∑
n=0

anx
n is convergent for x = x0 6= 0, then it is convergent for all x

such as −x0 < x < x0

3.2 Radius of convergence of a power series

Definition 3.2.1 Radius of convergence of a power series

Let D be the domain of convergence of a power series
+∞∑
n=0

anx
n. The numder R =

sup
x∈D
|x| is called the radius of convergence of a the series.

Remark 3.2.2

R varies from 0 to +∞.

Using Abel’s lemma and the definition of radius of convergence, we get the following

proposition.
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Proposition 3.2.1

Let
+∞∑
n=0

anx
n a power series with a radius R. Then

i) For |x| < R, the series
+∞∑
n=0

anx
n is convergent.

ii) For |x| > R, the series
+∞∑
n=0

anx
n is divergent.

iii) For |x| = R, we can not say anything about the series
+∞∑
n=0

anx
n.

Remark 3.2.3

For the third case (|x| = R), we have to study the nature of series
+∞∑
n=0

anx
n for x = R and

x = −R.

Techniques to calculate the radius of convergence R

The radius of convergence R can be calculated using the following Hadamard’s lemma.

Lemma 3.2.1 (Hadamard’s Lemma)

Let
+∞∑
n=0

anx
n be a power series, then

R =
1

l
,

where

l = lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ or l = lim
n→+∞

n
√
|an|.

Example 3.2.1

For each series of the following series, we will calculate its radius of convergence and we

determine its domain of convergence.

1)
+∞∑
n=0

(−1)n (n+ 2)!xn with an = (−1)n (n+ 2)!

i) Rdius of convergence R: R =
1

l

We have l = lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣
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· an+1 = (−1)n+1 (n+ 3)! = (−1)n+1 (n+ 3) (n+ 2)!.

·
∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣(−1)n+1 (n+ 3) (n+ 2)!

(−1)n (n+ 2)!

∣∣∣∣∣ = n+ 3.

then

l = lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→+∞

n+ 3

= +∞,

since R = 1
l
, we get

R = 0.

ii) Domain of convergence D

Since R = 0, then the series
+∞∑
n=0

anx
n =

+∞∑
n=0

(−1)n (n+ 2)!xn is convergent on its domain

D which is

D = {0} .

2)
+∞∑
n=1

(
n+ 2

n2

)n
xn with an =

(
n+ 2

n2

)n
i) Radius of convergence R: R =

1

l
We have l = lim

n→+∞
n
√
un

n
√
un = (un)

1
n =

((
n+ 2

n2

)n) 1
n

=
n+ 2

n2
,

then

l = lim
n→+∞

n
√
an = lim

n→+∞

n+ 2

n2

= 0,

since R =
1

l
, we get

R = +∞.

ii) Domain of convergence D

For |x| < R = +∞, the series
+∞∑
n=0

anx
n =

+∞∑
n=1

(
n+ 2

n2

)n
xn is convergent. Then

D = R = ]−∞,+∞[ .
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3)
+∞∑
n=1

3n

(n+ 1)2
xn with an =

3n

(n+ 1)2

i) Radius of convergence R: R =
1

l

We have l = lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣
an+1 =

3n+1

(n+ 2)2
=

3× 3n

(n+ 2)2
,

and ∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ 3× 3n

(n+ 2)2
× (n+ 1)2

3n

∣∣∣∣∣ =
3 (n+ 1)2

(n+ 2)2
,

then

l = lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→+∞

3 (n+ 1)2

(n+ 2)2

= 3,

since R =
1

l
, we get

R =
1

3
.

ii) Domain of convergence D

a) For |x| < R =
1

3
,

(
−1

3
< x <

1

3

)
The series

+∞∑
n=1

3n

(n+ 1)2
xn is convergent.

b) For |x| > R =
1

3
,

(
x < −1

3
or x >

1

3

)
The series

+∞∑
n=0

3n

(n+ 1)2
xn is divergent.

c) For |x| = R =
1

3
,
(
x = −1

3
or x = 1

3

)
Nothing can be concluded about the series

+∞∑
n=1

3n

(n+ 1)2
xn.

· For x =
1

3
, we have

+∞∑
n=1

3n

(n+ 1)2
xn =

+∞∑
n=1

3n

(n+ 1)2

(
1

3

)n
=

+∞∑
n=1

1

(n+ 1)2
.
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Studying the nature of
+∞∑
n=1

1

(n+ 1)2
with un =

1

(n+ 1)2

we have un ≥ 0 and

un =
1

(n+ 1)2
∼
∞

1

n2
= vn (because lim

n→+∞

un
vn

= 1).

+∞∑
n=1

vn =
+∞∑
n=1

1

n2
is convergent (Reimann’s series with α = 2 > 1)

then,
+∞∑
n=1

1

(n+ 1)2
is convergent (from the equivalence’s criteria).

So, the series
+∞∑
n=1

3n

(n+ 1)2
xn is convergent for x =

1

3
.

· For x = −1

3
, we have

+∞∑
n=1

3n

(n+ 1)2
xn =

+∞∑
n=1

3n

(n+ 1)2

(
−1

3

)n
=

+∞∑
n=1

(−1)n

(n+ 1)2
.

Studying the nature of the series
+∞∑
n=1

(−1)n

(n+ 1)2
with un =

(−1)n

(n+ 1)2

We have (un)n is sequence with real term, then we use the criteria of absolute convergence

to know the nature of the series
+∞∑
n=1

(−1)n

(n+ 1)2
.

+∞∑
n=1

|un| =
+∞∑
n=1

1

(n+ 1)2
,

we proved in the previous part that
+∞∑
n=1

|un| =
+∞∑
n=1

1

(n+ 1)2
is convergent, then

+∞∑
n=1

un =

+∞∑
n=1

(−1)n

(n+ 1)2
is absolutely convergent, so

+∞∑
n=1

(−1)n

(n+ 1)2
is convergent.

We conclude that the series
+∞∑
n=1

3n

(n+ 1)2
xn is convergent for x = −1

3
.

Conclusion

The domain of convergence D of the series
+∞∑
n=1

3n

(n+ 1)2
xn is

D =

[
−1

3
,
1

3

]
.
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3.3 Properties of power series

Let S (x) =
+∞∑
n=0

anx
n a power series with a radius R and domain D = ]−R,R[.

i) S (x) is continuous in D.

ii) For all x ∈ D, we have

S ′ (x) =
+∞∑
n=1

nanx
n−1,

and
+∞∫
0

S (x) dx =
+∞∑
n=0

an
n+ 1

xn+1.

iii) The series
+∞∑
n=1

nanx
n−1 and

+∞∑
n=0

an
n+ 1

xn+1 have the same radius R.

3.4 Power series expansion near zero of a function of

a real variable

3.4.1 Function expandable in a power series over the open in-

terval of convergence

Proposition 3.4.1 Function expandable in a power series

A function f defined in a neighborhood of 0 is said to be expandable in a power series

around 0 if there exists R > 0 such that

∀x ∈ ]−R,R[ , f (x) =
+∞∑
n=0

anx
n.

More general, a function f defined in a neighborhood of x0 is said to be expandable in

a power series around x0 if there exists R > 0 such that

∀x ∈ ]x0 −R, x0 +R[ , f (x) =
+∞∑
n=0

an (x− x0)n .
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3.4.2 Taylor-Maclaurin series of a function of class C∞

Definition 3.4.1 Taylor-Maclaurin series

Let f be a function of class C∞ in a neighborhood of the point x = 0. The Taylor-

Maclaurin series of the function f in a neighborhood of x = 0 is ginev by

f (x) =
+∞∑
n=0

f (n) (0)

n!
xn.

Example 3.4.1

1) f (x) = ex, we use the relation

f (x) =
+∞∑
n=0

f (n) (0)

n!
xn.

we need to calculate f (n) (0)

f (x) = ex, f ′ (x) = ex, ..., f (n) (x) = ex,

then

f (0) = 1, f ′ (0) = 1, ..., f (n) (0) = 1,

we conclude

f (x) = ex =
+∞∑
n=0

f (n) (0)

n!
xn.

⇒ ex =
+∞∑
n=0

1

n!
xn.

2) f (x) =
1

1− x
, we use the relation

f (x) =
+∞∑
n=0

f (n) (0)

n!
xn,

we need to calculate f (n) (0)

f (x) =
1

1− x
, f ′ (x) =

1

(1− x)2
, f ′′ (x) =

2

(1− x)3
,

53



Power series

f (3) (x) =
2× 3

(1− x)4
, ..., f (n) (x) =

n!

(1− x)n
,

then

f (n) (0) =
n!

(1− 0)n
= n!,

we conclude that

f (x) =
1

1− x
=

+∞∑
n=0

f (n) (0)

n!
xn.

⇒ 1

1− x
=

+∞∑
n=0

xn.

3) f (x) =
1

1 + x
, by following the same steps as the previous example we get

f (n) (x) =
(−1)n n!

(1 + x)n
,

then
1

1 + x
=

+∞∑
n=0

(−1)n xn.

4) f (x) = sinx, we use the relation

f (x) =
+∞∑
n=0

f (n) (0)

n!
xn,

we need to calculate f (n) (0)

f (x) = sin x, f ′ (x) = cos x, f ′′ (x) = − sinx,

f (3) (x) = − cosx, , f (4) (x) = sinx, ...,

then

f (n) (x) =

 (−1)p sinx si n = 2p

(−1)p cosx si n = 2p+ 1

for x = 0, we get

f (n) (0) =

 0 si n = 2p

(−1)p si n = 2p+ 1
,
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we conclude that

f (x) = sinx =
+∞∑
n=0

f (n) (0)

n!
xn.

⇒ sinx =
+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

5) f (x) = cosx, by following the same steps as the previous example we get

cosx =
+∞∑
n=0

(−1)n

(2n)!
x2n.

3.5 Applications

3.5.1 Solving Differential Equations

We seek a solution in the form of a power series with undetermined coefficients of a

differential equation. By identification, we obtain these coefficients . It is then sufficient

to study the convergence of this series to determine the solution of the equation in the

convergence interval.

Example 3.5.1

1) Finding the power series solution to the equation

y′ − y = 0, y (0) = 1.

We pose y (x) =
+∞∑
n=0

anx
n then y′ (x) =

+∞∑
n=1

nanx
n−1

By a change of index in y′ (x) we obtain

y′ (x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
k=0

(k + 1) ak+1x
k =

+∞∑
n=0

(n+ 1) an+1x
n,
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we get

(1− x) y′ − y = 0⇔ (1− x)
+∞∑
n=1

nanx
n−1 −

+∞∑
n=0

anx
n = 0

⇔
+∞∑
n=1

nanx
n−1 −

+∞∑
n=1

nanx
n −

+∞∑
n=0

anx
n = 0

⇔
+∞∑
k=0

(n+ 1) an+1x
n −

+∞∑
n=1

nanx
n −

+∞∑
n=0

anx
n = 0

⇔
+∞∑
k=0

((n+ 1) an+1 − nan − an)xn = 0

⇔
+∞∑
k=0

((n+ 1) an+1 − (n+ 1) an)xn = 0

⇔ (n+ 1) an+1 − (n+ 1) an = 0

⇔ an+1 = an, ∀n ∈ N.

From y (0) = 1, we get a0 = 1, then

an = 1, ∀n ∈ N.

This implies that

y (x) =
+∞∑
n=0

xn.

From the previous example, we have

1

1− x
=

+∞∑
n=0

xn, |x| < 1,

then

y (x) =
1

1− x
, |x| < 1.

2) Finding the power series solution of the equation

(E)

 y′′ + 2xy′ + 2y = 0

y (0) = 1 et y′ (0) = 1
.
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We pose y (x) =
+∞∑
n=0

anx
n then

y′ (x) =
+∞∑
n=1

nanx
n−1 and y′′ (x) =

+∞∑
n=2

n (n− 1) anx
n−2.

By a change of index in y′ (x) and y′′ (x) we obtain

y′ (x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
k=0

(k + 1) ak+1x
k =

+∞∑
n=0

(n+ 1) an+1x
n,

and

y′′ (x) =
+∞∑
n=2

n (n− 1) anx
n−2 =

+∞∑
k=0

(k + 2) (k + 1) ak+2x
k =

+∞∑
n=0

(n+ 2) (n+ 1) an+2x
n,

we get

y′′ + 2xy′ + 2y = 0⇔
+∞∑
n=2

n (n− 1) anx
n−2 + 2x

+∞∑
n=1

nanx
n−1 + 2

+∞∑
n=0

anx
n = 0

⇔
+∞∑
n=2

n (n− 1) anx
n−2 + 2

+∞∑
n=1

nanx
n + 2

+∞∑
n=0

anx
n = 0

⇔
+∞∑
n=0

(n+ 2) (n+ 1) an+2x
n + 2

+∞∑
n=1

nanx
n + 2

+∞∑
n=0

anx
n = 0

⇔
+∞∑
n=0

((n+ 2) (n+ 1) an+2 + 2nan + 2an)xn = 0

⇔ (n+ 2) (n+ 1) an+2 + 2 (n+ 1) an = 0

⇔ an+2 =
2

(n+ 2)
an, ∀n ∈ N..... (∗) .

From y (0) = 0, we get a0 = 1 and from y′ (0) = 0, we get a1 = 0.

From the relation (∗), we find

a2 = −1, a3 = 0, a4 =
1

2
, a5 = 0, a6 = − 1

2× 3
.

We note that the coefficients of odd indices are 0. So:

an =


(−1)p

p!
, si n = 2p

0, si n = 2p+ 1
.
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Then

y (x) =
+∞∑
n=0

anx
n =

+∞∑
n=0

a2nx
2n +

+∞∑
n=0

a2n+1x
2n+1

=
+∞∑
n=0

a2nx
2n =

+∞∑
n=0

(−1)n

n!
x2n.

From the previous example, we have

ex =
+∞∑
n=0

1

n!
xn

then

y (x) =
+∞∑
n=0

(−1)n

n!
x2n =

+∞∑
n=0

(−x2)n

n!

= e−x
2

.
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Chapter 4

Fourier series

In this chapter, we study Fourier series, which are a fundamental tool in the analysis of

periodic functions. Their applications are quite numerous in other areas of mathematics,

notably in differential equations and partial differential equations.

4.1 Trigonometric series

Definition 4.1.1 A real trigonometric series is a series of functions of the form:

a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)], (4.1.1)

with x ∈ R et a0 an and bn ∈ R, ∀n ≥ 1.

Definition 4.1.2 (Periodic fimction):

A function f from R to C is called periodic, if there exists a number T such that, for all

x ∈ R

f(x) = f(x+ T ) ∀x ∈ R.

The smallest such positive number T is called the fundamental period of f , and we say

that f is T -periodic
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Example 4.1.1

f1(x) = cos x and f2(x) = sin x are 2π-periodic functions:

cos(x+ 2π) = cos x and sin(x+ 2π) = sinx.

Proposition 4.1.1

If the infinite series
∑

an et
∑

bn are absolutely convergent then the series defined by

(4.1.1) is normally convergent.

Remark 4.1.3

Suppose that the series defined by (4.1.1) is convergent. Then the function defined by

f(x) =
a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)],

is 2π-periodic function.

4.1.1 Calculation of the coefficients of the trigonometric series

We suppose that the series defined by (4.1.1) is uniformly convergent. Then

f(x) =
a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)], (4.1.2)

is 2π-periodic function. In this case, the coefficients a0, an and bn are given by the

following relations

a0 =
1

π

2π∫
0

f(x)dx,

an =
1

π

2π∫
0

f(x) cos(nx) dx and bn =
1

π

2π∫
0

f(x) sin(nx) dx ∀n ≥ 1.

Remark 4.1.4

If f is T -periodic function and continuous sur [0, T ], then:

T∫
0

f(x) dx =

α+T∫
α

f(x) dx ∀α ∈ R.
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Using this remark, and since the function f defined by (4.1.2) is 2π-periodic, we have

a0 =
1

π

+π∫
−π

f(x) dx.

an =
1

π

+π∫
−π

f(x) cos(nx) dx, and bn =
1

π

+π∫
−π

f(x) sin(nx) dx ∀n ≥ 1.

4.2 Fourier series

Definition 4.2.1 Let f : R −→ R be a 2π-periodic function. The Fourier series associ-

ated with the function f is the trigonometric series:

a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)],

where

a0 =
1

π

+π∫
−π

f(x) dx,

an =
1

π

+π∫
−π

f(x) cos(nx) dx, and bn =
1

π

+π∫
−π

f(x) sin(nx) dx ∀n ≥ 1.

Theorem 4.2.2

Let f : R −→ R be a 2π-periodic function satisfying the following conditions:

1) There exists M > 0 such as |f(x)| ≤M, ∀x ∈ R.

2) f is slice-monotone on the interval [a, b] (i.e we can divide [a, b] into subintervals such

that the function f is monotonic on each subinterval).

Then, the Fourier series associated with the function f is convergent, and we have:

S(x) =
a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)],
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with

S (y) =

 f (y) if f is continuous at y

f+(y)+f−(y)
2

if f is not continuous at y

where

f+ (y) = lim
x→

>
y
f (x) and f− (y) = lim

x→
<
y
f (x) .

To give more simpler format for the coefficients a0, an and bn for a particular type of

function, we need the following proposition.

Proposition 4.2.1

Let g : [−k,+k]→ R be a continuous function. then:

i) If f is an even function, then

+k∫
−k

g(x) dx = 2

+k∫
0

g(x) dx.

ii) If f is an odd function, then

+k∫
−k

g(x) dx = 0.

Using this proposition, the coefficients a0, an and bn are given as follows

First case: If f is an even function, then

f(·) cos(·) is an even function,

and

f(·) sin(·) is an odd function.

So,

a0 =
2

π

π∫
0

f(x) dx

and

an =
2

π

π∫
0

f(x) cos(nx) dx and bn = 0 ∀n ≥ 1.

Second case: If f is an odd function, then

f(·) cos(·) is an odd function,
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and

f(·) sin(·) is an even function.

So, a0 = an = 0 ∀n ≥ 1, and

bn =
2

π

π∫
0

f(x) sin(nx) dx ∀n ≥ 1.

4.3 Parseval’s equality

Theorem 4.3.1

Let f be a 2π-periodic function and developable in Fourier series, then we have

1

π

+π∫
−π

|f(x)|2 dx =
|a0|2

2
+

+∞∑
n=1

(
|an|2 + |bn|2

)
.

1) If f is an even function, f 2 is also an even function and bn = 0, then:

2

π

π∫
0

|f(x)|2 dx =
|a0|2

2
+

+∞∑
n=1

|an|2.

2) If f is an odd function, f 2 is an even function and an = 0, then:

2

π

π∫
0

|f(x)|2 dx =
+∞∑
n=1

|bn|2.

Example 4.3.1

Let f be a 2π-periodic function defined by

f(x) = π − |x| et − π ≤ x ≤ +π.

1) Plot the graph of f over the interval [−3π, 3π].

2) Calculate the Fourier coefficients of f .

3) Obtain a Fourier series expansion of the function f .

4) Deduce the sums of the following infinite convergent series:

A =
+∞∑
n=0

1

(2n+ 1)2
and B =

+∞∑
n=0

1

(2n+ 1)4
.
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Solution:

1) The graph of f

2) The Fourier coefficients of f

f is expandable as a Fourier series (because f satisfies the conditions of Theorem

4.2.2). Moreover, f is an even function, so

bn = 0, ∀n ≥ 1,

and

a0 =
2

π

π∫
0

f (x) dx et an =
2

π

π∫
0

f (x) cos (nx) dx, ∀n ≥ 1.

For a0,

a0 =
2

π

π∫
0

f (x) dx

=
2

π

π∫
0

(π − |x|) dx

=
2

π

π∫
0

(π − x) dx = π.
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For an,

an =
2

π

π∫
0

f (x) cos (nx) dx, ∀n ≥ 1

=
2

π

π∫
0

(π − x) cos (nx) dx

=
2

π

[(π − x)

n
sin (nx)

]π
0

+
1

n

π∫
0

sin (nx) dx


=

2

π

[
0 +

1

n

[
−cos (nx)

n

]π
0

]
=

2

πn2
[− cos (nx)]π0 =

2 [1− (−1)n]

πn2
.

We remark that

an =

 0 si n = 2p

4
π(2p+1)2

si n = 2p+ 1

3) The Fourier series expansion of f

We have

S (x) =
a0
2

+
+∞∑
n=1

an cos (nx) +
+∞∑
n=1

bn sin (nx) ,

and since f is continuous for all x ∈ R, we have

S (x) = f (x) = π − |x| = a0
2

+
+∞∑
n=1

an cos (nx) +
+∞∑
n=1

bn sin (nx)

=
π

2
+

+∞∑
n=1

an cos (nx)

=
π

2
+

+∞∑
n=1

a2n cos (2nx) +
+∞∑
n=0

a2n+1 cos ((2n+ 1)x)

=
π

2
+

+∞∑
n=0

a2n+1 cos ((2n+ 1)x) (because a2n = 0)

=
π

2
+

+∞∑
n=1

4

π (2n+ 1)2
cos ((2n+ 1)x)

=
π

2
+

4

π

+∞∑
n=1

cos ((2n+ 1)x)

(2n+ 1)2
(∗) .
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4) Calculation of sums

A =
+∞∑
n=0

1

(2n+ 1)2
.

We replace x by 0 in the equation (∗), we get

0 =
π

2
− 4

π

+∞∑
n=0

1

(2n+ 1)2

=⇒
+∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

B =
+∞∑
n=1

1
n2 .

From the Parseval’s equality, we have:

1

π

π∫
−π

|f (x)|2 dx =
|a0|2

2
+

+∞∑
n=1

(
|an|2 + |bn|2

)
,

then

1

π

π∫
−π

(π − |x|)2 dx =
π2

2
+

+∞∑
n=0

16

π2 (2n+ 1)4

2

π

π∫
0

(π − x)2 dx =
π2

2
+

16

π2

+∞∑
n=0

1

(2n+ 1)4

2π2

3
=

π2

2
+

16

π2

+∞∑
n=0

1

(2n+ 1)4

=⇒
+∞∑
n=0

1

(2n+ 1)4
=
π4

96
.

Example 4.3.2

Let f be a 2π-periodic function defined by:

f (x) =

 2 si − π < x ≤ 0

−2 si 0 < x < π

1) Plot the graph of f over the interval [−5π, 5π].

2) Calculate the Fourier coefficients of f .
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3) Obtain a Fourier series expansion of the function f .

4) Deduce the sums of the following infinite convergent series:

A =
+∞∑
n=0

(−1)n

2n+ 1
, and B =

+∞∑
n=0

1

(2n+ 1)2
.

Solution:

1) The graph of f

2) The Fourier coefficients of f

f is expandable in a Fourier series (because f satisfies the conditions of Theorem 4.2.2).

Moreover, f is an odd function, so

a0 = 0, and an = 0 ∀n ≥ 1

and

bn =
2

π

π∫
0

f (x) sin (nx) dx,

67



Fourier series

then

bn =
2

π

π∫
0

f (x) sin (nx) dx

=
2

π

π∫
0

2 sin (nx) dx

=
4

nπ
[− cos (nx)]π0

=
4 [− (−1)n + 1]

nπ
,

We remark that

bn =

 0 si n = 2p

8
π(2p+1)

si n = 2p+ 1

3) The Fourier series expansion of f

We have

S (x) =
a0
2

+
+∞∑
n=1

an cos (nx) +
+∞∑
n=1

bn sin (nx) ,

then

S (x) =
a0
2

+
+∞∑
n=1

an cos (nx) +
+∞∑
n=0

bn sin (nx)

=
+∞∑
n=0

bn sin (nx)

=
+∞∑
n=0

8

π (2n+ 1)
sin (nx)

=
8

π

+∞∑
n=0

sin (nx)

(2n+ 1)
. (1) ,

since f is not continuous for all x ∈ R, then we have for x0 ∈ R

S (x0) =

 f (x0) if x0 6= kπ, k ∈ Z

0 if x0 = kπ, k ∈ Z
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4) Calculation of sums

A =
+∞∑
n=0

(−1)n

2n+ 1
,

We replace x by π
2

in the equation (1),we get

S
(π

2

)
= f

(π
2

)
= 2 =

8

π

+∞∑
n=0

sin (nx)

(2n+ 1)

=⇒
+∞∑
n=0

(−1)n

2n+ 1
=
π

4
.

B =
+∞∑
n=0

1

(2n+ 1)2
,

From the Parseval’s equality, we have:

1

π

π∫
−π

|f (x)|2 dx =
|a0|2

2
+

+∞∑
n=1

(
|an|2 + |bn|2

)
,

then

1

π

π∫
−π

22dx =
+∞∑
n=1

|bn|2

2

π

π∫
0

4dx =
64

π2

+∞∑
n=1

1

(2n+ 1)2

8 =
64

π2

+∞∑
n=1

1

(2n+ 1)2

=⇒
+∞∑
n=1

1

(2n+ 1)2
=
π2

8
.
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Chapter 5

Fourier Transform

The Fourier Transform is an extension of the Fourier Series expansion for periodic func-

tions to non-periodic functions.

We denote by L1 (R) the set of functions f : R→ R that are integrable and for which
+∞∫
−∞

|f (t)| dt converges.

5.1 Fourier Transform

Definition 5.1.1

For f ∈ L1(R). The Fourier transform of f denoted by F (f) is defined as follows:

F (f) : R −→ C,

F (f) (s) =
1√
2π

+∞∫
−∞

f (t) e−istdt.

Since, we have

e−ist = cos (st)− i sin (st) ,

then

F (f) (s) =
1√
2π

 +∞∫
−∞

f (t) cos (st) dt− i
+∞∫
−∞

f (t) sin (st) dt

 .
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5.2 Properties of the Fourier transform

We have

F (f) (s) =
1√
2π

+∞∫
−∞

f (t) e−istdt

=
1√
2π

 +∞∫
−∞

f (t) cos (st) dt− i
+∞∫
−∞

f (t) sin (st) dt

 .
If f is an even function, then

f (·) cos (·) is an even and f (·) sin (·) is an odd,

and if f is an odd function, then

f (·) cos (·) is an odd and f (·) sin (·) is an even.

Using the privious remarks, we get the following proposition.

Proposition 5.2.1

For a function f ∈ L1(R), we have

i) If f is an even function, then

F (f) (s) =
2√
2π

+∞∫
0

f (t) cos (st) dt.

ii) If f is an odd function,then

F (f) (s) = − 2i√
2π

+∞∫
0

f (t) sin (st) dt.

Example 5.2.1

1) Let f : R −→ R be a function defined by

f (t) =

 2 if |t| ≤ 3

0 if |t| > 3.
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We calculate the Fourier transform of f . It is clear that f is an even function, then

F (f) (s) =
2√
2π

+∞∫
0

f (t) cos (st) dt

=
2√
2π

+∞∫
0

2 cos (st) dt

=
4√
2π

3∫
0

cos (st) dt

=
4

s
√

2π
[sin (st)]30 , s 6= 0

=
4√
2π

sin (3s)

s
,

and if s = 0, we get

F (f) (0) =
2√
2π

3∫
0

2dt =
12√
2π
.

Then

F (f) (s) =


4√
2π

sin (3s)

s
if s 6= 0

12√
2π

if s = 0.

2) Let f a be function defined by.

f (t) =

 0 if t < 0

e−αt if t ≥ 0
,

with α > 0.
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We calculate the Fourier transform of f ,

F (f) (s) =
1√
2π

+∞∫
−∞

f (t) e−istdt

=
1√
2π

0∫
−∞

f (t) e−istdt+
1√
2π

+∞∫
0

f (t) e−istdt

=
1√
2π

+∞∫
0

e−αte−istdt,

=
1√
2π

+∞∫
0

e−(α+is)tdt

=
1√
2π

[
−1

α + is
e−(α+is)t

]+∞
0

=
1√
2π

1

α + is
,

(
because e−αt −→ 0 as t −→ 0

)
,

then

F (f) (s) =
1√
2π

1

α + is
, α > 0.

Theorem 5.2.1

Let f ∈ L1(R). then

i) F (f) is continuous at s0 ∈ R⇔ lim
s−→s0

F (f) (s) = F (f) (s0) .

ii) F (f) is bounded on R⇔ ∃M > 0 : |F (f) (s)| ≤M, ∀s ∈ R.

Proposition 5.2.2 Linearity of the Fourier transform

Let f and g be two functions. Suppose that F (f) and F (g) exist, then

F (αf + βg) (s) = αF (f) (s) + βF (g) (s) , for α, β ∈ R.
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5.3 Inverse Fourier Transform

Definition 5.3.1

For f ∈ L1(R) a continuous function, the inverse Fourier transform of f denoted by F−1

is given by:

F−1 (f) (t) =
1√
2π

+∞∫
∞

f (s) eistds.

Theorem 5.3.2

Let f ∈ L1(R) be a continuous function. Suppose that F (f) ∈ L1(R), then

F−1 (F (f)) = F
(
F−1 (f)

)
= f,

and

f (t) =
1√
2π

+∞∫
−∞

F (f) (s) eistds.

Example 5.3.1

Let f be a function defined by

f (t) =

 0 if t < 0

e−αt if t ≥ 0
,

with α > 0.

Using Fourier transform and its inverse, we will calculate the following integral

1√
2π

+∞∫
−∞

(
1√
2π

1

α + is

)
eistds,

from the previous example, we have

F (f) (s) =
1√
2π

1

α + is
, α > 0.

then

1√
2π

+∞∫
−∞

(
1√
2π

1

α + is

)
eistds =

1√
2π

+∞∫
−∞

F (f) eistds

= F−1 (F (f) (s)) ,
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since we have F−1 (F (f)) = F (F−1 (f)) = f , then we get

1√
2π

+∞∫
−∞

(
1√
2π

1

α + is

)
eistds = f (t)

=

 0 if t < 0

e−αt if t ≥ 0
,

with α > 0.
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Chapter 6

Laplace Transform

6.1 Laplace Transform

Definition 6.1.1

For a function f . The Laplace transform is given by

L (f (t)) = F (s) =

+∞∫
0

f (t) e−stdt.

Example 6.1.1

1)For f (t) = 2,

L (f (t)) = L (2)

=

+∞∫
0

2e−stdt

= 2

[
−e−st

s

]+∞
0

=
2

s
.
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2) For f (t) = eαt, t ≥ 0 and α ∈ R

L (f (t)) = L
(
eαt
)

=

+∞∫
0

eαte−stdt

=

+∞∫
0

e(α−s)tdt

=

[
e(α−s)t

α− s

]+∞
0

=
1

s− α
, (for s > α) .

3) For f (t) = t, t ≥ 0.

L (f (t)) = L (t)

=

+∞∫
0

te−stdt

=

[
−te−st

s

]+∞
0

+
1

s

+∞∫
0

e−stdt

= 0 +
1

s

[
−e−st

s

]+∞
0

=
1

s2
. (for s > 0) .

4) In general, for f (t) = tn, we have

L (f (t)) =

+∞∫
0

tne−stdt =
n!

sn+1
. (for s > 0) .

6.2 Properties of Laplace transform

Proposition 6.2.1

Let f and g be two functions. Suppose that L (f (t)) and L (g (t)) exist, then

L (αf (t) + βg (t)) = αL (f (t)) + βL (g (t)) , for α, β ∈ R.
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Example 6.2.1

Using this previous proposition, we can calculate the Laplace transform of sin (αt) and

sinh (αt)

1) For f (t) = sin (αt), t ≥ 0 and α ∈ R

L (f (t)) = L (sin (αt))

= L
(

1

2i

(
eαt − e−αt

))
=

1

2i
L
(
eαt
)
− 1

2i
L
(
e−αt

)
=

1

2i

1

s− iα
− 1

2i

1

s+ iα
, (for s > 0)

=
1

2i

s+ iα− (s− iα)

(s− iα) (s+ iα)
,

=
α

s2 + α2
, (for s > 0) .

2) For f (t) = sinh (αt), t ≥ 0 and α ∈ R

L (f (t)) = L (sinh (αt))

= L
(

1

2

(
eαt − e−αt

))
=

1

2
L
(
eαt
)
− 1

2
L
(
e−αt

)
=

1

2

1

s− α
− 1

2

1

s+ α
, (for s > a)

=
α

s2 − α2
. (for s > α) .

Theorem 6.2.1

Let f be a function. Suppose that f ,f ′ and f ′′ are continuous and we suppose also that

L (f (t)) = F (s) exists, then we have

L (f ′ (t)) = sF (s)− f (0) ,

and

L (f ′′ (t)) = s2F (s)− sf (0)− f ′ (0) .
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6.3 Inverse Laplace Transform

Definition 6.3.1

Let F (s) be the Laplace transform of a continuous function f . By applying L−1 the inverse

Laplace Transform, we can determine the function f , i.e

L (f (t)) = F (s) =⇒ f (t) = L−1 (F (s)) .

Example 6.3.1

1) We have L (2) =
2

s
, then

L−1
(

2

s

)
= 2,

2) For t ≥ 0, we have L (t) =
1

s2
, (for s > 0), then

L−1
(

1

s2

)
= t.

3) For t ≥ 0, we have L
(
eαt
)

=
1

s− α
, (for s > α), then

L−1
(

1

s− α

)
= eαt, α ∈ R

6.4 Applications to differential equations

For a function y with y, y′ and y′′ are continuous functions and L (y (t)) = F (s), we have

L (y′ (t)) = sF (s)− y (0) ,

and

L (y′′ (t)) = s2F (s)− sy (0)− y′ (0) .

Using these previous relations between y, y′ and y′′, we can solve an ordinary differential

equations of the form  ay′′ (t) + by′ (t) + cy (t) = g (t)

y (0) = β and y′ (0) = γ
,

with a, b, c, β, γ ∈ R and g is a continuous function.
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Example 6.4.1

let F be a function defined by

F (s) =
s− 1

(s− 2) (s2 − 2s+ 1)
.

1) Show that
s− 1

(s− 2) (s2 − 2s+ 1)
=

1

s− 2
− 1

s− 1
.

2) Using the Laplace transform, solve the system (E) :

(E)

 y′′ − 2y′ + y = e2t

y (0) = 0 et y′ (0) = 1
.

Solution:

1) Let us show that:
s− 1

(s− 2) (s2 − 2s+ 1)
=

1

s− 2
− 1

s− 1
.

We have

s− 1

(s− 2) (s2 − 2s+ 1)
=

s− 1

(s− 2) (s− 1)2

=
1

(s− 2) (s− 1)

=
1

s− 2
− 1

s− 1
.

2) Solving the system (E) :

y′′ − 2y′ + y = e2t ⇒ L (y′′)− 2L (y′) + L (y) = L
(
e2t
)

(L is Laplace transform)

⇒

L(y′′)︷ ︸︸ ︷
s2L (y)− sy (0)− y′ (0)− 2

L(y′)︷ ︸︸ ︷
(sL (y)− y (0)) + L (y) =

L(e2t)︷ ︸︸ ︷
1

s− 2

⇒ L (y)
(
s2 − 2s+ 1

)
− 1 =

1

s− 2

⇒ L (y)
(
s2 − 2s+ 1

)
=

1

s− 2
+ 1

⇒ L (y)
(
s2 − 2s+ 1

)
=
s− 1

s− 2

⇒ L (y) =
s− 1

(s− 2) (s2 − 2s+ 1)

⇒ L (y) =
1

s− 2
− 1

s− 1
,
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then

y (t) = L−1
(

1

s− 2
− 1

s− 1

) (
L−1 is the inverse Laplace transform

)
⇒ y (t) = L−1

(
1

s− 2

)
− L−1

(
1

s− 1

)
, (we have L−1

(
1

s− a

)
= eαt, for s > a)

⇒ y (t) = e2t − et, t ≥ 0.
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