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Introduction

This handout is intended for second-year engineering science students. It illustrates the
Analysis 3 curriculum of the second year in the field of Science and Technology. It can
be used by students from various fields such as Mathematics and Computer Science.

It will consist of six chapters, namely: vector analysis, infinite series, power series,
Fourier series, Fourier transform, and Laplace transform. Each chapter includes funda-
mental definitions and results in the form of theorems or propositions. There are also
illustrative examples, relevant remarks, and detailed solved exercises aimed at assimilat-
ing the course material and acquiring problem-solving techniques.

The goal of the first part is to introduce the concept of curvilinear integrals and surface
integrals, to understand their properties, and especially to know how to calculate them,
as well as the different theorems related to this type of integral.

The objective of the second part is to highlight the main tools used in the study of
the nature of numerical series, more specifically their convergence or divergence.

The fourth chapter is dedicated to power series, their definition, domain of conver-
gence, and their applications.

The objective of the fifth chapter is to examine Fourier series, which are a very im-
portant tool for engineers.

The sixth chapter covers Fourier transforms and their applications.

The last chapter presents the Laplace transform and its applications in solving differ-

ential equations.



Chapter 1

Vector analysis

1.1 Scalar and Vector fields

Definition 1.1.1 Scalar fields (Scalar functions)
A function f is called scalar function on R3, if it assins a number real to each point
X = (z,y,2) € R%.
f:R* — R
(,y,2) +— [f(z,9,2).
Example 1.1.1
1) The temperature

The temperature T (x,y, z) as a function of special coordinates in space is scalar func-

tion.

T:R® — R

(r,y,2) +— T(2,y,2).

2) Ecludian distance

Let Xo € R3 and f(X) = HXOX H the distance of X € R3 from the fized point Xy.
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f defines a scalar field (function) in space.

f:R® = R

X f(X)ZHmHZ\/($—$0)2+(y—y0)2+(x—2’0)2-

Definition 1.1.2 Vector fields (Vector functions)
A function f is called Vector function on R3, if to each point X = (z,y,z) € R3 is
assined to a vector f(X) € R3.
f:R® — R}
(95,3/72) = f(xvya Z) = (fl (ajayaz) 7f2 (35,3/72) 7f3 (%3/72))7

where f1, fo and f3 are the components of f.

Example 1.1.2

The following function is a vector function.

fRP — R
(#,9,2) = flz,y,2) = (z+2y,2° —y+ 2,22y + 2°).
Remark 1.1.3 More generally, we have

i) g:R" = R is a scalar field.
ii) f:R" = R™ is also a vector field, with

f (ZE,y,Z) = (fl (CL’,y,Z) ) ’fn (I7y7 Z)),

where fi, ..., f, are the components of f.
If n =2, g (resp. f) is scalar (resp. vector) field in the plane. If n =3, g (resp. f) is

scalar (resp. wvector) field in the space.
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1.2 Circulation and gradient of a vector field

1.2.1 The gradient of a scalar field

Consider the scalar field f : R® — R. The gradient of the scalar field is defined by

B _Of—= Of—= Of— [(Of Of Of
grad(f) =V = oz | + oy I 0z b= (8:6’87;’ 0z )’
aof of . . .
where =, —— and —— are the partial derivatives of f with respect to x,y and z respec-
oxr’ Jy 0z
tively.

Remark 1.2.1
1) For f: D CR3® = R. If grad(f) is defined at each point of D, then

Vi:R} — R

or oy 0z ’

is a vector field.

2) In general, for f:R™ = R, the grad (f) is defined at each point (x1,...,x,) by

~(Of (x1, s wn) Of (1,.0s T0) Of (x1,...,xp)
Vf(ry,....x,) = ( o, , 0t s . ) .

Example 1.2.1
1) Let the scalar field f : R* — R defined by

fz,y) =2+ 2y,

we have
0f (v,y) _ 0@ +2)
or ox -
and
Of (v.y) _ 0GP +2y)

dy Oy
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then
Vf(ny) — (Wéﬂ;y)’@féz,y))
= (2z,2).

2) Let the scalar field f: R> — R defined by

f(z,y,2) =zyz +sinx + yz,

we have
0N (@.9:2) _ oy o, 2L @02) _ oy g 2T @02
ox Ay 0z
then
_ (Of (w,y,2) Of (v,y,2) Of (v,y,2)
Vf <x>ya Z) - ( 81. ) 8@] ) 82

= (yr+cosz,xz+z,22+Yy).

1.2.2 Gradient field

A gradient field is a vector field that can be written as the gradient of another function,
i.e: a vector field g : R? — R? is a gradient field if there exists a scalar field f : R® — R
such that

g=VF.

Example 1.2.2
The vector field g : R® — R? defined by

g(l’,y,z) - (yl’ + COST, Tz —+ 2, T2 —|—y) ,
is a gradient field, because it is a gradient of the scalar field f : R® — R defined by
f(x,y,2z) =xyz +sinz + yz,

and we have g = V f.
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1.3 Divergence and Rotation of a Vector Field

1.3.1 Divergence of a Vector Field

For f : R3 — R? a vector field, the divergence of the vector field f is a differential operator
that measures the intensity with which a vector field "diverges” or "flows out” from a

given point. The divergence of f is given by

of, 0fs 0
div(f):V.f:a—“ilJra—f—%a—f.

If the divergence is positive at a point, it means there is a source generating flux at

that location. If it is negative, it indicates a ”sink” that absorbs the flux.

Example 1.3.1
Let f: R3 — R? a vector field defined by

f(.l’,y,Z) = (fl (ZL‘,y, Z)an (ZL‘,y, Z)af3 (ZL‘,y, Z)) = ($2y,3y+ 2, 23) )

div (f) the divergence of f is a scalar field from R? to R defined at each point (x,vy,z) by

div (f) (,y,2) = V.f (2,9, 2) = ofi (x,y,2) n Ofy (x,y,2) n Ofs (z,y, 2)

ox 0y 0z ’
we have
afl (I,y, Z) — 21.y, an (I',_y, Z) =3 and M = 222,
ox dy 0z
then

div(f)(x,y,z) _ afl(g{;yaz)_f_an(;;yyaz)+af3(§;yvz)

= 2xy+22°+3.

For example, for (1,1,1) and (1,—6,2), we have

div (f)(1,1,1) =7, and div (f) (1,-6,2) = —1.
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1.3.2 Rotation and rotational field

Rotation of a vector Field

For f : R® — R3 a vector field, the curl of the vector field f is a differential operator that
measures the tendency of a vector field to rotate around a point, meaning the amount of

"rotation” of the field at a given point. The curl of the vector field f is given by

o (s 0h0n ok O oh
curl(f)—VXf—<ay 92 02 97 O ay).

curl (f) the curl of f is a vector field from R? to R3.

Example 1.3.2
Let f : R3 — R? a vector field defined by

flay.2) = (fi(zy.2), f2(x,y.2), fs (2,9, 2) = (2y°,3yz + z,2° + 2) .

The curl of f is a vector field from R3 to R3 defined at each point (z,y,2) by

o (s _0h 0% of o on
curl(f)—VXf—<ay 92 92 0r ' O (9y>’

we have

fl (xvyu Z) = ‘Ty27 f2 (I,y,Z) - 3y2—|—2 and f3 (l’7y, Z) = LU2—|—Z,

then

curl (f) (z,y,2) = Vx [f(x,y,2)
= (0—-3y—1,0—2x,0—2zy)

= (=3y—1,—2z,—2xy).
For example, for (1,0,1), we have

curl (f)(1,0,1) =V x f(1,0,1) = (=1,-2,0).
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Rotational fields

A rotational field is a vector field that can be described as the curl of another vector
field. This means that there exists a vector field whose curl produces the given field, i.e:

a vector field g : R® — R3 is curl field, if there exists a scalar field f : R* — R3 such that
g=V x[.

Example 1.3.3
Let g : R3 — R? a vector field defined by

g (IL’, Y, Z) = (_3y - 17 —21’, —QI‘y) :

The function g is a rotaional field, because it is the the curl of the vector field f : R® — R3
defined by

fzy,2) = (zy?3yz+ 2,27+ 2),

and we have

g (2 0 0n ok on on
(917927g3)_vxf_ (ay 827 0z al‘7 or ay)

1.3.3 Laplacian of a scalar field

For f : R®> — R a scalar field, the Laplacian of f is denoted by V2f and it is defined as
the divergence of the gradient of f
0? 0? 0?

;Lo

2 _
Vf_v<Vf)_ax2+8y2 8227

0?f 02f 0% f . o .
where ——, —= and —— are the second partial derivatives of f with respect to =,y and
d’x’ 0%y 0%z

z respectively.

V2f the Laplacian of f is a scalar field from R? to R.

10
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Example 1.3.4
Let the scalar field f : R? — R defined by

f(z,y,2) = zyz* +sinz + yz,

we have
o @.y.2) _ yz* + cosz, of @y2) _ r2° + z and of(@y.2) _ 2zyz +y,
ox dy 0z

then

Pf(x,y,2) 0P (z,y,2) Pf(x,y,2)

T = —sinzx, 3—y2 =0 andT = 2zy,
and

Pflr,y,2)  f(v,y,2)  0*f(x,y,2)
2 o » Yy ) I 1I0
\% f<$’yaz) - 81'2 + ayQ + 622
= 2wy —sinz.

1.4 Scalar potentials and vector potentials
1.4.1 Scalar potential

Let f:R3 — R? a vector field. f is called a scalar potential, if there exists g : R* — R a

scalar field such us
f=-Vg.

Example 1.4.1
1)The electric field in an electrostatic field can be derived from a scalar potential ¢, called

the electric potential:

E=-V¢.

This equation indicates that the electric field E is the negative gradient of the scalar
potential ¢.
2) Let g : R3 — R the scalar field defined by

g(x,y,2) = zyz +sinx + yz,

11
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we have

or oy 0z
= (yr+cosz,xz+z,22+Yy).

Vo (z,y,2) = (89(%1},2) g (z,y, z) 89(:10,3/,2))

The vector field f : R® — R3 defined by
f (xaya Z) = (_yl' —COSX, —TZ — 2, —XZ — y) ,

18 a scalar potential, because

1.4.2 Vector potential

Let f:R?® — R.3 a vector field. g : R® — R? is called the vector potential associated with
fif
f=curl(g) =V xg.

Example 1.4.2
1) The magnetic field B in electromagnetism can be derived from a vector potential A,

called the magnetic vector potential:
B =curl (A).

This equation shows that the magnetic field B is the curl of the vector potential A.
2) Let g : R® — R? a vector field defined by

g(x,y,2) = (v%, 3yz + z,2° + 2) .
The curl of f is defined by
curl (9) =V x g=

(393 dgs g1 g3 0gs 891)

12
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then

curl (g) (v,y,2) = V xg(z,y,2)
= (=3y—1,—-2x,—2zy).

Let f : R3 — R? a vector field defined by

g(z,y,2) = Vxg(z,y,2)
= (=3y—1,—-2z,—2zy),

then, g is called the vector potential associated with f.

1.5 Curvilinear integral

1.5.1 Curve in space

Definition 1.5.1
A curve can be thought of as the trajectory traced by a point moving continuously in
space. It does not necessarily have to be straight and can have any form, such as a line,

circle, or more complex shapes.

Example 1.5.1
1) Line segment: A straight line between two points in space, such as the path from (0,0,0)
and (1,1,1).

2

2) A saddle-shaped curve in space: often represented by the equation z = z* — y*.

Parametrized curve

A parametrized curve is a curve described by a vector-valued function that depends on
a parameter t. This parameter typically varies over a specific interval, and the curve is

defined as a function from ¢ to a point in space. C' is a parametrized curve that means it

13
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contains the points r (¢) such as:
r:fa,b] — R3
to— r()=(=),y(t),z(1)

We can describe the curve C as follow

Length of a curve

Let C(t) ={r(t)=(z(t),y(t),z(t)), tE [a,b]}aparametrized curve of class C'. The

) () ()

1) Helix: A 3D parametrized curve that spirals along a cylinder can be represented

length of the curve C'is given by

Z—/Hr )|| dt =

Example 1.5.2

by the parametric equations:
r(t) = (rcost,rsint,ct) fort € [0,00].

Here, r is the radius of the helix, ¢ controls the spacing between loops, and t is the param-
eter. Ast increases, the helix moves along the z-axis while wrapping around the cylinder.

2) Parametrized Ellipse in Space: An ellipse lying in the xy-plane can be parametrized
as:

r(t) = (acost,bsint, ct) fort € [0,2m].

The length of this curve fora=b=1 and c = 2 1is
de (O)\>  [(dy(H)\>  [dz(t)\"
dt ) + ( dt + dt dt

- 7\/(— sint)® + (cost)? + 4dt = \/57Tdt

0

= l:27r\/5.

14
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Closed Curve:

A closed curve is a curve that returns to its starting point, forming a loop, a cuvre C'

parametrized by r (t) = (z (t),y (t), z) for t € [a,b] is called closed if

r(a)=r(b).
Example 1.5.3

1) Clircle in 3D: A circle lying in a plane, such as the xy-plane, can be represented by:
r(t) = (rcost,rsint,0) fort e [0,2x].

This is a closed curve because the parameter t runs from 0 to 2w, and C returning to the
starting point (i.e r (0) = r (2m)).
2) The parametrized curve C defined by

r(t) = (¢,t*—4,3) forte[-2,2],

is a closed curve because v (—2) =1r(2).

1.5.2 Curvilinear integral

A line integral (or curvilinear integral) is a type of integral that evaluates a function along
a given curve in space. Instead of integrating a function over a flat region or within a
volume, this type of integral is performed over a curve (or path). Curvilinear integrals are
commonly used to compute physical quantities, such as the work done by a force along a
path, or to calculate the circulation of a vector field.

Let C' a curve and f a function defined at points of ', then the curvilinear integral of

f along C' is defined by
[ sa

c
where dl is the infinitesimal element of length along the curve.

There are two main types of curvilinear integrals:
Curvilinear integral of a scalar field: A scalar function is integrated along a curve.

Curvilinear integral of a vector field: A vector field is integrated along a curve.

15
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Curvilinear integral of a scalar field

Let C a parametrized curve of class C'! defined by

Ct)={rt)=(@®),yt),z(), telabl},

and f: C — R is a scalar field. The Curvilinear integral of f along the curve C' is given

by
[ = [ 1@ 0.0 ol
C a

with dl = ||r’ (¢)]| dt and

Y1) = (dfif% W) dzdi’”) and [ (1)) = \/ (d“;f)f + (di—f)) * (dzdit))z'

Proposition 1.5.1 FElementary properties

From the properties of Riemann integrals, we have

i) /k:fdl = k:/fdl where k is a constant.

u)/f+g )l = /fdl+/gdl

C

m)/fdl /fdl+/fdl where C' = C7 + Ch.

Example 1.5.4
Let C = {r(t) = (cost,sint,t), t € [0,2n]} a parametrized curve and f : C — R
defined by
[l y,z) =2+ + 27
To calculate the curvilinear integral of f along the cuvre C, we need to calculate r' (t) then

I~ @)

() dy() s
T(t)_(dt’dt’dt)

= (—sint,cost, 1).

16



Vector analysis

Then
@l = \/ (0) s (B0) (=Y
= \/(— sint)? + (cost)® +1 = /2.
Hence
[ = [ra®.o®. 0wl
C 0

- / ((cos t)? + (sint)® + t%) V2dt

0
27

- /(1+t2) V2dt =2 [2t+ %tﬂ

2w

0
0

8
= g\/§7T3 + 4V/27.
Curvilinear integral of a vector field

Let C a parametrized curve of class C'! defined by
Ct)y={rt)=(x(t),yt),z(t), tela,bl},
and f : C — R3 a vector field. The curvilinear integral of f along the curve C' is given by
b
[ri= [ @00 @
C a

. pon (dx(t) dy(t) dz(t)
w1th7“(t)—( T d )and

Fla@),y®),z@) = (fr(z @),y @),z@), f2(z (), y @),z @), fs (z (), y (), 2 (1)),

(i (5 (8,9 (8),2 () 2 Fo (0 (8), 5 (), 2 () f (2 (1), (1) 2 (£)) (dzﬁ, Wi dzdiﬂ) dt,

S S

0@ G @00 Y 00,0 5

17
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Example 1.5.5
Let C = {r(t) = (t,t*,t3), t €[0,1]} a parametrized curve and f : C — R? defined by

f(z,y,2)=(x,2y,32).

To calculate the curvilinear integral of f along the cuvre C, we need to calculate 1 (t)
dx (t) dy(t) dz(t)
/ —
r(t)_(dt’dt’dt
= (1,2t,3¢%).

The curvilinear integral of f along the cuvre C' is given by the following relation

[tit=[ a0 .00 o
First, we calculate f(z (t),y (t),z(t))r' (t)

fl@),y@),z@)r' @) = f(t3¢). (1,23t
= (t,2¢%,3t%) . (1,2t,3t%)
= tx 14 2t% x2t+ 3t3 x 3t

= O +4t* +t.

Then

‘/mz: /f@@%uﬂwﬁﬁﬂ®ﬁ

1
= / (9t° + 4t* +t) dt

0
4 1.,]"
= |30+ -7 + =2
5020 |,

43
107

1.5.3 Green’s theorem

Green’s Theorem is a fundamental result in vector calculus that relates a line integral

around a closed curve to a double integral over the region enclosed by the curve.

18
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Definition 1.5.2 Positively oriented, piecewise smooth, and simple curve
Let C={r(t)=(z(t),y(t),z(t), telabl} aparametrized curve.

i) C is simple curve, if it does not intersect itself, i.e
r(ty) #r(t), for ti,ts €la,b] andty # ts.
ii) C is closed curve, if r (a) = r(b).
ii1) C' is piecewise smooth curve, if C' is composed of several smooth curves i.e

C={Cy,0Cy,....Cp},

where C;, i = 1,...,n is a smooth curve (meaning differentiable with a continuous deriva-
tive).
iv) C is positively oriented if it is counterclockwise. This means that the area bounded

by it is on the left side as you move along the curve.

Theorem 1.5.3 Green’s theorem

Let C' be a positively oriented, piecewise smooth, simple closed curve in the plane, and
let D be the region enclosed by C (i.e 0D = C, D 1is the boundry of D). If f = (f1, f2) is
a continuously differentiable vector field on an open region containing D and its boundary

C, then Green’s Theorem states:

]{fdz 7{@30@;4r fody) = // <% - %> dxdy.

Example 1.5.6 Work Done by a Force Field.

Let C is the positively oriented circle of radius 1 centered at the origin.

C = {r(t)=(cost,sint), te0,2n]}
= {(z,y) (cost,sint), te€[0,2n]}

= x=cost €[-1,1] and y=sint € [-1,1].
Let f : R? — R? a vector function defined by

f(zy) = (2 =%, 22y) .

19
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According to Green’s theorem, the curvilinear integral of f along the cuvre C is gievn by

j[fdz = ]{fldx%—ﬁdy //(af? afl)dd.

We have fi (z,y) = 2* — y? and fy (z,y) = 2zy, then

8f2 (x7y) _ 8fl (xvy)
—ax =2y and —8y

frima - [] (oien 08L)
c D
= /D/4ydxdy
1 1
= [dm x[4ydy

= ]t x 27
= 2x0=0.

Y

then

1.6 Surface integrals and Stokes theorem

In the first part, we introduce parametrized surfaces. This is the analogue of parametrized
curves, when the starting domain is a subset of R?, and not an interval of R. Then, we
define integration on parametrized surfaces. As in the case of parametrized curves, there
are two kinds of objects that can be integrated: scalar and vector fields defined on the

surface. Finally, we study the Stokes’ theorem.

Definition 1.6.1 Parametrized surface
Parametrized surface means that the coordinates of points on the surface are given as
functions of two variables. A parametrized surface S is represented by a vector-valued

function r : R? — R? as follows
F(u) = (o (0,0) 5 (00), 2 (0,0),  (w,0) € D CR?,

20
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we can also define S by
S = {r(wv) = (x (w,0),y(w,0),2(w)), (uv)€DCRY.

Example 1.6.1
1) The following parametrized surface S is the sphere with radius R

7 (u,v) = (Rsinucosv, Rsinusinv, Rcosu), (u,v)€ D =[0,7] x [0,27].
We can write
S = {r(u,v) = (Rsinucosv, Rsinusinv, Rcosu), (u,v)€ D =[0,7] x [0,27]}.
2) The following parametrized surface S is the parameter torus a,b dans R3
r(u,v) = ((a + bcosv) cosu, (a + beosv)sinu,bsinv), (u,v) € D =]0,2x] x [0, 27].

Let S a surface and f a function defined at points of S, then the surface integral of f

S/ fds,

where dS is the infinitesimal surface element.

over S is given by

There are two main types of surface integrals: a surface integral of a scalar field and a

surface integral of a vector field.

1.6.1 Surface integral of a scalar function

Let S a parametrized surface of class C! defined by
S = {T(U,U) = (I (U,U) 7y(u’v> ,Z(u,’t))), (u,v) €eD= [a7b] X [C,d]},

and f:S — R a scalar field. The surface integral of f over S is given by

/fdszf/ﬂr(u,v))'

21
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with
or Or
where
Or (0 (u,v) Iy (u,v) 0z (u,v) and Or _ (0z(u,v) Oy(u,v) 9z (u,v)
ou ou ~ Ou ' Ou ov v = ov T v ’
and A is the cross product i.e
ay b1 asbs — azby
ay | N by | = | asby —aibs
as bs arby — asby

Example 1.6.2

Let the following parametrized surface S which is the sphere with radius R
S ={r(u,v) = (Rsinucosv, Rsinusinv, Rcosu), (u,v)€ D =]0,7] x [0,27]},

and f : R3 — R defined by
flzy,2) =a® +y* + 22

0 0 0
To calculate the surface integral of f above S, we need to determine —T, o then || 25 A or
ou’ Ov ou Ov
0
r(u,0) = (Rcosucosv, —Rcosusinv, —sinu) ,
ou
and
0
T(au’ v) = (—Rsinusinv, Rsinucosv, —Rsinu).
v
Then
0 0
0_17; A 6?_:1 = R%sinu (sinucosv,sinusinv,)
0 0
= ‘8—2/\8—2 = R?sinw.
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Now, we calculate the surface integral of f above S

[ taads - / F(y.2) @A%
s

_ //R2 or
= / / R?R? sin ududv

2

= R? /smudu/dv

0 0
= R*x2x2r=4Rr.

dudv

dudv, (f (z,y,2) = R, for (z,y,2) € D)

1.6.2 Surface integral of a vector function

Let S a parametrized surface of C! class defined by
S =A{r(u,v) =(x(u,v),y(u,v),z(u,v), (u,v) €D},

and f : S — R3 a vector field. The surface integral of f over S is given by

fds = || f(r(uv) 09N dud
foas= [f s (Gin )

with
or Or
where
Or (O (u,v) Iy (u,v) 0z (u,v) and Or _ (0z(u,v) Oy(u,v) 9z (u,v)
ou ou ' Ou T Ou SN ov 7 ov T Ov ’
and A is the cross product i.e
a by asbs — azby
ay | AN by | = | asb —aqbs
as bs aiby — azb
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Example 1.6.3

Let the following parametrized surface S which is the sphere with radius R

S = {r(u,v) = (Rsinucosv, Rsinusinv, Rcosu), (u,v)€ D =[0,7] x [0,27]},

and f : R3 — R3 a vector field defined by

f (x’y7 Z) - (x7y7 Z) :

To calculate the surface integral of f above S, we need to calculate ?, % then
u’ Qv
0
% = (Rcosucosv, Rcosusinv, —Rsinu) ,
and
or (8“’ v) = (—Rsinusinv, Rsinucosv, —Rsinu),
v
then
% A % = R?sinu (sinu cos v, sin usin v, cos ) .
We have
f(x(t),y(t),z(t)) = (Rsinucosv, Rsinusinv, Rcosu),
then
or Or
t t t — N\ =
Pl .= 0) < (5250

or

= (Rsinucosv, Rsinusinv, Rcosu) x R*sinu (sinu cos v, sin u sin v, cos u)

2w cos® v + sin? usin? v + cos? u)

= Risinu (sin
= Risinu (sin2 U (cos2 v + sin? v) + cos? u)

= R3sinu (sin2 u + cos® u) = R3sinu.

24
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Now, we calculate the surface integral of f above S

S/de - é/f(r(u,v)) « (%/\%) dudy
= Z)/ R? sin ududv

T 27

= R? / / sin ududv
0 0
T 2

vy

= R4/sinudu/dv

= R'(2)(27) = 4R'r.

Stokes’ theorem

Stokes’ theorem relates a surface integral of the curl of a vector field to a line integral
around the boundary of that surface.
Let S be a smooth surface with boundary 05, and let f be a continuously differentiable

vector field on an open region containing S.

/(fo)dS—/fdl,

S

where, V x f is the curl of f and dl is the differential line element around the curve 05.

Example 1.6.4
Let a circular disk S of radius R, centered at the origin in the xy-plane (at z = 0). The
boundary 0S of this disk is the circle of radius R, also centered at the origin.

S = {(x,y,z), x2+y2§Randz:0}
= {r(u,v) = (ucosv,usinv,0), (u,v) € D =[0,R]x [0,27]},
then
0SS = {(:U,y,z), z2+y2:Randz:0}
= {r(t) = (Rcost,Rsint,0), t€[0,2n]}.
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Let f : R3 — R? a vector function of class C' defined by

f (SC,:I/,Z) = <_y7x70) :

According to Stokes’s theorem, we have

/(fo)dS:/fdl.

S

1) First, we calculate the left-hand side which is the surface integral of the curl of a
vector field f over the surface S

[ x pas
S
we start whith V x f and dS

G _ (% 0% 0h 0 05y 0%
Gy 8z’8z 8&:’8&; ay
= Vx f(z,y,2) =(0,0,2),

and
ar Or
ds = % A %d’lj/d’l],
with
or (u,v) : or (u,v) :
5u (cosv,sinv,0) and e = (—usinwv,ucosv,0),
then
or Or

26
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According to the definition of a surface integral of a vector field, we have

/(fo)dS = //(fo)(r(u,fu)) X (%/\%) dudv

R 27
= //(0,0,2) x u(0,0,1) dudv
0 0
R 2w
= //Qududv
0 0
R 2T
2
= 2/udu></dv:2(—) (2m)
0 0
= 2TR?,

then
/(V X f)dS = o R,

5
2) Second, we calculate the right-hand side which is an integral of the vector field f

along the boundary of the surface 0S.

/fdl _ /f<x<t>,y<t>,z<t>>r' (1) dt,
oS 0

we have
r' (t) = (—Rsint, Rcot t,0),
and
fx),y(t),z(t)) = (—Rsint, Reott,0),
then

fla(t),yt),zt)r (t) = R
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Now we calculate the integral of f along 0S.

/fdl _ /f(az(t),y(t),z<t>>r'<t>dt
oS 0

= /R%ﬁ:%Ri
0
then
%fmzzﬂﬁ
oS

Ostrogradsky’s theorem

Ostrogradsky’s theorem relates a surface integral of a vector field over a closed surface to
a volume integral of the divergence of the vector field inside the surface.
Let V' be a volume enclosed by a smooth closed surface S, and let f be a continuously

differentiable vector field. The Divergence Theorem (Ostrogradsky’s Theorem) states:

Zﬁw—!vmu

where, V.f is the divergence of f and dV is the volume element inside the volume V.

Example 1.6.5
Let V' be the volume of a sphere of radius R centered at the origin. The surface S is the
boundary of the sphere (i.e., the surface of the sphere) defined by

S = {r(u,v) = (Rsinucosv, Rsinusinv, Rcosu), (u,v)€ D =[0,7] x [0,27]}.
Let f:R3 — R3 be a continuously differentiable vector field defined by
f(@y,2) = (z,y,2).

According to Ostrogradsky’s theorem (Divergence Theorem), we have

!ﬂw:!vmv
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1) First, we calculate the left-hand side which is the surface integral of f above S

/de—//f(r(u,'u))x (%/\%) dudv,

r Or or Or

we need to determine —, — then — A —
ou’ Ov ou Qv
0
réu, v) = (Rcosucosv, Rcosusinv, —Rsinu),
u
and
or (u,v ) ) . .
(8 ) = (—Rsinusinv, Rsinucosv, —Rsinu),
v
then
or 0
a—z A 8_2 = R*sinu (sinu cos v, sinusinv, cosu) .
We have
flx(t),y(t),z(t)) = (Rsinucosv, Rsinusinv, Rcosu),
then

Flo@ =) x (g 5)
= (Rsinucosv, Rsinusinv, Rcosu) x R*sinu (sinu cos v, sin u sin v, cos u)
= R’sinu (sin2 u cos? v + sin? usin? v + cos? u)
= R’sinu (sin2 u (C082 v + sin® v) + cos® u)

= Risinu (sin2 u + cos? u) = R’sinu.

29



Vector analysis

Now, we calculate the surface integral of f above S

S/fds - é/f(r(u,v)) « (%/\%) dudv
= é / R? sin ududv

T 27
= R3 / / sin ududv
0 0
T 27
= R?’/sinudu/dv

0 0
= R3x2x2m=4rR>.
2) Second, we calculate the right-hand side which is the total divergence of the vector

field inside the volume V.

V/V.de.

The vector field f is continuously differentiable vector, we cancalculate its divergence V. f:

afl (xaya Z) + af? (l’,y,Z) + afS (l’,y, Z)

or Oy 0z
= % + 8_y + & = 3,

the element dV for this surface S (the sphere of radius R centered at the origin) is given
by
dV = dxdydz = R? sinudRdudv.

Now, we calculate the integral of V.f over the volume V'

/v.fdv

v

T 27

R
/ / / 3R? sin ud Rdudv
00 0

s 2

R
= 3/R2dR></Sinudu></dv
0

R (o TTe—
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Chapter 2

Infinite series

2.1 Sequences

A sequence is an ordered list of numbers, the numbers are called terms (or elements) of
the sequence. It is a function with domain the natural numbers N = {0,1,2,3, ...} or the
non-negative integers Z* = {0,1,2,3,...}. Usually, we denote a sequence by (u,),~, Or

(Un)nzo where

U: N — R

n — U,.

Example 2.1.1
1) The sequence (uy),,~, defined by

up,=In(n+1), neN.
2) The sequence (uy), s, defined by
U, =3n+2, neN.

(Un)p>o 18 called the arithmetic sequence of initial (or first) term ug = 2 and the common

difference d = 3. (u, = ug + nd or u, = uy + (n —1)d are the general term of the
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arithmetic sequence).

3) The sequence (v,),s, defined by
v, =4x3", n>0.

(Vn),>q i called the geometic sequence of initial (or first) term v, = 4 and the common

(n—1)

ratio ¢ = 3. (v, = vo X q" or v, = v X q are the general term of the geometric

seauence).

2.2 Infinite series
A series is the sum of an infinite number of terms of the sequence (uy),,5, i-e

S = Uy + UL+ Ug + eeneenennins
+00
"
n=0
Proposition 2.2.1

A series has the following properties
+o0 +oo +o0
i) Z (Up +vp) = Zun + ZU”
n=0 n=0 n=0
“+o0o +o0o
ii)Zaun = aZun.
n=0 n=0

Definition 2.2.1 Partial sum of a sequence

Let (u")nZO be a sequence. the partial sum of this sequence is given by

Sn = Ug+u;+us+ ... +uy,
- Sw
n=0

Example 2.2.1

1) For a sequence (uy), s, we have for example

S():U()7 31:U0—|—u1, and5’5:u0+u1+u2—|—u3—l—u4+u5.
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2) For (un),~q an arithmetic sequence of the initial (or first) term u, and the common

difference d, the partial sum is given by the following relation

1
S—Zuk n+ (ug + uyp,) .

If the nitial term of this sequence s uy, then

3) For (uy),~, o geometic sequence of the initial term v, and the common ratio q, the

partial sum is given by the following relation

Squk L—q" uo.

1—g¢q

If the initial term of this sequence is uy, then

Su=d =
n=1

Proposition 2.2.2 Sum of a sequence whose partial sum is known

Let (un)n20 be a sequence and S, is its partial sum, then S the sum of this sequence

15 given by

Example 2.2.2

1) Let (uy),>q be a geometric sequence of the general term u, = 4 X (

_ ol 1=
R e

1 n+1
= 8—-8|= .
(3)

By using the previous proposition, we can calculate the sum S of the sequence (un)n20

n
%) , we have

S = lim S,

n—+o0o

1 n+1
= lim [8-—8 (—) = 8.
n—-+oo 2
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2) Let (un),> be a sequence of a general term

1 1
n+1 n+2

Up =

9

we have

Sn = Ut UL T U+ ... +Up—1+ Uy

B 1+1 1+1 1+ 1 1 N 1 1

22 3 3 4 77 'n a4+l n+l1 n+2
1

T n+9

By using the previous proposition, we have

S = lim S,

2.3 Nature of a series

The nature of a series means that the series is either convergent or divergent. The nature
of a series can be determined from its sum or by using other techniques called convergence

criteria.

Proposition 2.3.1

Let (uy),~, be a sequence of a sum S, then

+o00o
i) If S exists and finite, then the series Zun is convergent.

n=0
+oo
ii) If S does not exist or is not finite, then the series Zun is divergent.
n=0

Example 2.3.1
+oo

1) Let Zun be a geometric series of general term

n=0
1n
n=4x (=] .
v x(2)
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In the previous example, we proved that

S = lim S,

n——+o0o
1 n+1
= lim 8—8<—> =8,
n——+oo 2

+oo n
1
then, the series 24 X <§> 1§ convergent.
n=0

+oo
2) Let Zun be a series of term general
n=0
U, =a, a#0

The partial sum of this series is

S, = uy+upt+us+...+u,_1+u,
= at+a+a+..+a

= an.

then

+oo
the series Za 18 divergent.
n=0
400 +o00
Lemma 2.3.1 Let Zun and Zvn be two infinite series,

n=0 n=0
“+o00 —+00

i) Zun and Za X Uy, have the same nature, (o # 0).

“+o00 —+00 —+00
ii) E u, converges and E v, converges, then E (uy, + vy,) converges.
n=0 n=0 n=0

+oo —+o00 —+o00
ii1) Zun converges and ZU” diverges, then Z (un + vy,) diverges.

n=0 n=0 n=0
—+00 —+o00 —+o00

ii1) Zun diverges and Zvn diverges, then we cannot conclude anything about Z (Up, + vy).

n=0 n=0 n=0
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Proposition 2.3.2 Convergence of geometric series
+o00

> ug X ¢" a geometic series of an initial term ug and a common ratio q, then
n=0
= is comvergent if —1<qg<1
D o X q"
n—0 15 divergent if not
Proof.

i) For —1 < ¢ < 1, we have

1— n+1 1
S= lim S, = lim —quo = 0,

n——+00 n—4oo 1 — q 1—

“+o0o
then ug X ¢" is convergent.
n=0
ii) For ¢ > 1, we have
1— qn+1
S= lim S, = lim ———up =400, (=-00 if ug<0),
n—-4o00 n——400 1 — q

+00
then Zuo x ¢" is divergent.
n=0
iii) For ¢ = 1, we have

Sp=Mm+1Duy= 9= lir+n Sy =400, (=—-00 if ug<0),
n—-+0oo
+o0
then » wug x ¢" is divergent.
n=0
iv) For ¢ < —1, we have

1 — n+1
S = lim ————ug does not exist,
n—-+oo 1 —q
+oo
then Zuo x q" is divergent. m
n=0

Theorem 2.3.1 Necessary condition for the convergent series
+00

Let E u, be a convergent series, then
n=0

lim wu, = 0.
n—-+0o
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Corollary 2.3.2

+00
Let Zun be a series, then

n=0

—+00

li ) .
Jm uy, #0= Zoun is divergent
Example 2.3.2 Let the following series
1)§5n2+2n %) X n? 42
4n?2 -9’ Inn
n=0 n=2
toor 2 2
on® +2n on® +2n
1) For ——— with u,, = ———, we have
) ; 4n2 -9’ 4n? —9
n*+2n 5
li n= lim —— = - #0,
+oo
then the series Zun 18 divergent.
n=0
+oo o 2
2 2
2)For nt , with u, = u, we have
—~ Inn Inn
: . nf+2
lim u, = lim = 400,
n—-+oo n—-+oo lnn
+oo
then the series Zun 18 divergent.
n=0
Definition 2.?3r.3 Reimann’s series
The series Z— is called Reimann’s series. Its convergence is related to the value of
/rLOé
n=1
a
i’i 1 is convergent if a > 1
o s divergent  if a <1 ’
“+o0o
for =1, the series Z— 18 called harmonic series.
n=1 n
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2.3.1 Convergence’s criteria for series with positive terms

Comparison criteria

+oo +oo
Let Zun and Zvn be two series with positive terms. If

n=0 n=0
Uy, < v,, VneéeN.
Then
+0o0 “+o0o
E v, 18 convergent = E U, is convergent
+00 “+o0o
E uy, is divergent =- E v, is divergent.

Example 2.3.3

);n?)—l—?m’ wit u"7n3+3n'

We have u,, > 0 for alln > 1, and

1 1
< =

m 3 (CCLT n3 S Tl3 + 3n)

+00
The series E — 18 Reimann series with o = 3 > 1, then it is convergent.
n
n=1
“+oo

By using the comparison’s criteria, we conclude that E 3 15 convergent.
n n
n=1

n

+oo
e , e
2) ZE’ with u, = -

n=1
We have u,, > 0 for alln > 1, and

(because e, > 1).

+00
The series E — 18 harmonic series, then it is divergent.
n
n=1
oo p
. L er
By using the comparison’s criteria, we conclude that E — is diwergent.
n

n=1
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Equivalence’s criteria

“+oo +o0
Let Zun and Zvn be two series with strictly positive terms. If u, is equivalent to v,
n=0 n=0
(we denote u,, ~ vy,):
U,
Uy ~ Up < lim — =1.
“+o0o n—-+oo Un,
+o0 +oo
Then, the series Zun and Zvn are of the same nature.
n=0 n=0
Example 2.3.4
5n? 4 5n? + 4
1) Z T2 with = o
3n3 +2n 3n3 4+ 2n
We hcwe u, >0 for alln > 1, and we know that
5n? + 4 5n? 51 U,
Uy = ———— ~ —— = —— =1, because im — =1).
3n3 4+ 2n +0 3n3  3n ( n—s+oo Uy, )
“+oo
1
The series —Z 1$ a harmonic series which is divergent.
n= 1

5n? + 4

—— 15 divergent.
3n3 +2n g

By using the equivalence’s creteria, we conclude that Z

2) n;m (1 + <§) ) , with u, = In (1 + (;)n>

We have u,, > 0 for alln > 1, and we know that

2\" 2\"
Uy, = In (1+ (5) )+~ <§) =v, (we know that In(1+y)~y wheny— 0).

+o00 n
2
The series E (5) 1s a geometric series with ratio q = % (-1<gq<1), then it is

n=1
convergent

5n?

———— 18 convergent.
3n + 2n

By using the equivalencels creteria, we conclude that Z

Cauchy’s criteria

+oo
Let Zun be a series with positive terms. Suppose that
n=0

lim Yu, =1,

n—-+00
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then
+oo
1) If I < 1, the series Zun is convergent.
n=0
+o0
2) If [ > 1, the series Zun is divergent.
n=0
+oo
3) If I = 1, we cannot say anything about the series Zun
n=0

Example 2.3.5
5n + 4 Sn+4\"
1 th u, =
/ Z <n2—|—2n) i <n2—|—2n>

We hcwe Uup, > 0 for alln > 1, and

. J— L n+4N" Sn+4Y

m+4
n? +2n

By using Cauchy’s criteria, and since l = 0 < 1, the series Z (

)Z ( nn)n with tn = (ﬁ)n

We hcwe up, > 0 for alln > 2, and

) 18 convergent.

lim u, = lim ¢ (—) = lim (—) = 400 = I[.
n— +oo n—+oo Inn n—+oo \Inn

X/ n44\"
By using Cauchy’s criteria, and since | > 1, the series Z ( 5 ) 15 divergent.
—~\n?+ 2n
D’Alembert’s criteria
+o0o
Let Zun be a series with positive terms. Suppose that
n=0
u
lim —* = l
n—-4oo Up,
then
+oo
1) If I < 1, the series Zun is convergent.
n=0
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+oo

2) If [ > 1, the series Zun is divergent.
n=0
+oo
3) If [ = 1, we cannot say anything about the series Zun
n=0
Example 2.3.6
3
1) Z— with u, =
We have U, >0 for all n >0, and
3ntl 3 x 3"
un+1 - - )
(n+1)! (n+1)n!
then
Upi1 3 x 3" n! 3
— X — = s
Up, (n+1)n! 3» (n+1)
S0
n . 3
lim 2~ Jim = 0.
n—+00 Uy, n—+oo (n -+ 1)
+00 6p
By using D’Alembert’s criteria, and since | =0 < 1, the series Z—' 1S convergent.
n!
n=1
1><3><5>< X (2n+3) 1 x3x5x..x(2n+3)
2 th n —
)E: 1) o (n+1)

We hcwe Up > 0 for alln >0, and

Ix3x5x..x(2n+5) 1x3x5x..x(2n+3)x (2n+5)

et = (n+2)! - (n+2)(n+1) ’
then
Unyr 1><3><5><...><(2n+3)><(2n+5)>< (n+1)!
Up, (n+2)(n+1)! I xX3%x5x...x(2n+3)
_ 2n+5
- on+27
50
2
lim = g 202y
n—+00 Uy n—+oo M + 2

R1x3x5x%x...x(2n+3)
(n+1)!

By using D’Alembert’s criteria, and since l = 2 > 1, then the series Z

n=1
15 divergent.
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2.3.2 Convergence’s creteria for series with real terms
Absolute convergence

Definition 2.3.4
+00 oo

Let Zun be a series with real term. We say that Zun is absolutely convergent if

n=0 n=0
and only if

+o0
> [l
n=0

18 convergent.

1) Criteria of absolute convergence
+oo 400

Let Zun is a series with real term. if Zun is absolutely convergent then it is

n=0 n=0
convergent.

RemaJrrk 2.3.5

+oo
If Zun s not absolutely convergent, we cannot directly conclude the nature of Zun
n=0 n=0

Example 2.3.7

+0c0 n n

1 _

1) Z( ) with w, = (=1 We have u, is a real term, so we try to know the
— n3+n

+oo
nature of Z | |
n=1

(—1)" 1 1
|un| = 3 -3 < 5
n°+n n°e+n - n
+0o0
The series — 18 Reimann series with o = 3 > 1, then il is convergent.
n
n=1
“+o00 +oo (_ )'I’L
By using the comparison criteria, Up| 2s convergent. So, 1s absolutel
y using p nz:ll | g ;ng - y
convergent.
o — (-1)"
From Criteria of absolute convergence, we conclude that Z 3 18 convergent.
—~mn’+n
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+oo . .
sinn sinn
2) E o with u, = 5

n=1
400
We have u,, is a real term, so we try to know the nature of E [ |
n=1

sinn
2n

|| =

|sinn| 1 "
2n T 2n 2

400 n
1
The series E (5) 1s a geometric series with ratio q = % (1< q<1), then it is

n=1
convergent.
+oo +oo | . +oo .
, , ‘ |sinn| sinn
By using the comparison creteria, Z lun| = Z s convergent. So, Z o U9
n=1 n=1 n=1
absolutly convergent.
+oo .
Lo sinn
From Criteria of absolute convergence, we conclude Z s convergent.

n=1
Leibniz’s creteria for alternating series

Definition 2.3.6 Alternating series
+00

E U, s said alternating series if
n=0

U, = (—=1)" b, and b, >0, Vn > 0.

Le1bn1z s creteria

+o00o
Let Z " b, be an alternating series. This Z (—1)" b, is convergent if
n=0
i) hr}_l b, = 0.
n—-+00

ii) (by),, is decreasing.

Example 2.3.8

hou, = % =(=1)"b,

We have u,, is an alternating term, and b,

1
-
) Jim b= im0
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i) (by), is decreasing (bpy1 < by, Vn>1).
+o0 n
: L , , (—1)
B Leibniz’ t th
y using Leibniz’s creteria, the series ; Tn

2) f(_l)n with u, = D" _ (=1)" b,

18 convergent.

Inn Inn

We have u,, is an alternating term, and b, = —

: Inn
i) lim b, = lim — =0.
n—-+oo n—>+oolnn
i) (by), is decreasing (bpy1 < b,, Vn >2).
+00 (_ n
By using Leibniz’s creteria, the Z 1S convergent.
“~ Inn

2.3.3 Semi-convergent series

Definition 2.3.7 Semi-convergent series
+oo +0o0

Let Zun 18 a series with real term. Zun is said semi-convergent (or conditionally

n=0 n=0
convergent) if

+o0 +o00
i) Z || is divergent (Zun does not converge absolutely).

+oo

i) E Uy, s convergent.

n=0

Example 2.3.9

1) 2% with u, = (?/15)”

+oo n
-1
i) Study the absolute convergence of Z%
n=1
4 (—1)" 1 1
Up| = |—F—| = —= = —.
vn NS
+o0 1
The series Z_l 1s Reimann series with a« = — < 1, then it is divergent.
n=1 n2 2
+o0o (_1)n
Then, ; NG does not converge absolutely.
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+oo n
-1

it) Study the convergence of E %
n

+oo n
We proved in the previous example that Z( is convergent (Leibniz’s creteria).
n=1

Jn

+oo n
—1
Then, the series E (=1 is semi-convergent (or conditionally convergent).
n=1

\/ﬁ
2) Zﬂ with w, = (_1)"'

n=1

Inn Inn
) Study the absolut fio(_l)n
i) Stu e absolute convergence o —.
Y J —~ Inn
S I
funl = ‘ Inn | Inn’
we have
1 1
i
n = Inn
+o00
The series Z— is divergent (harmonic series).
n:Zn
+00 +00 1 +00 (_ )n
B ng th ' teria, n| = — s di t. S —d t
y using the comparison creteria nz::z [t | ;n is divergent. So ; 7~ does no

converge absolutely.

+o00 n
-1
i1) Study the convergence of E (1—)
nn
n=1

(="

Inn

+oo
We proved in the previous example that Z is convergent (Leibniz’s creteria).
=2

n

+o0o n
-1
Then, the series E (=1 is semi-convergent (or conditionally convergent).
n=2
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Power series

Definition 3.0.8 Power series
We say a power series, the series of the form

+o0o
E anT",
n=0
where v € R and (a,),q 15 a sequence (also we say that ay, ...,a, are the coefficients of

the series).

More general, for xo € R, the power series associate to xq is given by

+oo
Zan (x —x0)".
n=0

Example 3.0.10

1) Polynomials of degree p are a particular type of power series where a,, = 0 for all

n > p.
+o0o
ag="7, a1 =—2, ap =3
3302—21’—1—7:2%1’" where 0 ! ?
n—0 and a, =0 for alln >p

+oo
" . 1
2) ZnQ—i—l with a, = RONE
n=0
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3.1 Domain of convergence of a power series

Definition 3.1.1

The domain of convergence of a power series is

+00
D= {x € R, where Zanx” is convergent} .

n=0
Remark 3.1.2 .

Six =0, then a,x™ = 0, we conclude that the power series Zanx" is convergent. So,
0€ D, then i

D #10.

Lemma 3.1.1 Abel’ioloemma

If a power series Zan;ﬂ” is convergent for x = xo # 0, then it is convergent for all x

n=0

such as —xg < x < Tg

3.2 Radius of convergence of a power series

Definition 3.2.1 Radius of convergence of a power series

“+o0o
Let D be the domain of convergence of a power series Zanx”. The numder R =
n=0
sup |z| is called the radius of convergence of a the series.
zeD
Remark 3.2.2

R varies from 0 to +o00.

Using Abel’s lemma and the definition of radius of convergence, we get the following

proposition.

47



Power series

Proposition 3.2.1
+00

Let Zanx" a power series with a radius R. Then
n=0
+o00
i) For |z| < R, the series Zanmn is convergent.
n=0
+o0
ii) For |x| > R, the series Zanx” is divergent.
n=0
+oo
iii) For |x| = R, we can not say anything about the series Zanx".
n=0
Remark 3.2.3 N
For the third case (|x| = R), we have to study the nature of series Zanx" for x = R and
n=0
r=—R.

Techniques to calculate the radius of convergence R

The radius of convergence R can be calculated using the following Hadamard’s lemma.

Lemma 3.2.1 (Hadamard’s Lemma)
+o00o

Let E a,x" be a power series, then
n=0

where
CLn—&—l

[ = lim

n—-+00

orl= lim {/|a,|.

an, n——+oo

Example 3.2.1
For each series of the following series, we will calculate its radius of convergence and we

determine its domain of convergence.

J)Z "(n+2)la™ with a, = (—1)" (n + 2)!
1
i) Rdius of convergence R: R = 7
We have [ = lim |22
n—-4o00 A,
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clpyr = (D) (43 = (=) (n+3) (n +2)!.

n —1)"*! 3 2)!
| |0 s et
a, (=1)" (n+2)!
then
[ = lim |22 = lim n+3
n—-4o0o an n—-+oo
= —I—OO7
since R = %, we get
R=0.
ii) Domain of convergence D
+oo +oo
Since R =0, then the series Zana:" = Z (=1)" (n+ 2)'2™ is convergent on its domain
n=0 n=0
D which s
D = {0}.
+o00 n n
n-+2 o n+2
2)2( = ) x wzthan:( > )
n=1

1

i) Radius of convergence R: R = 7

We have l = lim u,

n——+00

then

1
since R = 7 we get

it) Domain of convergence D

o0 o0 n
. n+ 2 .
For |z| < R = +00, the series E apx" = E ( 5 ) x™ 1s convergent. Then
n
n=0 n=1

D =R =]—o00,+o0].
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R 3n
3 —— 2" with a,, =
);(n—i-l)2 n—l—l)2
1
i) Radius of convergence R: R = 7
We have | = lim |2t
n—-+oo [07%
3n+l 3 x 3"
aTL _— g 5
T2’ (n+2)
and
| _ | 3x3" (n+1)?* 3(n+1)>
[ (n+2)° 3" (n+2)*"
then
n .3 1)°
[ = lim Antl| _ 11111(Tl—+)2
n—+4co | ay, n——+o0o (TL + 2)

1
since R = 7 we get

it) Domain of convergence D

1 1 1
F. S . -
a) For |z| <R 3 ( 3<:E<3>

+oo 3n

The series Z

n=1

———a" is convergent.
(n+1)°

1 1 1
b) For |z| >R:§, <SE< g ore> §>

+oo n

The series ———a" is divergent.
; (n+1)?

1
c) For |z| :Rzg; (z=—1orz=1%)
+o00 n
: . 3
Nothing can be concluded about the series E —a".
(n+1)

n=1

1
- For x = 3 we have

—+o00 —+o00

3" L w3 (1\" 1
Z(n—i—l)Qx _;mﬂ)? <3> _Z<n+1>2'

n=1 n=1
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+o0

1
Studying the nature of with u, = ———
;(n +1)° (n+1)°
we have u, > 0 and
1 1
Up = ———5 ~ — =V, (because lim u—”zl).
(n -+ 1) 00 n2 n—+00 vy,

Zvn Z— is convergent (Reimann’s series with a =2 > 1)

nl
+o0

then, Z

n=1

( 1)2 is convergent (from the equivalence’s criteria).
n—+
+oo

So, the series Z 3

1)

1
———x" is convergent for v = 3

- For x = —3 we have
+00 +00 n +o0 n
3" " 3" -1 (—1)
Z(n—l— T Z(n—i— 1)? (?) N Z(n—i— 1
n=1 n=1 n=1
Studying the nature of the series f (-1)" with u, = ﬂ
"=
“(n + 1)° (n+1)°
We have (uy,),, is sequence with real term, then we use the criteria of absolute convergence
+oo n
1
to know the nature of the series ZL
“(n + 1)
+00 +oo 1
|un| =
2= 2y
+oo +00 1 +oo
we proved in the previous part that Z lun| = ZW 1s convergent, then Zun =
_I_
n=1 n=1 n=1
+o0o (_ )n +o0o ( 1)n
2—2 s absolutely convergent, so Z 5 1S convergent.
—~(n+1) “(n+1)
=3 1
We conclude that the series Z 52" 1s convergent for x = ——.
“(n+1) 3
Conclusion
+00 3n
The domain of convergence D of the series Z Sx" s
n+1)
11
D=|—-].
53]
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3.3 Properties of power series

+o0
Let S (z) = Zanx” a power series with a radius R and domain D = |—R, R|.

n=0
i) S (z) is continuous in D.

ii) For all x € D, we have

S (x) = Znanx” L
n=1
and
+o0 +o0
a
dr = n n+1
/S(x) ’ Zon+1
0 n=

+o0 +oo
. n—1 an n+1 .
iii) The series g na,x" "~ and E ?x have the same radius R.
n
=0

n=1
3.4 Power series expansion near zero of a function of
a real variable

3.4.1 Function expandable in a power series over the open in-

terval of convergence

Proposition 3.4.1 Function expandable in a power series
A function f defined in a neighborhood of 0 is said to be expandable in a power series

around O if there exists R > 0 such that
Ve e]-R,R[, f(x)= Zan:v”.

More general, a function f defined in a neighborhood of xq is said to be expandable in

a power series around xq if there exists R > 0 such that

+00
Vo € |xg — Ryxo+ R[, f(x)= Zan (x — )"
n=0
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3.4.2 Taylor-Maclaurin series of a function of class C*

Definition 3.4.1 Taylor-Maclaurin series
Let f be a function of class C*° in a neighborhood of the point x = 0. The Taylor-

Maclaurin series of the function f in a neighborhood of x = 0 is ginev by

“+oo
f () .,
f(z)= ZOT:U
Example 3.4.1
1) f(z) = €%, we use the relation
“+oo
f™(0)

then

we conclude

+o00
f™(0)
fla) = =
~ nl
*i 1
= = —z"
“—n!
2) f(x)= ﬁ, we use the relation
+oo
™ (0)
fx) = :
~ nl
we need to calculate f™ (0)
1 / o 1 " _ 2
P =g £ = o W=
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f (x) (1 _x)47"'7f (m) (1 _:E)n7
then
(n) B n! B

we conclude that

1 _ *ff““ (0) »

n=0

1 o=
= l_x:;x”.

3) f(z) = T3 2 by following the same steps as the previous example we get
x
) () — ¢
then

1 o=
l+a > (=1ran,
n=0

4) f(x) =sinz, we use the relation

+o0
(0 .
fw =30
n=0
we need to calculate ™ (0)

f(x) =sinz, f'(x)=cosz, f'(x)=—sinz,

f® () = —cosz,, f@ (z) =sinz, ...,

then
0 () = (—1)Psinz  sin=2p
(—1)Pcosxz sin=2p+1
for x =0, we get
f(") (0) = 0 stm=2p ’

(1) sin=2p+1
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we conclude that
—+o00
L =S
f(x) = smmfZT
n=0

+oo n
= sinz = E ix%*l
“—~(2n+1)! '

5) f(x) = cosx, by following the same steps as the previous example we get

+o0 n
—1
cosxT = E (1) ",

“— (2n)!

3.5 Applications

3.5.1 Solving Differential Equations

We seek a solution in the form of a power series with undetermined coefficients of a
differential equation. By identification, we obtain these coefficients . It is then sufficient
to study the convergence of this series to determine the solution of the equation in the

convergence interval.

Example 3.5.1

1) Finding the power series solution to the equation
Y —y=0, y(0)=1

We pose y (z Zanx‘ then i ( Znan

By a change of mde:z; iny (x) we obtam

“+o0 “+o00 +oo
= Znanx"’I = Z (k+1) ajpp12* = Z (n+ 1) ap2”,
n=1 k=0 n=0
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we get
“+o00 400
l1-—2)y—y = 0 (1—2) Znanx"_l — Zanx" =0
n=1 n=0
“+00 400 —+o0
& Znan:ﬁ"’l — Znanx” — Zanx" =0
n=1 n=1 n=0
+o00o +o00 400
& Z (n+1)a, 12" — Znanx” — Zanx" =0
k=0 n=1 n=0
“+00
& Z((TH—l)anH —Nay, — ap)x" =0
k=0
“+00

& > (n+1)am—(n+1)a,)2"=0
& (n+1)an— (n+1)an =0

& Apyy = a,, VneN.
From y (0) = 1, we get ag = 1, then
a, =1, VnéeN.

This implies that
+o0o
y(x) = Zw"
n=0

From the previous example, we have

1 o=
1—= :an’ o] <1,
n=0

then
= — < 1.
Yy (I) ) |f75|

2) Finding the power series solution of the equation

y'+2xy +2y =0
y(O) =1 ety (0) =1
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+o0o
We pose y (z) = Zanx” then
n=0

+oo +00
Y (z) = Znanx"_l and y" (z) = Zn (n —1)a,a™ 2.
n=1 n=2

By a change of index in y' (x) and y" (x) we obtain

+o0 +o0 +00
y (z) = Znan:v"_l = Z (k+1) app2* = Z (n+1)aps12",
n=1 k=0 n=0
and
—+00 400 “+o00
y" (z) = Zn (n—1)a,2™?* = Z (k+2) (k+1) agqoz” = Z (n+2)(n+1)ap22",
n=2 k=0 n=0
we get
+0o0 +oo +oo
y' 2y +2y = 0& Zn (n —1)apa™ 2 + 21:Znanx"_1 + QZanx" =0
n=2 n=1 n=0

+oo 400 +00
& Zn (n —1)a,a™ 2 + ZZnanx” + ZZanxn =0
n=2 n=1 n=0

+oo +o0 +oo
& Z (n+2)(n+1)ap2z™ + ZZnanx” + 2Zan:p" =0
n=0 n=1 n=0
+oo
& Z ((n+2)(n+1)ante + 2na, + 2a,) 2" =0
n=0
& n+2)(n+1)ap2+2(n+1)a,=0
2
S Qpio = ———an,, Vn € N... *) .
+2 (n + 2) ( )

From y (0) =0, we get ag =1 and from y' (0) =0, we get a; = 0.
From the relation (x), we find

1
2x%x3

az =—1, a3 =0, a4 =3, as =0, ag = —

We note that the coefficients of odd indices are 0. So:

_1\P
(—1|>—, St n=2p
an: p
0, 1 n=2p+1
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Then

“+o00 “+oo —+00
_ n __ 2n 2n+1
y(@) = D ana" =) a2,2”" + > g1
n=0 n=0 n=0

400 o0 n
—1
— § a2nx2n — § ( ) ‘TZTL.
n!
n=0

n=0

From the previous example, we have

then
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Chapter 4

Fourier series

In this chapter, we study Fourier series, which are a fundamental tool in the analysis of
periodic functions. Their applications are quite numerous in other areas of mathematics,

notably in differential equations and partial differential equations.

4.1 'Trigonometric series

Definition 4.1.1 A real trigonometric series is a series of functions of the form:

% + Z[an cos(nx) + by, sin(nz)], (4.1.1)

n=1

with x € R et ag a,, and b, € R, Vn > 1.

Definition 4.1.2 (Periodic fimction):
A function f from R to C is called periodic, if there exists a number T such that, for all
reR

flx)=f(x+T) VxeR.

The smallest such positive number T is called the fundamental period of f, and we say

that f is T-periodic

29



Fourier series

Example 4.1.1

fi(z) = cosx and fo(x) =sinz are 2m-periodic functions:
cos(x + 2m) = cosx and sin(z + 27) = sinz.

Proposition 4.1.1
If the infinite series Zan et Z b, are absolutely convergent then the series defined by

(4.1.1) is normally convergent.

Remark 4.1.3
Suppose that the series defined by (4.1.1) is convergent. Then the function defined by

f(z) = % + Z[an cos(nx) + by, sin(nx)],

18 2m-periodic function.

4.1.1 Calculation of the coefficients of the trigonometric series

We suppose that the series defined by (4.1.1) is uniformly convergent. Then

f(z) = % + Z[an cos(nz) + by, sin(nx)], (4.1.2)

n=1
is 2m-periodic function. In this case, the coefficients ag, a, and b, are given by the

following relations

27
o=~ [ fald,
0

27 2m
1 1
ap = — / f(x)cos(nx) dz and b, = — / f(z)sin(nz) de ¥n > 1.
7r 7r
0 0

Remark 4.1.4

If f is T-periodic function and continuous sur [0,T], then:

T a+T

/f(f)dIZ/f(x)dw Va € R.

0
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Using this remark, and since the function f defined by (4.1.2) is 2m-periodic, we have

+m
ap = %/f(:c) dx.

+7 tm
1 1
Ay, = — / f(gj) CQg(nx) dg;7 and bn = — / f(x) sin(na:) dr Vn > 1.
™ ™

4.2 Fourier series

Definition 4.2.1 Let f : R — R be a 2mw-periodic function. The Fourier series associ-

ated with the function f is the trigonometric series:

+o0
% + Z[an cos(nz) + by, sin(nx)],

n=1

where

+m
CI,OZ%/f(.T)d.Z',

+7 +m
1 1
a, = —/f(x) cos(nz) dx, and b, = —/f(x) sin(nz) de Vn > 1.
T T

Theorem 4.2.2

Let f : R — R be a 2w-periodic function satisfying the following conditions:

1) There exists M > 0 such as |f(z)| < M, Yz € R.

2) f is slice-monotone on the interval [a,b] (i.e we can divide [a,b] into subintervals such

that the function f is monotonic on each subinterval).

Then, the Fourier series associated with the function f is convergent, and we have:

S(z) = % + Z[an cos(nz) + by, sin(nz)],

61



Fourier series

with
I (y) if [ is continuous at y

if fis not continuous at y

where

fry)=limf(z) and f~(y)=limf (z).

To give more simpler format for the coefficients ag, a,, and b,, for a particular type of

function, we need the following proposition.

Proposition 4.2.1

Let g : [—k,+k] — R be a continuous function. then:

+k +k
i) If f is an even function, then /g(m) dx = 2/9(:10) dx.
“k 0
+k
it) If f is an odd function, then /g(m) dr = 0.
—k

Using this proposition, the coefficients ag, a,, and b,, are given as follows

First case: If f is an even function, then

f(+)cos(+) is an even function,

and
f(-)sin(+) is an odd function.
So,
2
ap = — / f(z) dx
T
0
and _
2
ap, = —/f(x) cos(nz) dr and b, =0 Vn > 1.
s
0

Second case: If f is an odd function, then

f(+) cos(+) is an odd function,
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and

f(+)sin(+) is an even function.

So, ap=a, =0 VYn >1, and

™

b, = %/f(x) sin(nz) de Vn > 1.

0
4.3 Parseval’s equality

Theorem 4.3.1

Let f be a 2m-periodic functz’on and developable in Fourier series, then we have

2 |a0|2 i 2 2
|f )" d + ) (lanl® + [ba]?) -

n=1

1) If f is an even function, f2 18 also an even function and b, = 0, then:

2 |a0|2 2
If )= d + ) lan)*.

2) If f is an odd function, f2 is an even function and a, = 0, then:

+oo

@) de =) bl
i

n=1

Example 4.3.1

Let f be a 2mw-periodic function defined by
fl)y=m—|z| e —7m<az<+m.

1) Plot the graph of f over the interval [—3m, 37].
2) Calculate the Fourier coefficients of f.
3) Obtain a Fourier series expansion of the function f.

4) Deduce the sums of the following infinite convergent series:

+oo 1 +o0o 1
A= ——— and B = ra————
ano 2nr12 ™ ano (2n + 1)
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Solution:

1) The graph of f

—3n —2n -7 1o T It 3n

FIGURE 2 — Le graphe de f sur [—3m, +37].

2) The Fourier coefficients of f
fis expandable as a Fourier series (because f satisfies the conditions of Theorem

4.2.2). Moreover, f is an even function, so

b, =0, Vn > 1,
and
2 | 2 [
ao:—/f(m)da: etan:—/f(x)cos(na:)dx, Vn > 1.
7TO 7T0
For ay,

I
aoﬁ{f()d

(m — |z]) dx

2
— —z)dr = .
- (m—x)de =7

[
/
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For a,,

a, = 2/]‘ﬁ(:zt)cos(nx)dx, Vn > 1
T
0

™

2
= —/(7?—:1:) cos (nx) dz
T
0
2 - "1
= = {(W 7) sin (nm)] + —/sin (nx) dz
7r n o N
0
2 0 1 [ cos(nz)]”
oo n n 0
2 r_ 21— (=1)"]
= 2 [ cos (nz)]; = PR
We remark that
0 st n=2p
a, = A .
W St N = 2p +1
3) The Fourier series erpansion of f

We have . N
Qo .
S (z) = 5 ;an cos (nz) + ;bn sin (nz) ,

and since f is continuous for all x € R, we have

S(x) = flz)=7m—lz|= % + Zan cos (nx) + an sin (nx)

n=1 n=1
X
= 5 + ;an cos (nx)
TR =
= 3 + Za2” cos (2nx) + Za2n+1 cos((2n+1)x)
n=1 n=0

+o0
= g + §a2n+1 cos((2n+1)x)  (because as, = 0)

—+oco
T 4
= —+ ———cos((2n+ 1) x

éﬂo cos ((2n+ 1) x) §
+w; (2n +1)° ).

b | 3
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4) Calculation of sums

—+00 1
A=y ——
%zn +1)

We replace x by 0 in the equation (x), we get

o _ T 43R 1
2 T (2n+1)°
+o0 1 2

T
—_— —_—
;(Qn—l—lf 8

—l—oo1
E;ZZ Ejzz.
n=1

From the Parseval’s equality, we have:

1 7T a 2 400
~ [ @R e =S o+ ).
“r n=1

then
s 9 +OO
s 16
— [ (m—|x|])"dx = —+
/( [=1) 2 nz_(]ﬂ2(2n+1)4
2 [ 2 1632 1
—/(ﬂ—x) dr = = — 1
T / 2 mi=(2n+1)
or®  m?  16x~ 1
3 2 w4 (2n+ 1)
400 4
1 T
— [
;(zwr n* 96

Example 4.3.2
Let f be a 2mw-periodic function defined by:

2 st —m<x<0
f(z) =

—2 St O<ax < m

1) Plot the graph of f over the interval [—5m, br].
2) Calculate the Fourier coefficients of f.

66



Fourier series

3) Obtain a Fourier series expansion of the function f.

4) Deduce the sums of the following infinite convergent series:

A= gy

= , an = —_—

— 2n +1 — (2n + 1)2

Solution:

1) The graph of f
—0 o o o 0 +2 ¢ o o o o———o0
5n -4n -3n 2m T 0 = 2n 3m 4n 5w
O———0 o 0 o T-Z o 0 [ 0 o—

2) The Fourier coefficients of f
f is expandable in a Fourier series (because f satisfies the conditions of Theorem 4.2.2).

Moreover, f is an odd function, so
ap=0, and a, =0Vn >1

and

2 s
b, = — [ f(x)sin (nz)dz,
%/
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then

™

by — % / £ () sin (nz) dz

2 ™
= —/2sin(nx)dx
m

0

4 -

= [ cos (na)

A= ()" +

nmw ’

We remark that
0 st n =2
b, — 8 b

m ST N = 2p + 1

3) The Fourier series expansion of [

We have
a +o0 +o0
T) = ?0 + ;an cos (nz) + ;bn sin (nx),

then

+o0o +o0
S(z) = % + Zan cos (nx) + an sin (nx)
n=1 n=0

+o00

= an sin (nx)
n=0
+o00

8 .
= nzm sin (nx)

sin
- = 1
Z2n—i—1 (1),

since f is not continuous for all x € R, then we have for zy € R

fxo) ifxo#km, keZ
0 ifﬁ[)():kﬂ', keZ

S (x0) =
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Fourier series

4) Calculation of sums
PRSI
=+
We replace x by 5 in the equation (1),we get
s sin (
s(3) = 1(5)=2-
2 / Z 2n +1
+OO n
)

T
— nZOZn—i—l 4

H

+o0 1
B=) ——,
;(2n+ 1)?

From the Parseval’s equality, we have:

/|f 2 de = "‘0' Z anl? + [5al?)

then

1/2%1:5 = i”w
g n=1 !

9 |
D - UYL
7TO 7Tn:1(2n+1)
64<X 1
S P S T
“~(2n+1)
+o0o
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Chapter 5

Fourier Transform

The Fourier Transform is an extension of the Fourier Series expansion for periodic func-

tions to non-periodic functions.

We denote by L' (R) the set of functions f : R — R that are integrable and for which

+o0
/ |f (t)| dt converges.

5.1 Fourier Transform

Definition 5.1.1
For f € LY(R). The Fourier transform of f denoted by F (f) is defined as follows:
F(f):R—C,

FN@) == [ raea

Since, we have
e~ "' = cos (st) — isin (st),

then
1

-F(f)(s):ﬁ

/ f(t)cos (st)dt —i / f(t)sin (st) dt
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Fourier transform

5.2 Properties of the Fourier transform

We have

FUNe = o= [ rayea

+oo oo
= \/% /f(t) cos (st)dt — i / f (t)sin (st) dt
If f is an even function, then
f(-)cos(:) is an even and f (-)sin(-) is an odd,
and if f is an odd function, then
f(-)cos(+) is an odd and f (-)sin(-) is an even.
Using the privious remarks, we get the following proposition.

Proposition 5.2.1
For a function f € L*(R), we have

i) If f is an even function, then

F(f)(s)= \/LQ_W / f (t) cos (st) dt.

it) If f is an odd function,then

. T
F(f) (s)z—jg_ﬁ/f(t)sin(st)dt.

Example 5.2.1
1) Let f: R — R be a function defined by

2 af Jt[ <3
0 f [t| > 3.
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Fourier transform

We calculate the Fourier transform of f. It is clear that f is an even function, then

F(f)(s) = [ (t) cos (st) di

/
+
/ 2 cos (st) dt
/

and if s =0, we get

Then 4 sin(3s)
sin (3s
— if s #0
F(Hs) =4 V&
2) Let f a be function defined by.
ORI
e ft >0

with a > 0.
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Fourier transform

We calculate the Fourier transform of f,

fUMQIZ-——/f@M”%t

+o0
1 —ist L —1st
- —— [ 10 ﬁ+%ﬁ!f®e dt

—00
+o0
1 / —at —ist
= — [ e *e "t
0
+

1 .

_ —(a+is)t
= — e dt

\ 2T 0/

+oo

et L _1 6—(a+7§s)t

Vor o +is 0
= L 1 (because e —50ast — 0)

Vora+is’ ’

then
1 1
F = — ; > 0.

Theorem 5.2.1
Let f € L'(R). then
i) F (f) is continuous at sp € R < lim F (f)(s) = F (f) (so)-

S—S

i) F (f) is bounded on R < IM >0: |F(f)(s)| <M, VseR.

Proposition 5.2.2 Linearity of the Fourier transform

Let f and g be two functions. Suppose that F (f) and F (g) exist, then

Flaf +B9) (s) = aF (f)(s) + BF (g9)(s), Jora,feR
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Fourier transform

5.3 Inverse Fourier Transform

Definition 5.3.1
For f € L'(R) a continuous function, the inverse Fourier transform of f denoted by F~*

15 given by:
+o00o
1 )
FrN0 == [ £)eas

Theorem 5.3.2
Let f € LY(R) be a continuous function. Suppose that F (f) € L*'(R), then

FHUFEW) =F(F 1) =1,
and

Ft) = %27 / F () (s) ds.

Example 5.3.1
Let f be a function defined by

0 ift <0
f(t)= ,
et ift >0
with o > 0.

Using Fourier transform and its inverse, we will calculate the following integral

+o0
1 / L g
V2T V2T o+ s

from the previous example, we have

then

400 +o00
1 1 1 ot 1 / ot
: zsd — JT_' zsd
V2m / (\/27TCY+ZS) o Vor (f)e™ds
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Fourier transform

since we have F~1 (F (f)) = F (F1(f)) = f, then we get

with a > 0.

—+o00
1 / 1 1 ) gty
V2T Vora+is
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Chapter 6

Laplace Transform

6.1 Laplace Transform

Definition 6.1.1

For a function f. The Laplace transform is given by

L(f (1) =F(s) = / £ () et

Example 6.1.1
1)For f (t) =2,
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Laplace Transform

2) For f(t)=e*, t>0and a € R

L(f() = L(e)

= . (fors>a).

L®) = L)

—+00

= / testdt

0
“+o00

—te—st +00 1
= { ‘ } + - / e tdt
S s
0 0

—est ~+oo 1
S

gl
— 0+
S

0 s
4) In general, for f(t) =t", we have

—+00

n!
L) = /tnestdt = (ors>0).

0

6.2 Properties of Laplace transform

Proposition 6.2.1
Let f and g be two functions. Suppose that L (f (t)) and L (g (t)) exist, then

Laf(t)+Bg (1) =aLl(f(t)+BL(g(1), fora,BeR.
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Laplace Transform

Example 6.2.1

Using this previous proposition, we can calculate the Laplace transform of sin (at) and
sinh («at)
1) For f(t) =sin(at),t >0 and a € R

L(f(#) = L(sin(at))

_ (212 (e — e—at))

_ ]' at 1 —at
= L) ()
[ T
= _ PR 0
2is—ia  2is+ia’ (for s> 0)
1 s+ioa—(s—ix)

2i (s —ia) (s +ia)’
- ¢ (for s > 0).

52 +qa?’

2) For f (t) = sinh (at), t > 0 and o € R

L(f(t) = L(sinh(at))

-

_ 1 at\ 1 —at
= 2/3 (e ) 2£ (e )
1 1 1

|
(o

Theorem 6.2.1

Let f be a function. Suppose that f,f" and " are continuous and we suppose also that

L(f(t)) = F(s) exists, then we have

L(f' (1)) =sF (s) = f(0),

and

L(f" (1) =s"F(s) —sf(0) = f'(0).
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Laplace Transform

6.3 Inverse Laplace Transform

Definition 6.3.1
Let F' (s) be the Laplace transform of a continuous function f. By applying L™ the inverse

Laplace Transform, we can determine the function f, i.e
L(ft)=F(s)=f(t)=LT"(F(s)).

Example 6.3.1
2

1) We have L (2) = —, then
s

1
2) Fort >0, we have L (t) = (for s > 0), then

s?’
(1
£ (—52) =t.

1
3) Fort >0, we have L (e) = ——, (for s > a), then
s —

1
E_l( >:eat, a€eR
55—«

6.4 Applications to differential equations

For a function y with y,y’ and y” are continuous functions and L (y (t)) = F (s), we have

and
L(y" (t)) = s*F (s) — sy (0) =y (0).
Using these previous relations between y, 1y’ and 3", we can solve an ordinary differential

equations of the form
ay” (t) + by’ () + cy () = g (t)
y(0) =B and y' (0) = v

with a,b,c, 8,7 € R and ¢ is a continuous function.
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Laplace Transform

Example 6.4.1
let F be a function defined by
s—1
(s —2)(s2—2s5+1)

F(s) =

1) Show that
s—1 1 1

(s—2)(s2—25+1) s—2 s—1
2) Using the Laplace transform, solve the system (E) :

y// —2y’+y — 62t

(E) :
y(0)=0ety (0)=1
Solution:
1) Let us show that:
s—1 11
(s—2)(s2—25s+1) s—-2 s—1
We have
s—1 B s—1
(s=2)(s*=2s+1)  (s—2)(s—1)
B 1
 (s—2)(s—1)
11
s —-2 s—1
2) Solving the system (E) :
' =2 +y = =LY -2LW)+L(y) =L() (L is Laplace transform)
L( . / E(e%)
y") L(y) ——
= $°L(y) =5y (0) =y (0) = 2(sL(y) =y ) + L (y) =

1
2— —_ et
= L(y)(s"—2s+1)—1 P
1
= ﬁ(y)(82—28+1):‘9_—2+1
2 _s—1
= L(y) (s 2S+1)_3—2
s—1
= LW = Gy ot
1 1



L1 < L ! > (E’l 1s the inverse Laplace tmnsform)
s—2 s—1
y(t)zﬁl( ! >—£1( ) (wehaveﬁl( ! ):eat for s > a)
5—2 s—1)7 s—a ’
y(t)=e*—¢", t>0.
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