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FOREWORD 

 

 

This work is a course on Strength of Materials II (SOM02), primarily designed for third-

year undergraduate students (LMD) in the Mechanical Engineering field and potentially for 

students in other specialties. This handout is developed with the aim of facilitating students in 

comprehending and assimilating the taught material. 

The course is structured around four chapters. The first chapter is divided into two parts; 

the first part provides a general introduction to Strength of Materials (SOM), covering the 

objectives, the studied components, the assumptions considered in the calculation of 

construction elements, as well as some general concepts in SOM. The second part is dedicated 

to the study of the displacement of symmetrical beams in plane bending. Three methods for 

calculating deflection and rotation are proposed: the double integration method, the method of 

initial parameters, and the method of Area Moments. 

The second chapter focuses on presenting general theorems of elastic systems based on 

the elastic deformation energy of bodies subjected to tension, torsion, shear, and bending, along 

with applications. The purpose is to utilize these theorems for determining deflection and slope. 

In the third chapter, composite loads such as deflected bending, compound bending, and 

torsion bending are studied. In this section, normal and tangential stresses due to composite 

loading are determined. 

Finally, the last chapter addresses the solution of hyper static systems, specifically the 

determination of support reactions using the force method. 

With the theoretical foundation provided, students can refer to key questions illustrated 

by examples and simple applications that are, however, detailed in their treatment. 
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CHAPTER 1: MOVEMENT OF SYMMETRIC BEAMS IN 

PLANE BENDING 

 

INTRODUCTION 

In general, mechanics is the study of the effects of external actions on solids and fluids 

(dynamic study of the movement of a pendulum: mechanics of rigid bodies). In this chapter, 

we begin with the definition of the strength of materials. 

Strength of materials is the study of deformations, displacements, and stresses in objects 

of simple shape. In the context of this course, we focus on beams, and in the mechanics of 

deformable solids, we study the relative displacements between points of a solid (notion of 

deformations) and the associated internal forces (notion of stresses). 

This chapter is divided into two parts. 

The first part provides a review of the strength of materials, where we discuss the 

purpose, the studied components, types of loading, and the assumptions considered in the 

calculation of structural elements. 

The second part is dedicated to the study of simple bending. In this section, we 

determine the internal forces due to bending, namely, the bending moment and shear force, 

normal and tangential stresses, as well as the methods used for determining deflection and 

rotation. 
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PART A 

GENERALITIES 

1. PURPOSE OF STRENGTH OF MATERIALS (SOM) 

The objective is to determine, through calculation, machine components, and structural 

elements: 

 Size these components (economic objectives) 

 Verify their mechanical strength (deformations / imposed stress limits) 

It is derived from the more general theory of the Mechanics of Continuous Media. 

2. SCOPE OF STRENGTH OF MATERIALS (SOM) 

It deals not only with the engineering methods used to calculate the capacity of 

structures and their elements to withstand applied loads without self-destruction or significant 

deformation but also aims to present the basic criteria for the design of structures (shape, 

dimensions, etc.) and the use of materials under the best conditions of safety and economy. 

2.1. CALCULATION OF MECHANICAL COMPONENTS 

 Transmission shafts 

2.2. CALCULATION OF STRUCTURES 

 Buildings, frameworks, metal structures... 

 Bridge Civil Engineering  

 Structural framework of various systems 

3. ASSUMPTIONS 

The main assumptions of the strength of materials are as follows:  

 3.1. SLENDERNESS 

The transverse dimensions of the beam are small compared to the longitudinal 

dimensions. 
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Note: 

Otherwise, other theories such as plates and shells, or elasticity are used to solve the 

problem. 

3.2. RADIUS OF CURVATURE 

The radii of curvature must be limited. 

3.3. SECTION VARIATIONS 

Section variations should be slow and continuous. 

3.4. CONSTRAINTS WITHIN THE FRAMEWORK OF THIS COURSE 

 Straight beams and problems in the plane. 

 Constant section. 

 Straight sections symmetrical with a plane of symmetry. 

 Conclusion: a beam defined by: 

    A midline 

 

       A cross-section 

 
 

Figure 1.1: Cross-sections remain flat and perpendicular to the midline fiber during 

deformation. 

4. MECHANICAL ACTIONS 

Two types of mechanical actions: 

 Localized 

 

 Distributed 
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 Loading must be referred to the midline level. 

Figure 1.2: Mechanical Actions 

5. MATERIALS 

The material is assumed to: 

5.1. LINEAR ELASTICITY 

It is assumed that at every point, stresses and strains are proportional, and after 

deformation, the element returns to its initial state. 

6. DEFORMATION 

Deformations are proportional to stresses. 

6.1. HYPOTHESIS OF SMALL DEFORMATIONS 

Only the elastic behavior zone of materials is considered: 

 Strains and displacements remain small. 

 Calculations are based on the undeformed structure. 

6.2. NAVIER-BERNOULLI HYPOTHESIS 

Straight and planar cross-sections remain straight and planar after deformation: the 

midline deforms, but the straight sections are "rigid." 

7. LOADING 

Resistance calculations are simplified by applying a principle stated by Adhémar Barré, 

Count of Saint-Venant, often experimentally verified. 
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7.1. SAINT-VENANT'S PRINCIPLE 

Stresses and strains in a cross-section far from the points of force application depend 

only on the resultant and resultant moment at the center of gravity of the section associated with 

the system of forces. 

Consequence 

• The results of Strength of Materials (SOM) are valid far from the points of force 

application. 

• Regardless of the nature of a force system, only the resultant torque at the center of 

gravity of the section determines its state. 

In practice 

• It is considered that beyond 2-3 times the largest transverse dimension, results are 

valid. 

  



Chapter 1 

 Displacement of Symmetric Beams in Plane Bending 

 

7 
 

PART B 

MOVEMENT OF SYMMETRICAL BEAMS IN PLANE 

BENDING 

 

1. DEFINITION 

A beam is subjected to bending when the applied forces tend to change its curvature. 

 

 

 

 

 

There are two components of internal 

forces: the bending moment Mfz (or Mfy) and 

the shear force Ty (or Tz), and the beam has a 

plane of symmetry, and the bending forces 

act in this plane perpendicular to the major 

axis of the beam. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Simple Bending. 

2. STUDY OF LONGITUDINAL DEFORMATIONS 

Figure 1.4 shows the tensile and compressive external fibers of a bent beam section. 

2.1. STUDY OF A SECTION UNDER PURE BENDING 
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Figure 1.4 Geometry of the deformation of a beam under pure bending (M˃0) 

 

2.2. LONGITUDINAL STRAINS 
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It can be expressed as follows: 
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d
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)(
),( …………………………………………..(1.2) 

The intuition (and experimental observations) confirms: 

1/  a)   Fibers with y > 0 shorten; they are compressed (εx < 0).  

b) Fibers with y < 0 elongate; they are tensed (εx > 0).  

c)  The neutral fiber does not experience normal stresses.  

2/ Length variations between fibers also induce shearing deformations. 

3. STUDY OF NORMAL STRESSES 

Normal stresses develop in the cross-sections of a beam subjected to a bending moment. 

3.1. EXPRESSION OF NORMAL STRESS UNDER PURE BENDING 

According to Hooke's Law: 



Chapter 1 

 Displacement of Symmetric Beams in Plane Bending 

 

9 
 

r

y
EE xx   . ……………………………………………….…(1.3) 

Note: 

Linear distribution of normal stresses in the cross-section. 

Tension/compression on either side of the neutral axis.  

 

 

 

 

 

 

 

  

 

 
Figure 1.5 Compressed and tensioned regions of sections with a horizontal axis of 

symmetry. 

3.2. RELATIONSHIP WITH BENDING MOMENT: 

The above relations are introduced into the general relationship Mfz = f(σx) 
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With: )(.
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2 sIdsy GZ

s

 …………………………………………....(1.5) 

IGZ : sectional moment of inertia (S) about (G, Z). 

This formula allows us to determine normal stresses at any point on the beam, based 

on the bending moment. The linear distribution of normal stresses and the maximum stresses 

will be located at ymax or ymin.. If the section is symmetrical, they are at ymax and ymin. 
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4. STUDY OF DEFORMATION 

Under bending actions, the neutral axis deforms. The deformed shape, represented by 

the equation v(x) of the neutral axis curve, is called the deflection. The value of the deflection 

at a point is called the sag. 

4.1. EXPRESSION 

 

       xxVxV   tan ……....(1.7) 

Therefore : 

 
 

Gz

fz

IE

xM

dx

d
xV

.
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
 ………......(1.8)   

Deflection equation 

By integration, and with boundary conditions, the 

deflection V(x) is obtained. 

 

 

 

 

 

 

 

 

 

Figure 1.6 Curvature and radius of 

curvature. 

5. TANGENTIAL STRESSES (RELATED TO TY) 

5.1. RECIPROCITY PRINCIPLE  

Equilibrium (PFS) of the elemental volume. 

yxxydv   ……………....(1.9) 

Transverse shear ↔ longitudinal shear 

 

Figure 1.7 Average Shear Stresses 

at Cross Sections 

5.2. AVERAGE SHEAR STRESSES  
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5.3. VALUES OF TANGENTIAL STRESSES 

Let's isolate a portion of the beam (elementary section) 

STRESSES ON THE SHADED PORTION 

On S1 : y
I

M

Gz

fz
.1   et )(1 y ……................(1.11) 

On S2 : y
I

dMM
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
  et )(1 y …..(1.12) 

On S3 :  )(y  

By projection onto x 
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y
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.)(
S

dsyyA ………….(1.13) 
 

Figure 1.8 Stresses in a Bending Section 

Remarks 

 A(y) is called the static moment of S1 with respect to the z-axis. 

 This expression provides a better approximation of τ in the cross-section. 

In particular, a zero stress is found on the upper and lower faces. 

Order of magnitude of normal stresses / tangential stresses 

It can be shown that: 
l

a

o

o


)(

)(




 …………….(1.14) 

 The order of magnitude ratio of tangential/normal stresses corresponds to the slenderness 

ratio of the beam a/l. 

 Considering the assumption about slenderness, only normal stresses are critical in flexion. 

6. DEFLECTION OF BEAMS WITH CONSTANT CROSS-SECTION  

Various methods are employed for determining deflection and rotation; among the most 

commonly used methods are the double integration method, the method of initial parameters, 

the method of deformation superposition, and the method of area moments. In this section, we 

begin with the method of initial parameters: 

 

6.1. INITIAL PARAMETERS METHOD (MACAULAY) 

Consider the bi-articulated beam with a constant cross-section as depicted in Figure 2.5. 

The applied loads divide the beam into five segments, and a direct application of the integration 
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method would lead to the determination of ten integration constants. 

 

 

 

 

 

 

Figure 1.9: Two-hinged beam with constant cross-section. 

. 

The Clebsch method allows, through a calculation artifice, to reduce the constants to just 

two, regardless of the number of segments. Moreover, the method provides a unique expression 

for the deformation that is valid for all segments. The expression for the rotation is naturally 

obtained by differentiating the deformation function. 

The uniqueness of the method lies in its specific presentation of calculations. The 

fundamental idea of the method is to express the moment on a segment by adding new terms 

(at least one term) to the moment expression on the preceding segment while keeping the same 

origin of the x coordinates (see rule 1). 

Let's apply this artifice to the considered example. For each segment, let's write the 

expression for the moment, the differential equation of the elastic, and then perform the two 

successive derivations. 

1st Rule: It consists of placing the origin of the coordinates x, y at the center of gravity of 

an extreme section of the beam, for example, the left end. 

 Section 1 : ax 0  

xRM Az .  
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By making x = 0 in the last two expressions, we obtain: 
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In other words, C1 and D1 represent respectively the rotation and the deflection, 

multiplied by the bending rigidity of the beam (EIz), of the initial section. 

 Section 2  bxa   
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By making x = a in the last two equations, we deduce that: C2 = C1 and D2 = D1.  

 Section 3  cxb   

2nd Rule: We assume the distributed load applied across the remaining length of the beam 

and apply an equal and opposite load to balance the added load (this artifice allows for general 

expressions that hold true throughout the entire length of the beam). 
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When comparing the deflections and rotations in the junction section at x = b, we find : C3 = 

C2 et D3 = D2.  

 Section 4   dxc   
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By comparing once again the displacements and rotations to the left and right of the section x 

= c, it is demonstrated that: C4 = C3 et D4 = D3.  

 Section 5   lxd   

3rd Rule: The concentrated couple is multiplied by (x-d)0 to mark the section where its 

influence begins and to maintain the generality of the expressions. 
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Comparing once again the rotations and deflections at the junction section (x = d), 

obtained using the valid relationships for segments 4 and 5, it is demonstrated that: C5 = C4 

and D5 = D4.  

Thus, it is demonstrated that ultimately there are only two integration constants for the 

entire beam: 

0054321
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These two constants characterize the displacements (rotation and deflection) of the 

initial section of the beam, hence their designation as initial parameters. They are determined 

based on the support conditions of the considered beam. In a simple or double support, the 

deflection is zero f = 0, while in a fixed support, we have: f = θ = 0.  

The total number of equations can be reduced to four by adopting the following writing 

mode: 

 

 

    

 

 

 

To calculate a quantity (Ms , y", y' or y) for a given section, only the terms to the left of 

the section limit should be considered. 

In the treated example, the boundary conditions are written as follows: y = 0 at x = 0 and 

at x = l. The first condition yields f0 = 0, and from the second, we determine the value of θ0. 

The expressions for y(x) and θ(x) are given by the equations: 
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Where: 

M : Concentrated external moments or at the embedding. 

a : Distance between the origin of coordinates and the points of application of moments M 

p : Concentrated forces including reactions  

b : Distances between the origin of coordinates and the points of application of forces P 

qc  , qd : Respectively, the intensities at the beginning and at the end of the distributed load 

q’c , q’d : Respectively, the values of the derivatives of q at the points x= c et x = d 

The directions of the charges are positive as shown below : 

 

 

 

 

  

Figure 1.10 Positive Load Directions 

The two initial parameters y₀ and θ₀ are determined by the support conditions of the beam. 

6.1.1 APPLICATION 

Determine the maximum deflection and rotations at the supports of the beam depicted in 

the figure below. 
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Figure 1.11 Simply supported two-hinged beam subjected to simple bending 

 

6.1.2 Solution 

Calculation of support reactions 

 

 

 

 

 

In static equilibrium: 

  0


zyx MFF  So: 

x AX

y AY BY

AY BY
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F 0 R  0
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R  4 12 4-R ..........(*)
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0

zM A

kN
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kN

we substitute and find

  

  

   

        

  

 





  

Using the initial parameters method, one can determine the maximum deflection and rotations 

at the supports: 
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The maximum deflection 

 0)(x 3rd degree polynomial equation 
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x 0 4 8 12 16 

EIϴ(x) 118.22 48.89 -84.4 -57.78 -25.78 

So  ( ) 0 4,8x for x    

By employing the Dichotomy method, convergence is achieved at x=5,48 

EI
y

414
)48.5(   

6.2. SUPERPOSITION OF DEFORMATIONS 

The differential equations of the deformation are linear equations, meaning that all terms 

of y, y', and y'' are of the first order. Deformations resulting from multiple load cases can 

therefore be superimposed or accumulated. This method is especially useful when the loading 

consists of several elementary load cases, or when deformations are provided in the reference 

documents of the Strength of Materials. 

6.2.1. SUPERPOSITION PRINCIPLE: 

The effect produced by multiple mechanical actions is equal to the sum of the effects 

produced by these mechanical actions taken separately. The term "effect of mechanical actions" 

refers to the state of stress generated by these actions as well as the associated deformations. 

Applying the previously stated principle of superposition allows us to state: "If a beam 

is subjected to several simple loads, the state of stress and deformation is the sum of the states 

of stress and deformation due to each of these simple loads taken separately." 

6.2.2. LIMITATIONS OF THE SUPERPOSITION THEOREM: 

- The elastic limit must not be reached. 

- The sum of external actions from different simple loading problems must be equal to 

that of the complex problem. 

6.2.3. APPLICATION 

Determine the maximum deflection of the beam below. 

 

 
 

P 

a b 
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q 
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 Figure 1.12 embedding beam subjected to a distributed and concentrated load 

6.2.4 Solution 

We divide this beam into two segments (a) and (b) as shown in the figure below: 

 

 

 

 

  

= + 

  

For beam (a):  

The maximum deflection due to the concentrated  

load P is given by: 

EI

Pl
Y

3

3

1    

For beam (b): 

The maximum deflection due to the distributed load q is given by: 

EI

alqa
Y

24

)4(3

2


  

The maximum deflection Ymax is obtained by  

summing the two deflections Y1 and Y2: 

P 

Y1 
a b 

x 
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x 
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6.3 AREA-MOMENT METHOD 

The calculation of the slope (rotation) and deflection of a beam using the "area-moment 

method" also involves concepts studied earlier in this chapter, except that integration is 

performed geometrically, based on the bending moment diagram. We will see that this method 

is particularly suitable for the analysis of beams with varying bending stiffness EI along their 

length. 

Indeed, we observed that the double integration method with singularity functions is 

especially well-suited for cases where EI is constant. 

6.3.1 THEOREMS 

From equations 1.17 and 1.18 of the deformation: 

EI

M

dx

d


2

21 


…………………………………………………….(1.17) 

2

1

dx

d

dx

d

ds

d 


 …………………………………………..….(1.18) 

On peut récrire : 

EI

M

dx

d






1
……………………………………………..............(1.19) 

dx
EI

M
d  ………………………..……………………………….(1.20) 
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By integrating equation 1.20, we can 

determine the slope variation, AB , between 

two points A and B on the elastic curve of the 

beam (fig. 1.13); thus: 

 
B

A

B

A

x

x

AB dx
EI

M
d





 …………..……(1.21) 

Moreover, the right-hand side of equation 

1.21 represents the area under the M/EI curve 

between xA and xB (fig.1.13b). Therefore:  

B

A

AB
EI

M
sousaire 








 ………………(1.22) 

This equation 1.22 can be expressed in 

theorem form. 

 

Figure 1.13 Area-Moment Method 

 

Theorem 1 : Slope Variation. 

The angle between the tangents to the elastic curve at points A and B is equal to the area 

(between these two points) under the bending moment curve divided by the flexural rigidity 

(EI). Additionally, in Figure 1.13c, it can be observed that the distance d , on the vertical line 

passing through point B and bounded by d , is given by the equation: 

dxxd AB )(  …………………..……………………………..(1.23) 

By integrating Equation 1.23, the vertical distance ABBA
  between point B and the tangent 

at point A is obtained: 

dx
EI

M
xx

B

A

x

x

BBA   )( ……………………………………………..(1.24) 

We define   BA  as the tangential deflection at point B with respect to point A. By convention, 

, the first subscript represents the point on the elastic curve, and the second represents the point 
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from which the tangent originates. The integral of Equation 1.24 yields the first moment of the 

area under the curve M/EI between xA and xB, This first moment is evaluated with respect to a 

vertical axis passing through point B. Denoting 
B

x as the distance between point B and the 

centroid of this area, Equation 1.24 can be rewritten as follows: 

B
x

EI

M
sousaire

B

A

BA 







 …………………………………………(1.25) 

Equation 1.25 can also be expressed as a theorem, the second of the method of areas moments. 

Theorem 2: Tangential Deflection 

The tangent deflection at any point B (on the 

elastic curve) on the tangent passing through another 

point A of the elastic curve is equal to the first moment, 

with respect to point B, of the area under the M/EI curve 

between A and B.  

In Figure 1.14, the sign and index conventions 

for tangent deflection and slope variation are provided. 

When the bending moment is positive (Fig. 1.14a), the 

intersection point of the tangents is below the beam, as 

are the tangent deflections. The opposite occurs when 

the bending moment is negative (Fig. 1.14b). It should 

be noted that there is a significant difference between 

BA et AB  

 

  

Figure 1.14 Moment of areas: sign and index 

convention: a) positive bending moment; 

         b) Negative bending moment 

 

6.3.2 APPLICATION 

The beam in the figure below is fixed at its left end. You are required to calculate the 
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slope and deflection at point C (right end) using the method of areas moments (E = 200 GPa). 

 

 

6.3.3 Solution 

Calculation of Support Reactions 

In static equilibrium 
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Using the method of sections, we can plot the 

diagrams of internal forces: 

1st section: 30  x  
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Figure 1.15Application Example.  

Figure 1.15b illustrates the predictable elastic curve: the fixed support requires the curve 

to be perfectly horizontal at A; we will see later that achieving this condition significantly 

simplifies the resolution using the method of moment areas. Figures 1.15c and 1.15d show the 

diagrams of shear forces and bending moments, and Figure 1.15e shows the M/EI diagram. 
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Since, in this case, the flexural rigidity EI is constant, the M and M/EI diagrams are similar. 

1. Calculation of the Slope at Point C 

Since the elastic curve is horizontal at A, we can evaluate the slope 
C  by calculating 

AC  from the equation of theorem 1  

CetAentre
EI

M
sousaireAC   
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4
33

000.720
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12
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2. Calculation of Deflection: 

Again, the fact that the tangent at A is horizontal allows for the direct calculation of the 

deflection Cv , as it is equal to the tangential deflection CA . Therefore, we have (theorem 2): 

CA  First moment with respect to C of the area M/EI enclosed between A and C  

  

mmv

m

CCA

CA

CA
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10.4.54
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2

10.94,6
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
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The fact that CA  is positive indicates that the displacement of point C occurs upward, relative 

to the tangent at A.  

 



Chapter 2 

General Theorems Of Elastic Systems 

26 
 

CHAPTER 2 GENERAL THEOREMS OF ELASTIC SYSTEMS 

 

INTRODUCTION 

  In this chapter, we will examine the relationships that exist between the stresses acting 

on a system and the displacements they produce. 

1. DEFORMATION OF ELASTIC STRUCTURES 

1.1 CONCEPTS OF WORK AND COMPLEMENTARY WORK: 

    To illustrate, let's consider the case of a prismatic bar subjected to axial tension force 

F1 , resulting in elongation δ1 (Fig.2.1a). 

    We assume that the force F1 is applied gradually, in a slow manner, so as not to produce 

any inertia force. Under these conditions, the loading (force F1 here) is said to be applied 

statically, and the resulting displacement (elongation in this case) is related to the applied force 

by a relationship represented by the "F- δ" diagram in (Fig. 2.1b). 

Let F be an intermediate value and δ the corresponding elongation. An increase dF in 

the load corresponds to an additional elongation dδ. The elemental work produced by F during 

the increase in dδ is defined by: 

dτe = Fdδ   …………………………………………………………(2.1)                                                                                                 

    It is represented by the shaded area (inclined hatching) of the F-δ diagram (Fig. 2.1b). 

 

Figure 2.1 Force-Displacement Diagram 
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Note: 

 In the previous figure (Fig. 2.1), Fdδ more precisely represents the rectangle "abcd." 

In other words, the work done by dF during the displacement dδ, which is an infinitely small 

quantity of higher order than 1, is neglected. The total work done by the force F1 during the 

displacement δ1 is obtained by summing up the elemental works, i.e.,  

 


e Fd 0
1

……………………………………………………(2.2) 

It is represented by the area bounded by the F-  curve and the δ axis up to 1. 

Similarly, the elemental complementary work of the displacement  during the increase in load 

dF is given by:  

    d dFe *        ………………………………………………...(2.3)                                                                                        

 The total complementary work done by F1, applied gradually from 0 to F1, during the 

displacement δ1 is given by: 

 e

F

dF*  0
1

…………………………………………………...(2.4)                                                                                         

This is the area to the left of the F-  curve. 

1.2 ENERGY AND COMPLEMENTARY DEFORMATION ENERGY 

Consider a body subjected to external loads. Under the action of external loads, the body 

deforms, and the internal forces (stresses) perform work that opposes the work of external loads. 

This internal work, changed in sign, is designated as the potential energy of deformation: (W) 

(-i = W). 

Isolate an element dv = dxdydz of the considered body. The elementary energy stored in 

dv is calculated as the work done by the forces acting on the faces of the element dv. Thus, the 

work done by the elemental force x.dydz during the variation of dx of the deformation x, 

which produces the displacement dx = dx.dx, is given by : 

dW dydz d dx d dvx x x x    . . ………………………………(2.5)        

Considering all stress components and using index notation, we obtain for the element 

dv:     
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dW d dvij ij   ………………………………………..…..(2.6)                                                                                     

The energy stored in the entire volume of the body (v) is :   

W d dvij ij
v

    ……………………………………………2.7)                                                                                         

Consider a unidirectional stress-strain diagram (unidimensionnel) (Fig. 2.2b).  

 

Figure 2.2 Stress-Strain diagram 

 

We have:   dW d0                                                                                                     

This quantity has the unit of energy per unit volume. The integral:  W d0
0

1

   


                            

is called the density of deformation energy and is represented by the area between the - curve 

and the stress axis . Note that we have : 

W dW dv
v

  0 ………………………………………………(2.8)                                                                                          

 Similarly, the elemental complementary energy produced by an increase in dσij stresses 

during the displacements produced by the corresponding deformations σij is given by: 

dvddW ijij
*  …………………………………………...(2.9)                                                                                    

And for the entire volume of the body: 

  
v

ijij
* dvdW …………………………………………..(2.10) 

We also have:  dW d0
*         and    W d0

0

1*    


                                                           

2. WORK AND ENERGY IN THE LINEAR ELASTIC DOMAIN: 
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2.1 WORK OF A FORCE: 

    If the relation between F and  is linear, within the scope of Hooke's Law (and small 

displacements), i.e., when the relation (Fig. 2.1c) holds at any moment during loading: 

F = k          (k = constant)      ……………………………(2.11)                                  

the total work becomes : 

   


e k d k 
1

2
1
2

0

1

………………………………….…….(2.12) 

and since: F1 = k1 , it follows that : 

 e F
1

2
1 1 ………………………………….………………(2.13)                                                                                 

The total work is represented by the area of the triangle OAB (Fig. 2.1c). 

Note that in the case of linear elasticity, we have: e e *
.  

2.2 GENERALIZATION: 

    If a system in equilibrium is subjected to an overall load F (F1, F2,… Fi,…,Fn) and the 

points of application of these forces undergo displacements, whose projections on the directions 

of these same loads are 1, 2,…, n, the work done during the loading of the system (transition 

from the initial equilibrium state to the final equilibrium state) is given by: 

 e i i

i

n

F




1

2
1

  ………………………………………………(2.14)                                                                                      

It should be recalled that we assume: 

- the loading is static (loadings are slow), 

- the material has a linear elastic behavior (Hooke's Law is satisfied), 

- the displacements do not affect the action of the loads (hypothesis of small displacements, 

no second-order effects). 

2.3 POTENTIAL ENERGY OF DEFORMATION: 

    In the linear elastic domain, the stress-strain relation (ij-ij) is linear, and as in work, 

the factor 1/2 appears in the expression of energy (Fig. 2.3). 
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Figure 2.3 Potential Energy of Deformation in the Linear Elastic Range 

Thus, the work done by the force xdydz during the deformation x which causes a change 

in length dx = xdx is: 

dW dydz dx dvx x x x 
1

2

1

2
    ………………………………(2.15)                                                   

For all stresses acting on dv (in index notation) 

{
 
 

 
 dW dvij ij

1

2
 .

𝑎𝑛𝑑

W dvij ij
v

 
1

2
 

……………………………………………(2.16) 

          

Note:  

In the context of linear elasticity, we have: W = W*. 

3.  DEFORMATION WORK OF SIMPLE LOADS IN THE CASE OF BEAMS: 

    We will separately calculate the deformation work (deformation energy) based on the 

forces N, M, T and Mt in a beam (straight or curved) of length l. Consider a beam segment dx 

(ds) small enough to assume that the forces do not vary over dx. 

 

Figure 2.4 Deformation Work of Simple Stresses (Tension) 

x 

dx 

x 
dy 

dx(1+x) 
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(a) (b) 

 

N N 

dx 

dx+dx 

dx 

z 

y (a) (b) 
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3. 1 NORMAL FORCE: 

Under the influence of normal stress, the segment dx undergoes a change in length ∆dx 

defined by: 




dx

dx
dx dx

E
dxx x

x    


………………………………(2.17) 

As in the case of normal force where x = N/A, we have :  

dx = (N/EA)dx…………………………………………….(2.18)    

 The energy stored in the layer dA.dx is calculated as the work done by the force x.dA 

during the displacement dx, giving: 

d W dA dx
N

A
dA

N

EA
dx

N

EA
dAdxx

2
2

2

1

2

1

2

1

2
  ( ) ( )  …………….(2.19) 

Note: 

    The notation d2W is used to denote a quantity smaller than the elemental energy. The 

elemental energy stored in the segment dx is obtained by integrating over the area A of the 

section: 

dW
dx N

EA
dA

N dx

EA
dA

N

EA
dx

A A
   2

1

2 2

2

2

2

2

2

…………………………………….…..(2.20) 

 

And for the entire beam: 

W
N

EA
dx

l
 

1

2

2

……………………………………………………………….…...(2.21) 

3.2 BENDING MOMENT: 

 Consider the layer dAdx. Under the influence of bending stresses, the layer undergoes a 

change in length:dx = xdx = (x/E)dx. Considering the Navier's relation, it follows:: 

 x
z

z

z

z

M y

I
dx

M y

EI
dx   …………………………………………………….…(2.22) 

The energy stored in the layer dAdx is :  

dAdx
EI

yM
dx

EI

yM
dA

I

yM
dxdAWd

z

z

z

z

z

z
x 2

22
2

2

1
)(

2

1
)(

2

1
  …………….……(2.23) 
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Figure 2.5 Deformation Work of Simple Stresses (Bending) 

 

By integrating over the surface, we obtain the stored energy in the section dx : 

dW
dx M y

EI
dA

M dx

EI
y dA

M

EI
dxz

z
A

z

z

z

zA
   2

1

2 2

2 2

2

2

2

2
2

…………………………………..(2.24) 

Thus, the deformation energy of the beam, calculated by integration over l is: 

W
M

EI
dxz

zl
 

1

2

2

…………………………………………………………….……...(2.25)  

    In the case of left bending, we have a relationship similar to the previous equation for 

each bending moment, and for both moments, we have: 

W
M

EI

M

EI
dxz

z

y

yl
 

1

2

2 2

( ) …………………………………………..………………..(2.26)  

3.3 SHEAR FORCE: 

The stored energy in a section dx subjected to a shear force Ty is given by: 

dW
T

GA
dx

y y

 2

2
…………………………………………………………………….(2.27)  

And for the entire beam: 

W
T

GA
dx

y y

l
 

1

2

2
……………………………………………………...…………..(2.28)  

If the beam is subjected to Ty and Tz, we will have: 

W
T

GA

T

GA
dx

y y z z

l
 

1

2

2 2

( )
 

…………………………………………………………(2.29)  

 

 3.4 TORSION MOMENT:: 

The angle through which the extreme sections of the section dx rotate relative to each 
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other under a torsion moment Mt is given by (Fig. 2.6): d
qM

GI
dxt

t

P

   

 
 

Figure 2.6 Deformation work of simple loads (torsion) 

Where:  

- q is a constant depending on the shape and dimensions of the section, referred to as the torsion 

coefficient (q  40Ip
2/A4). This factor equals 1 for a circular section and is greater than 1 for 

other cases. 

- The quantity C = GIp/q is designated as torsional stiffness.  

The energy stored in the differential section dx is calculated as the work done by Mt during 

the rotation dt : 

dW M d
qM

GI
dxt t

t

P

 
1

2 2

2

 ………………………………………………..………..(2.30)  

And for the entire beam: 

W
qM

GI
dxt

Pl
 

1

2

2

…………………………………………………...………………(2.31)  

4. GENERAL EXPRESSION OF THE POTENTIAL ENERGY OF DEFORMATION: 

    Consider within an elastic body a small element dv = dxdydz small enough to assume 

that stresses do not vary on the faces of the element. 

 Calculate the energy stored in the element dv when subjected to all stresses (Fig. 2.7a). 

Mt Mt 

dx 

dt 



Chapter 2 

General Theorems Of Elastic Systems 

34 
 

 

   Figure 2.7 Stresses in the volume element dv 

The deformation work of the force xdydz during the displacement dx = xdx (Fig. 2.7b) 

is given by :  

dW dydz dx dxdydzx x x x 
1

2

1

2
( )    ………………………………………..…….(2.32)  

For all three normal stresses: 

dW dxdydzx x y y z z  
1

2
( )      ……………………………………..………...(2.33)  

Where x,y and z are the longitudinal strains and can be expressed in terms of normal 

stresses from the generalized Hooke's law. 

    The strains induced by normal and tangential stresses being independent, if there are 

tangential stresses in addition to normal stresses, their effect can be simply added. The work of 

the force xydydz during the displacement xydx (Fig. 2.7c) is given by: 

dW dydz dx dxdydzxy xy xy xy 
1

2

1

2
( )    …………………………...……………….(2.34)  

In the presence of all stresses, it follows : 

dW dxdydzx x y y z z xy xy yz yz zx zx     
1

2
( )            …………………..………..(2.35)  

The potential energy of deformation for the entire body is obtained by summing over the entire 

volume: 

W dvx x y y z z xy xy yz yz zx zx
v

     
1

2
( )            ……………………..…..(2.36)  

    The expression for W can be formulated in terms of stresses only or strains only by 

using the expressions of stresses in terms of strains given by the generalized Hooke's law. In 

the case of a beam subjected to N, M, T, and Mt loads, the expression for W is: 

W
M

EI
dx

N

EA
dx

T

GA
dx

qM

GI
dxt

Pllll
    

1

2

1

2

1

2

1

2

2 2 2 2


………………….……………(2.37)  

    Note that this last expression does not result from the application of the superposition 

(a) (b) 
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principle, which is not applicable since the energy is not linearly related to the loads. 

5. CASTIGLIANO'S THEOREM: 

5.1 FIRST FORM OF THE THEOREM: 

Consider an elastic system subjected to a load F (F1, F2,…, Fn). During loading, the 

system deforms, and the points of application of the forces undergo displacements 1, 2,…, n 

(i measured in the direction of Fi). 

          The stored energy W in the system during loading can be expressed in terms of the forces 

or the displacements at their point of application. 

W W F F Wn n ( , ,... , ) ( , ,... , )1 2 1 2 F     ……………………………..……………(2.38) 

     

                   

                 Let's give the force Fi an increment dFi. This results in a variation in energy defined 

by the quantity (W/Fi)dFi and the total energy, under F (F1, F2, …, Fn) and dFi, is written 

as : 

W
W

F
dF

i
i




…………………………………………………...……………..…….(2.39)  

    Since the work of forces does not depend on the order in which they are applied, let's 

first apply dFi and then the overall load F (F1, F2, …, Fn). 

    The infinitesimal force dFi produces an infinitesimal displacement di as well, so that 

the work done can be considered an infinitely small quantity of order 2 that is legitimate to 

neglect: (1/2) dFidi  0. 

    Now, let's apply the overall load F (F1, F2, …, Fn). The work done is equal to W : 

e = W. Furthermore, the force dFi, whose point of application has undergone a displacement 

i, produces work equal to dFii. 

Hence the total work::  

  e i i i idF W dF    …………………………………………..………………...(2.40) 

The first form of Castigliano's theorem,  






W

Fi
i ………………………………….………………………………………(2.41)  
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Can be stated as follows: 

    In an elastic system with undeformable supports, the derivative of the deformation energy 

with respect to one of the forces acting on the system is equal to the projection, in the direction 

of that force, of the elastic displacement at its point of application. 

6.  APPLICATIONS : 

 

6.1 Example 1:  

Consider a two-hinged beam with a constant section loaded in the middle by a 

concentrated force P. 

Calculate the deflection at mid-span (f). 

 

6.1.2 Solution 

The deflection value is obtained by directly applying the following formula: 

f = W/P 

W
M

EI
dx

T

GA
dxz

zl

y

l
  

1

2

1

2

2 2
……………………………..(1) 

Calculation of support reactions  

In static equilibrium:  

  0


zyx MFF  so : 

x AX

y AY BY

BY

BY

F 0 R  = 0

F 0 R  + R  = P.........(*)

/ 0 R . P. 0
2

P. P
R ........................(**)

2. 2

z

l
M A l

l

l

 

 

    

  






 

Replacing (**) into (*), we find: 

P 

l/2 l/2 

P 

l/2 l/2 

RAY RBY 

RAX 



Chapter 2 

General Theorems Of Elastic Systems 

37 
 

AY BY

P
R R

2
   

By the method of sections, we can determine the internal forces: 

1st section: 
2

0
l

x   

x
p

xM f ..
2

)(1   

2
)(1

P
xT   

2nd section: lx
l


2

 

).(
2

)(2 xl
P

xM f   

2
)(

P
xT   

Substituting these values into (1), we obtain: 

    



2/1

0

l

2/1

2/1

0

l

2/1

2222

z

]dx)
2

P
(dx)

2

P
([

GA2
]dx))xl(

2

P
(dx)x

2

P
([

EI2

1
W  

W
P l

EI

P l

GAz

 
2 3 2

96 8


 

Therefore: 

f
Pl

EI

Pl

GAz

 
3

48 4


 

6.2 Example 2:  

    Calculate the displacement of the point of application of the load P (assuming constant 

flexural stiffness). 

 

P/2 

x 

Mf1 

T 

T 
x 

P/2 

Mf2 P 
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6.2.1 Solution 

The value of the deflection is obtained by the direct application of the following 

formula:  

f = W/P 

W
M

EI
dx

T

GA
dxz

zl

y

l
  

1

2

1

2

2 2
……………………………..(1) 

 By the method of sections, we can determine the internal forces: 

1st section: lx 0  

PT

lPxM f



 .)(
 

Substituting these values into (1), we obtain: 

GA

lP

EI

lP
W

dxP
GA

dxPx
EI

l
W

z

l l

z

26

)(
2

)(
2

232

0 0

22







  
 

Therefore: 

f
Pl

EI

Pl

GAz

 
3

3


 

6.3 Example 3:  

Calculate the rotation of the end B of the beam shown. 

P 

f 

l 

Mf 

x 

T 

P 
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6.3.1 Solution 

 






l

0

l

0

2

z

2
22

z GAl2

C

EI6

lC
dx)

l

C
(

GA2
dx)x

l

C
(

EI2

1
W  

Therefore: 







B

W

C

Cl

EI

C

GAlz

  
3

 

 

A 
B 

B 
C 
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CHAPITRE 3 COMPOUND STRESSES.  

 

GENERALITIES  

A stress is considered compound if there is more than one internal force in a cross-section 

of a part 

Let ox, oy and oz be the principal axes (figure 3.1) 

In this section, we focus on the most common compound stresses: 

- Deviated bending: (Mz , Ty , My , Tz) ; 

- Compound bending: (Mz , Ty, My , Tz , Nx) ; 

- Bending-torsion: (Mz , Ty, Mx) ou (My , Tz , Mx). 

-  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Internal forces. 

1.  DEVIATED BENDING 

Bending is considered deviated if, in a cross-section of the part, the internal forces (Mz, 

Ty, My, and Tz) acting on the principal axes are not zero (Figure 3.2). 

 

Ty 

Tz 

Nx 

x 

y 

z 

Mz 

Mx 

My 

G 
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Figure 3.2 Bending Deflection. 

1.1 NORMAL STRESS 

The normal stress is given by: 

z
I

M
y

I

M

y

y

z

z
x  ………………………………………………………………(3.1) 

The neutral axis (AN) is defined as the set of points where the normal stress is zero. 

For a point P(x0 ; y0) belonging to the neutral axis, we have: 

My and Mz are the moments components M. Therefore: 

z

y

y

z

M

M

MM

MM














tan

sin

cos
………………………………...…………………..(3.3) 

By substituting equation [4.3] into [4.2], we get: 

 tantan
y

z

I

I
 .………………………………………………….…………………..(3.4) 

tan0
0

0
00 

y

z

z

y

y

y

z

z

I

I

M

M

z

y
z

I

M
y

I

M
……………………………...……...(3.2)  
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Figure 3.3 Coordinates of a point belonging to the neutral axis.  

 

1.2 SHEAR STRESS 

The shear stress at a point is given by: 

22

xzxy   ………………………………………………………………………(3.5) 

With: 

















y

yz
xz

z

zy

xy

I

S

b

T

I

S

b

T





……………………………………………………………………….(3.6) 

1.3 STRENGTH CALCULATION 

The steps for calculating strength are: 

- - Determine the critical sections (areas where internal forces are maximum) and the 

critical points in the section (points farthest from the neutral axis). 

- - Calculate the value of normal stress and verify that it is less than the allowable stress: 

  x
………………………………………………………….………………....(3.7) 

  : Material's allowable stress. 

Ty 

Tz 

y 

z 

Mz 

M 

My 

G 

yn 

y’ 

zn z’ 
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- Check for a failure criterion (for ductile materials): : 

  22 3x      (Von Mises Criterion)………………………………………..(3.8) 

1.4 STIFFNESS CALCULATION: 

The deflection is calculated using the differential equation of the elastic curve: 

zz M
dx

fd
EI 

2

2

………………………………………………..………………..…(3.9) 

With: 

   22
)()( xwxf   ………………………………………………………....(3.10) 

)(x  and )(xw  are the displacements along y and z, respectively. 

The maximum deflection must satisfy the condition: 

ff  ………………………………………………………………………....…(3.11) 

150

l
f  ÷

1000

l
 

With: 

l  : the beam span. 

f : the allowable deflection. 

The deflection check is performed after the strength check. 

1.5 APPLICATION : 

Calculate the maximum load P that an IPE140 beam can withstand while adhering to 

the strength conditions [σ]=120 MPa. 
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Figure 3.4 

a) Position of the IPE140 beam in space b) Position of the IPE140 beam in the plane 

 1.5.1 Solution 

 Geometric characteristics of an IPE140 :A=16,4.102mm2 ; 

Iy=541,2.104mm4 ;Iz=44,9.104mm4 

The loading vector P can be decomposed as:  

kPjPP zy


..   With : 











PPP

PPP

y

y

908,025cos

423,025sin
 

 

a) Force balance for the "xy" plane: 
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Calculation of support reactions  

In static equilibrium: 

  0


zyx MFF   

thus: 

y AY BY y

BY y

y

BY

F 0 R  + R  = P 0,423 .........(*)

/ 0 R .4 P .2 0

P .2 0,423 .2
R 0,212 ...........(**)

4 4

z

P

M A

P
P

  

    

   



  

Replacing (**) into (*), we find: 

AY BYR R 0,212P   

By the method of sections, we can plot the diagrams of internal forces:  

1st section: 20  x  












mKnPMx

mKnMx
xPxM

f

f

f
.423,0)2(2

.0)0(0
.212,0)(  










KnPTx

KnPTx
PxT

212,0)2(2

212,0)0(0
212,0)(  

2nd section : 42  x  












mKnMx

mKnPMx
xPxPxM

f

f

f
.0)2(4

.423,0)0(2
)2(423,0.212,0)(  










KnPTx

KnPTx
PxT

212,0)2(2

212,0)0(0
212,0)(  

  

Py =0,423P 

2 m 2 m 

RAY RBY 

0,212P 
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Mf 
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0,212P 
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Mf 

x 

Py =0,423P 
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b) Force balance for the "xz" plane:  

 

 

 

 

 

Calculation of support reactions  

In static equilibrium:  

  0


yyx MFF   

thus : 

P

trouveondansremplaceOn

P
P

AM

P

z

454,0RR

:(*)(**)

.(**)..........454,0
4

2.908,0

4

2.P
R

02.P4.R0/

*).........(908,0P = R + R0F

BZAZ

z
BZ

zBZ

zBZAZy













 

 By the method of sections, we can plot the diagrams of internal forces: 

1stsection : 20  x  












mKnPMx

mKnMx
xPxM

f
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f
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.0)0(0
.454,0)(  



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




KnPTx

KnPTx
PxT

454,0)2(2
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c) Diagrams of internal forces  

Plane « xoy »                                                     Plane « xoz » 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.5 Diagrams of internal forces. 

d) Neutral axis equation  

We have: z
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Figure 3.6 Position of the neutral axis in the plane. 

This is the equation of a line passing through the center of gravity of the section. The farthest 

point from the neutral axis is point B (-36,5 ;-70) so the maximum stress at this point is given 

by:  

MPa 47,06/0,047
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e) Strength calculation 

    KnPPB

x 6.212006,47max    

2. COMBINED BENDING 

 

Bending is considered combined if, in a cross-section of the piece, the internal forces 

(Nx, Mz , Ty , My and Tz) acting on the principal axes are not zero (figure 3.7.) 
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y’ z 

 
25° 
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Figure 3.7 Combined bending. 

2.1 NORMAL STRESS 

The normal stress is given by:  

z
I

M
y

I

M

A

N

y

y

z

zx
x  …………………………………………………...….…(3.12) 

A : being the area of the cross-section of the piece. 

Neutral Axis Equation 

Let a point P(x0 ; y0) belong to the NA axis. Then: 

000  z
I

M
y

I

M

A

N

y

y

z

zx
x …………………………………..………………(3.13) 

On the other hand (fig 3.7) 















Py

Pz
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.

. ………………………………………………………….………..…(3.14) 

By substituting equation [3.13] into [3.14], we obtain: 
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01 0202
 z

i

z
y

i

y

y

P

z

P ……………………………………………………...….…(3.15) 

With: 

A

I
i

y

y 
2   et   

A

I
i z

z 
2 …..………………………………………………………..……....…(3.16) 

iy and iz are the radii of gyration. 

2.2 SHEAR STRESS 

The shear stress at a point is given by: 

22

xzxy   ………………………………………..……………..……………(3.17) 

With: 












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

y

yz
xz

z

zy

xy

I

S

b

T

I

S

b

T





……………………………………………...……………………..(3.18) 

2.3 STRENGTH CALCULATION 

The steps for calculating strength are as follows: 

- Identify critical sections (zones where internal forces are maximum) and critical points 

within the section (points furthest from the neutral axis). 

- Calculate the value of normal stress and verify that it is less than the allowable stress 

value:  

 x
………………………………………………………………..……….....(3.19) 

  : Allowable stress of the material. 

2.4 STIFFNESS CALCULATION: 

The maximum deflection must satisfy the condition: 

ff  ……………………………………………………………………………(3.20) 
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Note: 

- In the case of compound bending, the neutral axis does not pass through the centroid of 

the cross-sectional area. 

- 
x  is maximum for points furthest from the neutral axis. 

- For strength calculation, as in the case of deflected bending, it is sufficient to verify that: 

 x
 .The term 22

xzxy   is negligible. 

2.5 APPLICATION : 

Calculate the maximum load P that an IPE140 beam can support while meeting strength 

conditions. [σ]=120 MPa.  

 

 

 

 

 

 

 

 

 

Figure 3.8 Embedded Console at One End. 

2.5.1 Solution 

Geometric characteristics of an IPE140 :A=16,4.102mm2 ; 

Iy=541,2.104mm4 ;Iz=44,9.104mm4.

z 
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x 

A B 
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140 mm 
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Force balance for the "xy" plane: 

 

  

 

 

 

Figure 3.9 Force balance for the "xy" plane 

Calculation of moments: 

 mmKnPMPM zz .70
2

140
.   

Calculation of support reactions (embedding) 

In static equilibrium::   

  0
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 By the method of sections, we can plot the diagrams  

of internal forces:  

1st section : 10000  x  
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2nd section : 20001000  x  
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a) Force balance for the "xz" plane: 

 

  

 

 

 

Figure 3.10 Force balance for the "xy" plane 

Calculation of moments:  

 mmKnPMPM zy .5,36
2

73
.   

 Calculation of support reactions (embedding) 

 In static equilibrium:   

  0


yzx MFF  ; Therefore:  
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By the method of sections, we can plot the diagrams  

of internal forces: 

1stsection : 20000  x  
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a) Diagrams of internal forces  

Plane « xoy »                                                     Plane « xoz » 

 

 

 

 

  

 

 

 

 

 

Figure 3.11 Diagrams of internal forces 

b) Neutral axis equation 

From the internal forces diagrams, we observe that there are two (02) critical sections: S1 and 

S2. 
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For section S1 : 

We have:  z
I

M
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To plot the neutral axis, it is sufficient to define two points belonging to this axis: 

- Take point E (y0 ; z0) with y0 =0 and calculate the value of z0. Then, 
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So, E (0;-3.18). 

- We take the point G (y0 ; z0) with z0 =0 and calculate the value of y0.Thus, 
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So, G (-0,29 ;0).  

Figure 3.12 Position of the neutral axis for S1. 

The furthest point from the neutral axis is point C (-70 ;-36,5) so the maximum stress is 

located at this point and is given by: 
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c) Strength condition 

  NPPC

x 31,784120153,0120max    
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KNP 78,0 ………………….(1) 

For section S2 : 

We have:  z
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To plot the neutral axis, it is sufficient to define two points belonging to this axis: 

- Take point E’ (y0 ; z0) with y0 =0 and calculate the value of z0. Then, 
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So, E’ (0 ;-6,15). 

- We take the point G’ (y0 ; z0) with z0 =0 and calculate the value of y0.Thus, 
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Donc G’ (0,26 ;0).  

 

 

 

Figure 3.13 Position of the neutral axis for S2. 

The furthest point from the neutral axis is point B (-70 ; 36,5) so the maximum stress is 

located at this point and is given by: 
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a) Strength condition 

  NPPB

x 701120171,0120max    

KNP 701,0 ………………….(2) 

From equations (1) and (2), we find that: 

  

3. BENDING-TORSION 

A component is in bending-torsion if it is simultaneously subjected to pure bending and 

pure torsion. 

 

 

 

 

 

 

  

Figure 3.14 Bending-torsion. 

3.1 NORMAL STRESS 

The normal stress is given by:: 

z
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Where: 
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A: is the cross-sectional area of the component.  

3.2 SHEAR STRESS 

The shear stress at a point is given by: 

222

txzxy   ……………………………………………..………………(3.22) 

Where: 
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



………………………………………………………………..….(3.23) 

Mt : torsional moment. 

I0 : polar moment of inertia. 

R : radius of the bar. 

3.3 STRENGTH CALCULATION  

The steps for calculating strength are: 

- Identify the critical sections (areas where internal forces are maximum) and critical points 

within the section (points farthest from the neutral axis). 

- Evaluate the values of normal stress and shear stress due to torsion and check if the 

calculated values are less than the allowable stress of the material: 

 x
  et   t

………………………………………………………….…..(3.24) 

  : Allowable shear stress of the material. 

Note: 

- The strength condition is satisfied if the conditions at the points furthest from the neutral 

axis are met. 

- The shear stress due to torsion is not negligible. 

- The calculation of hollow circular sections is similar to that of solid sections. 
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3.4 APPLICATION : 

Calculate the diameter of the component while satisfying the strength conditions. 

MPa120  and  MPa90  

 

 

 

 
 

Figure 3.15 Bending-torsion console. 

3.4.1 Solution 

a) Equivalent System 

 

  

 

 

 

Figure 3.16 Equivalent System 

Calculation of moments:  
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 Calculation of support reactions (embedding) 

 In static equilibrium:   
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By the method of sections, we can plot the diagrams  

of internal forces: 

1stsection : 10  x  
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f)  Diagrams of internal forces  

 

 

 

 

  

 

 

 

 

                                                     

Figure 3.17 Diagrams of internal forces. 

b) NORMAL STRESS: 

The maximum normal stress is given by the equation:  
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c) Shear stress 

The shear stress due to torsion is given by the equation: 
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 CHAPITRE 4 RESOLUTION OF HYPERSTATIC SYSTEMS 

 

INTRODUCTION 

A system is termed hyperstatic if the number of unknowns in the connections exceeds 

the number of equations derived from statics. This difference is called the hyperstaticity degree 

of the system. To study and analyze a structure with a hyperstaticity degree of d, it is necessary 

to establish additional equations (known as compatibility equations). The methods involve 

choosing a base system from which the simplest isostatic system (SI) is determined, as 

illustrated in the figure below. 

 

 

 

 

Due to the interdependence between forces and displacements, there are two ways to 

approach the calculation of hyperstatic structures, namely: either by focusing on forces (in 

redundant connections) or by focusing on displacements (the displacement method). 

1. CALCULATION OF THE DEGREE OF HYPERSTATISM::  

Generally, the number of redundant supports represents the degree of hyperstatism. 

There are two approaches to calculate this degree: 

1.1 SUPPORT-BASED REASONING: 

The degree of hyperstatism 2 ndh
. If the beam has a fixed support, then the degree 

of hyperstatism is increased by one unit 1 calculédd hh
 

. Where: n is the number of supports 

  

Hyperstatic system HS of order 

d (Deficiency of (d) equations 

to be able to analyze the 

hyperstatic system HS). 

Isostatic system 

(SI). 

(d) Additional equations 

to calculate all 

unknowns. 

Equivalent à 
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Figure 4.1 Degree of hyperstatism (support-based reasoning) 

1.2 SPAN-BASED REASONING: 

The degree of hyperstatism 1 ndh
. If the beam has a fixed support, then the degree 

of hyperstatism is increased by one unit  1 calculédd hh
 

 

Figure 4.2 Degree of hyperstatism (span-based reasoning) 

2. FORCE METHOD (OR CUT METHOD) 

The force method (or cut method) is one of the general methods for analyzing statically 

indeterminate systems. It involves selecting and determining hyperstatic unknowns that, once 

calculated, allow the determination of forces at any point in the structure, turning it into a 

statically determinate system. This method is based on the principle of superposition of the 

effects of actions and constitutes a global elastic analysis, limited in the context of these notes 

to plane structures loaded in their plane, where the beams' cross-section has the torsion center 

coinciding with the center of gravity. 

2.1 DEFINITIONS 

A structure is said to be statically determinate or statically determinate when all support 

reactions and internal forces can be determined using only static equilibrium equations. In 

contrast, when there are too few equations, the structure is said to be statically indeterminate or 

hyperstatic. The degree of static indeterminacy or degree of hyperstaticity h of a structure is 

then equal to the number of simple cuts required to make it statically determinate. 
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It's important to note that hyperstaticity in a structure can arise from redundant 

connections with the external world (external hyperstaticity), in which case the simple cuts will 

relate to the supports. Hyperstaticity can also arise from redundant connections within the 

structure itself (internal hyperstaticity), in which case the simple cuts will relate to internal 

forces M, N, V. 

The total degree of hyperstaticity h is, of course, equal to the sum of the internal degree 

hi and external degree he. 

Each simple cut i modifies the system by removing the connection related to an 

unknown reaction component or an unknown internal force (actually two equal and opposite 

forces). This eliminates the component or force corresponding to a hyperstatic unknown. The 

total number h of simple cuts required to make the structure statically determinate is therefore 

equal to the number of hyperstatic unknowns in the problem. 

The statically determinate structure derived from the actual structure will be called the 

reference statically determinate structure S0. There are obviously several possible reference 

statically determinate structures for the same initial structure since the simple cuts can be made 

in any sections. However, it is necessary to pay particular attention when making cuts to avoid 

resulting in a mechanism. 

We will call Xj ( j=1, 2, … h ) the hyperstatic unknowns. Associated with the cuts related 

to these forces, under a load on the reference statically determinate structure S0, There may be 

displacements di (i=1, 2, … h) called relative displacements of the edges of cut i. The objective 

of the force method (or cut method) is to determine the h hyperstatic unknowns Xj of a structure 

with a degree of hyperstaticity h.  
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Figure 4.3 Representation of the force method 

2.2 FLEXIBILITY COEFFICIENTS FIJ AND FIP 

The flexibility coefficient fij, is defined as the relative displacement of the cut edges i in 

the i direction due to a unit force Xj = 1 acting on the cut j, in the j direction. 

In this definition, the terms force and displacement must be considered in the 

generalized sense. Thus, in the case of a cut related to a support,Xj can represent either a unit 

force or a unit moment, and in the case of an internal cut, Xj can represent a pair of unit internal 

forces (M, N, or V). Similarly, fij can represent either the actual displacement or rotation 

associated with a support cut, or the actual relative displacement or relative rotation associated 

with an internal cut. 

Example : 
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Figure 4.4 Flexibility coefficient 

The flexibility coefficient fij representing a displacement in the reference isostatic 

structure can be calculated using the unit force theorem:  

 


str
ji

str
ji

str
ji

ij dx
AG

VV
dx

EI

MM
dx

EA

NN
f

000

……………………………….…...…..(4.1) 

Where : Ni, Mi, Vi are the equations of internal forces in the reference isostatic structure 

under a virtual unit load Xi applied at i (to obtain the relative displacement); and: Nj, Mj, Vj are 

the equations of internal forces in the reference isostatic structure under the unit hyperstatic 

unknown Xj applied at j. 

It is important to note that, according to the reciprocity theorem of Betty-Maxwell,  

jiij ff  ……………………………………………………………………….…..(4.2) 

The flexibility coefficient fip, is defined as the relative displacement of the cut edges i 

in the i, direction produced by the applied external forces. 

In this definition, the terms force and displacement must be considered in the 

generalized sense. Thus, fip can represent either the actual displacement or rotation associated 

with a support cut, or the actual relative displacement or relative rotation associated with an 

internal cut. 
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Example : 

 

Figure 4.5 Displacement represented by the flexibility coefficient fip  

The flexibility coefficient fip representing a displacement in the reference isostatic 

structure can be calculated using the unit force theorem:  

 


str
pi

str
pi

str
pi

ip dx
AG

VV
dx

EI

MM
dx

EA

NN
f

000

……………………………………....(4.3) 

Where : Ni, Mi, Vi are the equations of internal forces in the reference isostatic structure 

under a virtual unit load Xi applied a i (to obtain the relative displacement); and NP, MP, VP are 

the equations of internal forces in the reference isostatic structure due to the entire applied 

external forces. 

2.3 GENERAL EQUATION OF THE FORCE METHOD 

Consider, now, the reference isostatic structure successively and separately loaded by 

each hyperstatic unknown Xj and by the applied actual forces: 

 

Figure 4.6 Reference isostatic structure  
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According to the principle of superposition, we can consider the actual hyperstatic 

structure (of degree h) as the superposition of (h+1) states of the reference isostatic structure, 

provided that the total relative displacements of the cut edges are zero, as there are no cuts in 

the actual structure. If we consider cut i in the i direction, it will undergo a total relative 

displacement di, the sum of displacements produced by each unknown force Xj, i.e.,  fij.Xj, and 

the displacement due to the applied external forces, i.e., fip. This total relative displacement 

being zero, we can write: 

0.
1




ip

h

j

jij fXf  for all : i=1,2,…..h…………..……………………………...…..(4.4) 

By this condition, we obtain a system of h equations for h inconnues Xj. These equations 

reflect the compatibility condition of displacements at the h cuts and constitute the equations 

of the force method. 

These equations can also be written in matrix form: [F].[X] = [A] , with : 

- [F]: the flexibility matrix of the structure (array of fij coefficients), square hxh and symmetric; 

- [X] : the vector of hyperstatic unknowns Xj ; 

- [A] : the vector of displacements fip with a changed sign. 

Once the h unknowns are determined, the structure to be solved becomes isostatic. The 

determination of internal forces M,N,V in the complete structure can then be done in two ways: 

- Either by proceeding, as with any isostatic structure, through cuts and free-body 

diagrams; 

- Or by superimposing the diagrams of the (h+1) reference isostatic structures, replacing 

unit forces with the values of hyperstatic unknowns. 

2.4 NUMERICAL DETERMINATION OF FIJ AND FIP COEFFICIENTS 

For beams primarily subjected to bending, it is common to neglect deformations due to 

normal forces and shear forces compared to those caused by bending moments. In this case, the 

expressions for the coefficients fij and fip can be simplified to: 
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

str
ji

ij dx
EI

MM
f

0

 and  : 

str
pi

ip dx
EI

MM
f

0

..………………………….…………..(4.5) 

When dealing with cables or truss members, these elements are, solely or 

predominantly, subjected to normal forces. The expressions for fij and fip are then reduced to: 



str
ji

ij dx
EA

NN
f

0

 and 

str
pi

ip dx
EA

NN
f

0

………………………………..………….(4.6) 

Furthermore, it is noteworthy that any integral involved in the calculations of fij and fip, 

coefficients involves two forces that can have different signs. Thus, fij and fip coefficients may 

be negative for i and j. 

In numerical applications, the moment of inertia of a beam section or the area of a cable 

section is often constant along the length of the element. Additionally, given the usually 

considered loads, the moments vary linearly or parabolically, and the normal forces are often 

constant or can be considered as such. It has therefore been interesting to calculate a series of 

integrals of the form 
L

dxmM
0

..  based on the characteristic quantities of rectangular, triangular, 

trapezoidal, and parabolic diagrams, independently of EI or EA (the functions M and m must 

be considered with their relative sign). 

2.5 APPLICATION : 

Consider the hyperstatic straight beam represented below: 

1- Calculate the degree of hyperstaticity. 

2- Determine the reactions at the supports. 

 

 

 

 
 

 

Figure 4.7 One-ended Fixed Console 
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2.5.1 Solution 

Degree of hyperstaticity: 

srh   with : r =5 : number of unknowns; S=3 : number of equations 

Therefore:: 235 h  

Determination of support reactions: 
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 To solve this equation, we start by calculating B 
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CONCLUSION  

 

 

This set of lecture notes and exercises is a continuation of the Mechanics of Materials 

course taught in the fourth semester. We will cover compound stresses, energy methods, and 

hyperstatic systems. The purpose of this set of notes is to serve as a guide following the outline 

of the third-year Bachelor's degree in mechanical engineering for mechanical engineering 

students and individuals seeking an overview of materials resistance.  

Bibliographical references are provided below to allow the reader to delve deeper into 

each topic covered. 
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